Logo Search packages:      
Sourcecode: linux-2.6 version File versions  Download package

aachba.c

/*
 *    Adaptec AAC series RAID controller driver
 *    (c) Copyright 2001 Red Hat Inc.     <alan@redhat.com>
 *
 * based on the old aacraid driver that is..
 * Adaptec aacraid device driver for Linux.
 *
 * Copyright (c) 2000 Adaptec, Inc. (aacraid@adaptec.com)
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; see the file COPYING.  If not, write to
 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
 *
 */

#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/sched.h>
#include <linux/pci.h>
#include <linux/spinlock.h>
#include <linux/slab.h>
#include <linux/completion.h>
#include <linux/blkdev.h>
#include <linux/dma-mapping.h>
#include <asm/semaphore.h>
#include <asm/uaccess.h>

#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_host.h>

#include "aacraid.h"

/* values for inqd_pdt: Peripheral device type in plain English */
#define     INQD_PDT_DA 0x00  /* Direct-access (DISK) device */
#define     INQD_PDT_PROC     0x03  /* Processor device */
#define     INQD_PDT_CHNGR    0x08  /* Changer (jukebox, scsi2) */
#define     INQD_PDT_COMM     0x09  /* Communication device (scsi2) */
#define     INQD_PDT_NOLUN2 0x1f    /* Unknown Device (scsi2) */
#define     INQD_PDT_NOLUN    0x7f  /* Logical Unit Not Present */

#define     INQD_PDT_DMASK    0x1F  /* Peripheral Device Type Mask */
#define     INQD_PDT_QMASK    0xE0  /* Peripheral Device Qualifer Mask */

/*
 *    Sense codes
 */
 
#define SENCODE_NO_SENSE                        0x00
#define SENCODE_END_OF_DATA                     0x00
#define SENCODE_BECOMING_READY                  0x04
#define SENCODE_INIT_CMD_REQUIRED               0x04
#define SENCODE_PARAM_LIST_LENGTH_ERROR         0x1A
#define SENCODE_INVALID_COMMAND                 0x20
#define SENCODE_LBA_OUT_OF_RANGE                0x21
#define SENCODE_INVALID_CDB_FIELD               0x24
#define SENCODE_LUN_NOT_SUPPORTED               0x25
#define SENCODE_INVALID_PARAM_FIELD             0x26
#define SENCODE_PARAM_NOT_SUPPORTED             0x26
#define SENCODE_PARAM_VALUE_INVALID             0x26
#define SENCODE_RESET_OCCURRED                  0x29
#define SENCODE_LUN_NOT_SELF_CONFIGURED_YET     0x3E
#define SENCODE_INQUIRY_DATA_CHANGED            0x3F
#define SENCODE_SAVING_PARAMS_NOT_SUPPORTED     0x39
#define SENCODE_DIAGNOSTIC_FAILURE              0x40
#define SENCODE_INTERNAL_TARGET_FAILURE         0x44
#define SENCODE_INVALID_MESSAGE_ERROR           0x49
#define SENCODE_LUN_FAILED_SELF_CONFIG          0x4c
#define SENCODE_OVERLAPPED_COMMAND              0x4E

/*
 *    Additional sense codes
 */
 
#define ASENCODE_NO_SENSE                       0x00
#define ASENCODE_END_OF_DATA                    0x05
#define ASENCODE_BECOMING_READY                 0x01
#define ASENCODE_INIT_CMD_REQUIRED              0x02
#define ASENCODE_PARAM_LIST_LENGTH_ERROR        0x00
#define ASENCODE_INVALID_COMMAND                0x00
#define ASENCODE_LBA_OUT_OF_RANGE               0x00
#define ASENCODE_INVALID_CDB_FIELD              0x00
#define ASENCODE_LUN_NOT_SUPPORTED              0x00
#define ASENCODE_INVALID_PARAM_FIELD            0x00
#define ASENCODE_PARAM_NOT_SUPPORTED            0x01
#define ASENCODE_PARAM_VALUE_INVALID            0x02
#define ASENCODE_RESET_OCCURRED                 0x00
#define ASENCODE_LUN_NOT_SELF_CONFIGURED_YET    0x00
#define ASENCODE_INQUIRY_DATA_CHANGED           0x03
#define ASENCODE_SAVING_PARAMS_NOT_SUPPORTED    0x00
#define ASENCODE_DIAGNOSTIC_FAILURE             0x80
#define ASENCODE_INTERNAL_TARGET_FAILURE        0x00
#define ASENCODE_INVALID_MESSAGE_ERROR          0x00
#define ASENCODE_LUN_FAILED_SELF_CONFIG         0x00
#define ASENCODE_OVERLAPPED_COMMAND             0x00

#define BYTE0(x) (unsigned char)(x)
#define BYTE1(x) (unsigned char)((x) >> 8)
#define BYTE2(x) (unsigned char)((x) >> 16)
#define BYTE3(x) (unsigned char)((x) >> 24)

/*------------------------------------------------------------------------------
 *              S T R U C T S / T Y P E D E F S
 *----------------------------------------------------------------------------*/
/* SCSI inquiry data */
struct inquiry_data {
      u8 inqd_pdt;      /* Peripheral qualifier | Peripheral Device Type  */
      u8 inqd_dtq;      /* RMB | Device Type Qualifier  */
      u8 inqd_ver;      /* ISO version | ECMA version | ANSI-approved version */
      u8 inqd_rdf;      /* AENC | TrmIOP | Response data format */
      u8 inqd_len;      /* Additional length (n-4) */
      u8 inqd_pad1[2];/* Reserved - must be zero */
      u8 inqd_pad2;     /* RelAdr | WBus32 | WBus16 |  Sync  | Linked |Reserved| CmdQue | SftRe */
      u8 inqd_vid[8];   /* Vendor ID */
      u8 inqd_pid[16];/* Product ID */
      u8 inqd_prl[4];   /* Product Revision Level */
};

/*
 *              M O D U L E   G L O B A L S
 */
 
static unsigned long aac_build_sg(struct scsi_cmnd* scsicmd, struct sgmap* sgmap);
static unsigned long aac_build_sg64(struct scsi_cmnd* scsicmd, struct sgmap64* psg);
static unsigned long aac_build_sgraw(struct scsi_cmnd* scsicmd, struct sgmapraw* psg);
static int aac_send_srb_fib(struct scsi_cmnd* scsicmd);
#ifdef AAC_DETAILED_STATUS_INFO
static char *aac_get_status_string(u32 status);
#endif

/*
 *    Non dasd selection is handled entirely in aachba now
 */   
 
static int nondasd = -1;
static int dacmode = -1;

static int commit = -1;
int startup_timeout = 180;
int aif_timeout = 120;

module_param(nondasd, int, S_IRUGO|S_IWUSR);
MODULE_PARM_DESC(nondasd, "Control scanning of hba for nondasd devices. 0=off, 1=on");
module_param(dacmode, int, S_IRUGO|S_IWUSR);
MODULE_PARM_DESC(dacmode, "Control whether dma addressing is using 64 bit DAC. 0=off, 1=on");
module_param(commit, int, S_IRUGO|S_IWUSR);
MODULE_PARM_DESC(commit, "Control whether a COMMIT_CONFIG is issued to the adapter for foreign arrays.\nThis is typically needed in systems that do not have a BIOS. 0=off, 1=on");
module_param(startup_timeout, int, S_IRUGO|S_IWUSR);
MODULE_PARM_DESC(startup_timeout, "The duration of time in seconds to wait for adapter to have it's kernel up and\nrunning. This is typically adjusted for large systems that do not have a BIOS.");
module_param(aif_timeout, int, S_IRUGO|S_IWUSR);
MODULE_PARM_DESC(aif_timeout, "The duration of time in seconds to wait for applications to pick up AIFs before\nderegistering them. This is typically adjusted for heavily burdened systems.");

int numacb = -1;
module_param(numacb, int, S_IRUGO|S_IWUSR);
MODULE_PARM_DESC(numacb, "Request a limit to the number of adapter control blocks (FIB) allocated. Valid values are 512 and down. Default is to use suggestion from Firmware.");

int acbsize = -1;
module_param(acbsize, int, S_IRUGO|S_IWUSR);
MODULE_PARM_DESC(acbsize, "Request a specific adapter control block (FIB) size. Valid values are 512, 2048, 4096 and 8192. Default is to use suggestion from Firmware.");
/**
 *    aac_get_config_status   -     check the adapter configuration
 *    @common: adapter to query
 *
 *    Query config status, and commit the configuration if needed.
 */
int aac_get_config_status(struct aac_dev *dev)
{
      int status = 0;
      struct fib * fibptr;

      if (!(fibptr = aac_fib_alloc(dev)))
            return -ENOMEM;

      aac_fib_init(fibptr);
      {
            struct aac_get_config_status *dinfo;
            dinfo = (struct aac_get_config_status *) fib_data(fibptr);

            dinfo->command = cpu_to_le32(VM_ContainerConfig);
            dinfo->type = cpu_to_le32(CT_GET_CONFIG_STATUS);
            dinfo->count = cpu_to_le32(sizeof(((struct aac_get_config_status_resp *)NULL)->data));
      }

      status = aac_fib_send(ContainerCommand,
                      fibptr,
                      sizeof (struct aac_get_config_status),
                      FsaNormal,
                      1, 1,
                      NULL, NULL);
      if (status < 0 ) {
            printk(KERN_WARNING "aac_get_config_status: SendFIB failed.\n");
      } else {
            struct aac_get_config_status_resp *reply
              = (struct aac_get_config_status_resp *) fib_data(fibptr);
            dprintk((KERN_WARNING
              "aac_get_config_status: response=%d status=%d action=%d\n",
              le32_to_cpu(reply->response),
              le32_to_cpu(reply->status),
              le32_to_cpu(reply->data.action)));
            if ((le32_to_cpu(reply->response) != ST_OK) ||
                 (le32_to_cpu(reply->status) != CT_OK) ||
                 (le32_to_cpu(reply->data.action) > CFACT_PAUSE)) {
                  printk(KERN_WARNING "aac_get_config_status: Will not issue the Commit Configuration\n");
                  status = -EINVAL;
            }
      }
      aac_fib_complete(fibptr);
      /* Send a CT_COMMIT_CONFIG to enable discovery of devices */
      if (status >= 0) {
            if (commit == 1) {
                  struct aac_commit_config * dinfo;
                  aac_fib_init(fibptr);
                  dinfo = (struct aac_commit_config *) fib_data(fibptr);
      
                  dinfo->command = cpu_to_le32(VM_ContainerConfig);
                  dinfo->type = cpu_to_le32(CT_COMMIT_CONFIG);
      
                  status = aac_fib_send(ContainerCommand,
                            fibptr,
                            sizeof (struct aac_commit_config),
                            FsaNormal,
                            1, 1,
                            NULL, NULL);
                  aac_fib_complete(fibptr);
            } else if (commit == 0) {
                  printk(KERN_WARNING
                    "aac_get_config_status: Foreign device configurations are being ignored\n");
            }
      }
      aac_fib_free(fibptr);
      return status;
}

/**
 *    aac_get_containers      -     list containers
 *    @common: adapter to probe
 *
 *    Make a list of all containers on this controller
 */
int aac_get_containers(struct aac_dev *dev)
{
      struct fsa_dev_info *fsa_dev_ptr;
      u32 index; 
      int status = 0;
      struct fib * fibptr;
      unsigned instance;
      struct aac_get_container_count *dinfo;
      struct aac_get_container_count_resp *dresp;
      int maximum_num_containers = MAXIMUM_NUM_CONTAINERS;

      instance = dev->scsi_host_ptr->unique_id;

      if (!(fibptr = aac_fib_alloc(dev)))
            return -ENOMEM;

      aac_fib_init(fibptr);
      dinfo = (struct aac_get_container_count *) fib_data(fibptr);
      dinfo->command = cpu_to_le32(VM_ContainerConfig);
      dinfo->type = cpu_to_le32(CT_GET_CONTAINER_COUNT);

      status = aac_fib_send(ContainerCommand,
                fibptr,
                sizeof (struct aac_get_container_count),
                FsaNormal,
                1, 1,
                NULL, NULL);
      if (status >= 0) {
            dresp = (struct aac_get_container_count_resp *)fib_data(fibptr);
            maximum_num_containers = le32_to_cpu(dresp->ContainerSwitchEntries);
            aac_fib_complete(fibptr);
      }

      if (maximum_num_containers < MAXIMUM_NUM_CONTAINERS)
            maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
      fsa_dev_ptr = (struct fsa_dev_info *) kmalloc(
        sizeof(*fsa_dev_ptr) * maximum_num_containers, GFP_KERNEL);
      if (!fsa_dev_ptr) {
            aac_fib_free(fibptr);
            return -ENOMEM;
      }
      memset(fsa_dev_ptr, 0, sizeof(*fsa_dev_ptr) * maximum_num_containers);

      dev->fsa_dev = fsa_dev_ptr;
      dev->maximum_num_containers = maximum_num_containers;

      for (index = 0; index < dev->maximum_num_containers; index++) {
            struct aac_query_mount *dinfo;
            struct aac_mount *dresp;

            fsa_dev_ptr[index].devname[0] = '\0';

            aac_fib_init(fibptr);
            dinfo = (struct aac_query_mount *) fib_data(fibptr);

            dinfo->command = cpu_to_le32(VM_NameServe);
            dinfo->count = cpu_to_le32(index);
            dinfo->type = cpu_to_le32(FT_FILESYS);

            status = aac_fib_send(ContainerCommand,
                            fibptr,
                            sizeof (struct aac_query_mount),
                            FsaNormal,
                            1, 1,
                            NULL, NULL);
            if (status < 0 ) {
                  printk(KERN_WARNING "aac_get_containers: SendFIB failed.\n");
                  break;
            }
            dresp = (struct aac_mount *)fib_data(fibptr);

            if ((le32_to_cpu(dresp->status) == ST_OK) &&
                (le32_to_cpu(dresp->mnt[0].vol) == CT_NONE)) {
                  dinfo->command = cpu_to_le32(VM_NameServe64);
                  dinfo->count = cpu_to_le32(index);
                  dinfo->type = cpu_to_le32(FT_FILESYS);

                  if (aac_fib_send(ContainerCommand,
                            fibptr,
                            sizeof(struct aac_query_mount),
                            FsaNormal,
                            1, 1,
                            NULL, NULL) < 0)
                        continue;
            } else
                  dresp->mnt[0].capacityhigh = 0;

            dprintk ((KERN_DEBUG
              "VM_NameServe cid=%d status=%d vol=%d state=%d cap=%llu\n",
              (int)index, (int)le32_to_cpu(dresp->status),
              (int)le32_to_cpu(dresp->mnt[0].vol),
              (int)le32_to_cpu(dresp->mnt[0].state),
              ((u64)le32_to_cpu(dresp->mnt[0].capacity)) +
                (((u64)le32_to_cpu(dresp->mnt[0].capacityhigh)) << 32)));
            if ((le32_to_cpu(dresp->status) == ST_OK) &&
                (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE) &&
                (le32_to_cpu(dresp->mnt[0].state) != FSCS_HIDDEN)) {
                  fsa_dev_ptr[index].valid = 1;
                  fsa_dev_ptr[index].type = le32_to_cpu(dresp->mnt[0].vol);
                  fsa_dev_ptr[index].size
                    = ((u64)le32_to_cpu(dresp->mnt[0].capacity)) +
                      (((u64)le32_to_cpu(dresp->mnt[0].capacityhigh)) << 32);
                  if (le32_to_cpu(dresp->mnt[0].state) & FSCS_READONLY)
                            fsa_dev_ptr[index].ro = 1;
            }
            aac_fib_complete(fibptr);
            /*
             *    If there are no more containers, then stop asking.
             */
            if ((index + 1) >= le32_to_cpu(dresp->count)){
                  break;
            }
      }
      aac_fib_free(fibptr);
      return status;
}

static void aac_internal_transfer(struct scsi_cmnd *scsicmd, void *data, unsigned int offset, unsigned int len)
{
      void *buf;
      unsigned int transfer_len;
      struct scatterlist *sg = scsicmd->request_buffer;

      if (scsicmd->use_sg) {
            buf = kmap_atomic(sg->page, KM_IRQ0) + sg->offset;
            transfer_len = min(sg->length, len + offset);
      } else {
            buf = scsicmd->request_buffer;
            transfer_len = min(scsicmd->request_bufflen, len + offset);
      }

      memcpy(buf + offset, data, transfer_len - offset);

      if (scsicmd->use_sg) 
            kunmap_atomic(buf - sg->offset, KM_IRQ0);

}

static void get_container_name_callback(void *context, struct fib * fibptr)
{
      struct aac_get_name_resp * get_name_reply;
      struct scsi_cmnd * scsicmd;

      scsicmd = (struct scsi_cmnd *) context;
      scsicmd->SCp.phase = AAC_OWNER_MIDLEVEL;

      dprintk((KERN_DEBUG "get_container_name_callback[cpu %d]: t = %ld.\n", smp_processor_id(), jiffies));
      BUG_ON(fibptr == NULL);

      get_name_reply = (struct aac_get_name_resp *) fib_data(fibptr);
      /* Failure is irrelevant, using default value instead */
      if ((le32_to_cpu(get_name_reply->status) == CT_OK)
       && (get_name_reply->data[0] != '\0')) {
            char *sp = get_name_reply->data;
            sp[sizeof(((struct aac_get_name_resp *)NULL)->data)-1] = '\0';
            while (*sp == ' ')
                  ++sp;
            if (*sp) {
                  char d[sizeof(((struct inquiry_data *)NULL)->inqd_pid)];
                  int count = sizeof(d);
                  char *dp = d;
                  do {
                        *dp++ = (*sp) ? *sp++ : ' ';
                  } while (--count > 0);
                  aac_internal_transfer(scsicmd, d, 
                    offsetof(struct inquiry_data, inqd_pid), sizeof(d));
            }
      }

      scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;

      aac_fib_complete(fibptr);
      aac_fib_free(fibptr);
      scsicmd->scsi_done(scsicmd);
}

/**
 *    aac_get_container_name  -     get container name, none blocking.
 */
static int aac_get_container_name(struct scsi_cmnd * scsicmd, int cid)
{
      int status;
      struct aac_get_name *dinfo;
      struct fib * cmd_fibcontext;
      struct aac_dev * dev;

      dev = (struct aac_dev *)scsicmd->device->host->hostdata;

      if (!(cmd_fibcontext = aac_fib_alloc(dev)))
            return -ENOMEM;

      aac_fib_init(cmd_fibcontext);
      dinfo = (struct aac_get_name *) fib_data(cmd_fibcontext);

      dinfo->command = cpu_to_le32(VM_ContainerConfig);
      dinfo->type = cpu_to_le32(CT_READ_NAME);
      dinfo->cid = cpu_to_le32(cid);
      dinfo->count = cpu_to_le32(sizeof(((struct aac_get_name_resp *)NULL)->data));

      status = aac_fib_send(ContainerCommand,
              cmd_fibcontext, 
              sizeof (struct aac_get_name),
              FsaNormal, 
              0, 1, 
              (fib_callback) get_container_name_callback, 
              (void *) scsicmd);
      
      /*
       *    Check that the command queued to the controller
       */
      if (status == -EINPROGRESS) {
            scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
            return 0;
      }
            
      printk(KERN_WARNING "aac_get_container_name: aac_fib_send failed with status: %d.\n", status);
      aac_fib_complete(cmd_fibcontext);
      aac_fib_free(cmd_fibcontext);
      return -1;
}

/**
 *    aac_probe_container           -     query a logical volume
 *    @dev: device to query
 *    @cid: container identifier
 *
 *    Queries the controller about the given volume. The volume information
 *    is updated in the struct fsa_dev_info structure rather than returned.
 */
 
int aac_probe_container(struct aac_dev *dev, int cid)
{
      struct fsa_dev_info *fsa_dev_ptr;
      int status;
      struct aac_query_mount *dinfo;
      struct aac_mount *dresp;
      struct fib * fibptr;
      unsigned instance;

      fsa_dev_ptr = dev->fsa_dev;
      instance = dev->scsi_host_ptr->unique_id;

      if (!(fibptr = aac_fib_alloc(dev)))
            return -ENOMEM;

      aac_fib_init(fibptr);

      dinfo = (struct aac_query_mount *)fib_data(fibptr);

      dinfo->command = cpu_to_le32(VM_NameServe);
      dinfo->count = cpu_to_le32(cid);
      dinfo->type = cpu_to_le32(FT_FILESYS);

      status = aac_fib_send(ContainerCommand,
                      fibptr,
                      sizeof(struct aac_query_mount),
                      FsaNormal,
                      1, 1,
                      NULL, NULL);
      if (status < 0) {
            printk(KERN_WARNING "aacraid: aac_probe_container query failed.\n");
            goto error;
      }

      dresp = (struct aac_mount *) fib_data(fibptr);

      if ((le32_to_cpu(dresp->status) == ST_OK) &&
          (le32_to_cpu(dresp->mnt[0].vol) == CT_NONE)) {
            dinfo->command = cpu_to_le32(VM_NameServe64);
            dinfo->count = cpu_to_le32(cid);
            dinfo->type = cpu_to_le32(FT_FILESYS);

            if (aac_fib_send(ContainerCommand,
                      fibptr,
                      sizeof(struct aac_query_mount),
                      FsaNormal,
                      1, 1,
                      NULL, NULL) < 0)
                  goto error;
      } else
            dresp->mnt[0].capacityhigh = 0;

      if ((le32_to_cpu(dresp->status) == ST_OK) &&
          (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE) &&
          (le32_to_cpu(dresp->mnt[0].state) != FSCS_HIDDEN)) {
            fsa_dev_ptr[cid].valid = 1;
            fsa_dev_ptr[cid].type = le32_to_cpu(dresp->mnt[0].vol);
            fsa_dev_ptr[cid].size
              = ((u64)le32_to_cpu(dresp->mnt[0].capacity)) +
                (((u64)le32_to_cpu(dresp->mnt[0].capacityhigh)) << 32);
            if (le32_to_cpu(dresp->mnt[0].state) & FSCS_READONLY)
                  fsa_dev_ptr[cid].ro = 1;
      }

error:
      aac_fib_complete(fibptr);
      aac_fib_free(fibptr);

      return status;
}

/* Local Structure to set SCSI inquiry data strings */
struct scsi_inq {
      char vid[8];         /* Vendor ID */
      char pid[16];        /* Product ID */
      char prl[4];         /* Product Revision Level */
};

/**
 *    InqStrCopy  -     string merge
 *    @a:   string to copy from
 *    @b:   string to copy to
 *
 *    Copy a String from one location to another
 *    without copying \0
 */

static void inqstrcpy(char *a, char *b)
{

      while(*a != (char)0) 
            *b++ = *a++;
}

static char *container_types[] = {
        "None",
        "Volume",
        "Mirror",
        "Stripe",
        "RAID5",
        "SSRW",
        "SSRO",
        "Morph",
        "Legacy",
        "RAID4",
        "RAID10",             
        "RAID00",             
        "V-MIRRORS",          
        "PSEUDO R4",          
      "RAID50",
      "RAID5D",
      "RAID5D0",
      "RAID1E",
      "RAID6",
      "RAID60",
        "Unknown"
};



/* Function: setinqstr
 *
 * Arguments: [1] pointer to void [1] int
 *
 * Purpose: Sets SCSI inquiry data strings for vendor, product
 * and revision level. Allows strings to be set in platform dependant
 * files instead of in OS dependant driver source.
 */

static void setinqstr(struct aac_dev *dev, void *data, int tindex)
{
      struct scsi_inq *str;

      str = (struct scsi_inq *)(data); /* cast data to scsi inq block */
      memset(str, ' ', sizeof(*str));

      if (dev->supplement_adapter_info.AdapterTypeText[0]) {
            char * cp = dev->supplement_adapter_info.AdapterTypeText;
            int c = sizeof(str->vid);
            while (*cp && *cp != ' ' && --c)
                  ++cp;
            c = *cp;
            *cp = '\0';
            inqstrcpy (dev->supplement_adapter_info.AdapterTypeText,
              str->vid); 
            *cp = c;
            while (*cp && *cp != ' ')
                  ++cp;
            while (*cp == ' ')
                  ++cp;
            /* last six chars reserved for vol type */
            c = 0;
            if (strlen(cp) > sizeof(str->pid)) {
                  c = cp[sizeof(str->pid)];
                  cp[sizeof(str->pid)] = '\0';
            }
            inqstrcpy (cp, str->pid);
            if (c)
                  cp[sizeof(str->pid)] = c;
      } else {
            struct aac_driver_ident *mp = aac_get_driver_ident(dev->cardtype);

            inqstrcpy (mp->vname, str->vid);
            /* last six chars reserved for vol type */
            inqstrcpy (mp->model, str->pid);
      }

      if (tindex < ARRAY_SIZE(container_types)){
            char *findit = str->pid;

            for ( ; *findit != ' '; findit++); /* walk till we find a space */
            /* RAID is superfluous in the context of a RAID device */
            if (memcmp(findit-4, "RAID", 4) == 0)
                  *(findit -= 4) = ' ';
            if (((findit - str->pid) + strlen(container_types[tindex]))
             < (sizeof(str->pid) + sizeof(str->prl)))
                  inqstrcpy (container_types[tindex], findit + 1);
      }
      inqstrcpy ("V1.0", str->prl);
}

static void set_sense(u8 *sense_buf, u8 sense_key, u8 sense_code,
                  u8 a_sense_code, u8 incorrect_length,
                  u8 bit_pointer, u16 field_pointer,
                  u32 residue)
{
      sense_buf[0] = 0xF0;    /* Sense data valid, err code 70h (current error) */
      sense_buf[1] = 0; /* Segment number, always zero */

      if (incorrect_length) {
            sense_buf[2] = sense_key | 0x20;/* Set ILI bit | sense key */
            sense_buf[3] = BYTE3(residue);
            sense_buf[4] = BYTE2(residue);
            sense_buf[5] = BYTE1(residue);
            sense_buf[6] = BYTE0(residue);
      } else
            sense_buf[2] = sense_key;     /* Sense key */

      if (sense_key == ILLEGAL_REQUEST)
            sense_buf[7] = 10;      /* Additional sense length */
      else
            sense_buf[7] = 6; /* Additional sense length */

      sense_buf[12] = sense_code;   /* Additional sense code */
      sense_buf[13] = a_sense_code; /* Additional sense code qualifier */
      if (sense_key == ILLEGAL_REQUEST) {
            sense_buf[15] = 0;

            if (sense_code == SENCODE_INVALID_PARAM_FIELD)
                  sense_buf[15] = 0x80;/* Std sense key specific field */
            /* Illegal parameter is in the parameter block */

            if (sense_code == SENCODE_INVALID_CDB_FIELD)
                  sense_buf[15] = 0xc0;/* Std sense key specific field */
            /* Illegal parameter is in the CDB block */
            sense_buf[15] |= bit_pointer;
            sense_buf[16] = field_pointer >> 8; /* MSB */
            sense_buf[17] = field_pointer;            /* LSB */
      }
}

int aac_get_adapter_info(struct aac_dev* dev)
{
      struct fib* fibptr;
      int rcode;
      u32 tmp;
      struct aac_adapter_info *info;
      struct aac_bus_info *command;
      struct aac_bus_info_response *bus_info;

      if (!(fibptr = aac_fib_alloc(dev)))
            return -ENOMEM;

      aac_fib_init(fibptr);
      info = (struct aac_adapter_info *) fib_data(fibptr);
      memset(info,0,sizeof(*info));

      rcode = aac_fib_send(RequestAdapterInfo,
                   fibptr, 
                   sizeof(*info),
                   FsaNormal, 
                   -1, 1, /* First `interrupt' command uses special wait */
                   NULL, 
                   NULL);

      if (rcode < 0) {
            aac_fib_complete(fibptr);
            aac_fib_free(fibptr);
            return rcode;
      }
      memcpy(&dev->adapter_info, info, sizeof(*info));

      if (dev->adapter_info.options & AAC_OPT_SUPPLEMENT_ADAPTER_INFO) {
            struct aac_supplement_adapter_info * info;

            aac_fib_init(fibptr);

            info = (struct aac_supplement_adapter_info *) fib_data(fibptr);

            memset(info,0,sizeof(*info));

            rcode = aac_fib_send(RequestSupplementAdapterInfo,
                         fibptr,
                         sizeof(*info),
                         FsaNormal,
                         1, 1,
                         NULL,
                         NULL);

            if (rcode >= 0)
                  memcpy(&dev->supplement_adapter_info, info, sizeof(*info));
      }


      /* 
       * GetBusInfo 
       */

      aac_fib_init(fibptr);

      bus_info = (struct aac_bus_info_response *) fib_data(fibptr);

      memset(bus_info, 0, sizeof(*bus_info));

      command = (struct aac_bus_info *)bus_info;

      command->Command = cpu_to_le32(VM_Ioctl);
      command->ObjType = cpu_to_le32(FT_DRIVE);
      command->MethodId = cpu_to_le32(1);
      command->CtlCmd = cpu_to_le32(GetBusInfo);

      rcode = aac_fib_send(ContainerCommand,
                   fibptr,
                   sizeof (*bus_info),
                   FsaNormal,
                   1, 1,
                   NULL, NULL);

      if (rcode >= 0 && le32_to_cpu(bus_info->Status) == ST_OK) {
            dev->maximum_num_physicals = le32_to_cpu(bus_info->TargetsPerBus);
            dev->maximum_num_channels = le32_to_cpu(bus_info->BusCount);
      }

      tmp = le32_to_cpu(dev->adapter_info.kernelrev);
      printk(KERN_INFO "%s%d: kernel %d.%d-%d[%d] %.*s\n", 
                  dev->name, 
                  dev->id,
                  tmp>>24,
                  (tmp>>16)&0xff,
                  tmp&0xff,
                  le32_to_cpu(dev->adapter_info.kernelbuild),
                  (int)sizeof(dev->supplement_adapter_info.BuildDate),
                  dev->supplement_adapter_info.BuildDate);
      tmp = le32_to_cpu(dev->adapter_info.monitorrev);
      printk(KERN_INFO "%s%d: monitor %d.%d-%d[%d]\n", 
                  dev->name, dev->id,
                  tmp>>24,(tmp>>16)&0xff,tmp&0xff,
                  le32_to_cpu(dev->adapter_info.monitorbuild));
      tmp = le32_to_cpu(dev->adapter_info.biosrev);
      printk(KERN_INFO "%s%d: bios %d.%d-%d[%d]\n", 
                  dev->name, dev->id,
                  tmp>>24,(tmp>>16)&0xff,tmp&0xff,
                  le32_to_cpu(dev->adapter_info.biosbuild));
      if (le32_to_cpu(dev->adapter_info.serial[0]) != 0xBAD0)
            printk(KERN_INFO "%s%d: serial %x\n",
                  dev->name, dev->id,
                  le32_to_cpu(dev->adapter_info.serial[0]));

      dev->nondasd_support = 0;
      dev->raid_scsi_mode = 0;
      if(dev->adapter_info.options & AAC_OPT_NONDASD){
            dev->nondasd_support = 1;
      }

      /*
       * If the firmware supports ROMB RAID/SCSI mode and we are currently
       * in RAID/SCSI mode, set the flag. For now if in this mode we will
       * force nondasd support on. If we decide to allow the non-dasd flag
       * additional changes changes will have to be made to support
       * RAID/SCSI.  the function aac_scsi_cmd in this module will have to be
       * changed to support the new dev->raid_scsi_mode flag instead of
       * leaching off of the dev->nondasd_support flag. Also in linit.c the
       * function aac_detect will have to be modified where it sets up the
       * max number of channels based on the aac->nondasd_support flag only.
       */
      if ((dev->adapter_info.options & AAC_OPT_SCSI_MANAGED) &&
          (dev->adapter_info.options & AAC_OPT_RAID_SCSI_MODE)) {
            dev->nondasd_support = 1;
            dev->raid_scsi_mode = 1;
      }
      if (dev->raid_scsi_mode != 0)
            printk(KERN_INFO "%s%d: ROMB RAID/SCSI mode enabled\n",
                        dev->name, dev->id);
            
      if(nondasd != -1) {  
            dev->nondasd_support = (nondasd!=0);
      }
      if(dev->nondasd_support != 0){
            printk(KERN_INFO "%s%d: Non-DASD support enabled.\n",dev->name, dev->id);
      }

      dev->dac_support = 0;
      if( (sizeof(dma_addr_t) > 4) && (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64)){
            printk(KERN_INFO "%s%d: 64bit support enabled.\n", dev->name, dev->id);
            dev->dac_support = 1;
      }

      if(dacmode != -1) {
            dev->dac_support = (dacmode!=0);
      }
      if(dev->dac_support != 0) {
            if (!pci_set_dma_mask(dev->pdev, DMA_64BIT_MASK) &&
                  !pci_set_consistent_dma_mask(dev->pdev, DMA_64BIT_MASK)) {
                  printk(KERN_INFO"%s%d: 64 Bit DAC enabled\n",
                        dev->name, dev->id);
            } else if (!pci_set_dma_mask(dev->pdev, DMA_32BIT_MASK) &&
                  !pci_set_consistent_dma_mask(dev->pdev, DMA_32BIT_MASK)) {
                  printk(KERN_INFO"%s%d: DMA mask set failed, 64 Bit DAC disabled\n",
                        dev->name, dev->id);
                  dev->dac_support = 0;
            } else {
                  printk(KERN_WARNING"%s%d: No suitable DMA available.\n",
                        dev->name, dev->id);
                  rcode = -ENOMEM;
            }
      }
      /* 
       * 57 scatter gather elements 
       */
      if (!(dev->raw_io_interface)) {
            dev->scsi_host_ptr->sg_tablesize = (dev->max_fib_size -
                  sizeof(struct aac_fibhdr) -
                  sizeof(struct aac_write) + sizeof(struct sgentry)) /
                        sizeof(struct sgentry);
            if (dev->dac_support) {
                  /* 
                   * 38 scatter gather elements 
                   */
                  dev->scsi_host_ptr->sg_tablesize =
                        (dev->max_fib_size -
                        sizeof(struct aac_fibhdr) -
                        sizeof(struct aac_write64) +
                        sizeof(struct sgentry64)) /
                              sizeof(struct sgentry64);
            }
            dev->scsi_host_ptr->max_sectors = AAC_MAX_32BIT_SGBCOUNT;
            if(!(dev->adapter_info.options & AAC_OPT_NEW_COMM)) {
                  /*
                   * Worst case size that could cause sg overflow when
                   * we break up SG elements that are larger than 64KB.
                   * Would be nice if we could tell the SCSI layer what
                   * the maximum SG element size can be. Worst case is
                   * (sg_tablesize-1) 4KB elements with one 64KB
                   * element.
                   *    32bit -> 468 or 238KB   64bit -> 424 or 212KB
                   */
                  dev->scsi_host_ptr->max_sectors =
                    (dev->scsi_host_ptr->sg_tablesize * 8) + 112;
            }
      }

      aac_fib_complete(fibptr);
      aac_fib_free(fibptr);

      return rcode;
}


static void io_callback(void *context, struct fib * fibptr)
{
      struct aac_dev *dev;
      struct aac_read_reply *readreply;
      struct scsi_cmnd *scsicmd;
      u32 cid;

      scsicmd = (struct scsi_cmnd *) context;
      scsicmd->SCp.phase = AAC_OWNER_MIDLEVEL;

      dev = (struct aac_dev *)scsicmd->device->host->hostdata;
      cid = scmd_id(scsicmd);

      if (nblank(dprintk(x))) {
            u64 lba;
            switch (scsicmd->cmnd[0]) {
            case WRITE_6:
            case READ_6:
                  lba = ((scsicmd->cmnd[1] & 0x1F) << 16) |
                      (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
                  break;
            case WRITE_16:
            case READ_16:
                  lba = ((u64)scsicmd->cmnd[2] << 56) |
                        ((u64)scsicmd->cmnd[3] << 48) |
                        ((u64)scsicmd->cmnd[4] << 40) |
                        ((u64)scsicmd->cmnd[5] << 32) |
                        ((u64)scsicmd->cmnd[6] << 24) |
                        (scsicmd->cmnd[7] << 16) |
                        (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
                  break;
            case WRITE_12:
            case READ_12:
                  lba = ((u64)scsicmd->cmnd[2] << 24) |
                        (scsicmd->cmnd[3] << 16) |
                        (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
                  break;
            default:
                  lba = ((u64)scsicmd->cmnd[2] << 24) |
                         (scsicmd->cmnd[3] << 16) |
                         (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
                  break;
            }
            printk(KERN_DEBUG
              "io_callback[cpu %d]: lba = %llu, t = %ld.\n",
              smp_processor_id(), (unsigned long long)lba, jiffies);
      }

      BUG_ON(fibptr == NULL);
            
      if(scsicmd->use_sg)
            pci_unmap_sg(dev->pdev, 
                  (struct scatterlist *)scsicmd->request_buffer,
                  scsicmd->use_sg,
                  scsicmd->sc_data_direction);
      else if(scsicmd->request_bufflen)
            pci_unmap_single(dev->pdev, scsicmd->SCp.dma_handle,
                         scsicmd->request_bufflen,
                         scsicmd->sc_data_direction);
      readreply = (struct aac_read_reply *)fib_data(fibptr);
      if (le32_to_cpu(readreply->status) == ST_OK)
            scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
      else {
#ifdef AAC_DETAILED_STATUS_INFO
            printk(KERN_WARNING "io_callback: io failed, status = %d\n",
              le32_to_cpu(readreply->status));
#endif
            scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
            set_sense((u8 *) &dev->fsa_dev[cid].sense_data,
                            HARDWARE_ERROR,
                            SENCODE_INTERNAL_TARGET_FAILURE,
                            ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0,
                            0, 0);
            memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
              (sizeof(dev->fsa_dev[cid].sense_data) > sizeof(scsicmd->sense_buffer))
                ? sizeof(scsicmd->sense_buffer)
                : sizeof(dev->fsa_dev[cid].sense_data));
      }
      aac_fib_complete(fibptr);
      aac_fib_free(fibptr);

      scsicmd->scsi_done(scsicmd);
}

static int aac_read(struct scsi_cmnd * scsicmd, int cid)
{
      u64 lba;
      u32 count;
      int status;

      u16 fibsize;
      struct aac_dev *dev;
      struct fib * cmd_fibcontext;

      dev = (struct aac_dev *)scsicmd->device->host->hostdata;
      /*
       *    Get block address and transfer length
       */
      switch (scsicmd->cmnd[0]) {
      case READ_6:
            dprintk((KERN_DEBUG "aachba: received a read(6) command on id %d.\n", cid));

            lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | 
                  (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
            count = scsicmd->cmnd[4];

            if (count == 0)
                  count = 256;
            break;
      case READ_16:
            dprintk((KERN_DEBUG "aachba: received a read(16) command on id %d.\n", cid));

            lba =       ((u64)scsicmd->cmnd[2] << 56) |
                  ((u64)scsicmd->cmnd[3] << 48) |
                  ((u64)scsicmd->cmnd[4] << 40) |
                  ((u64)scsicmd->cmnd[5] << 32) |
                  ((u64)scsicmd->cmnd[6] << 24) | 
                  (scsicmd->cmnd[7] << 16) |
                  (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
            count = (scsicmd->cmnd[10] << 24) | 
                  (scsicmd->cmnd[11] << 16) |
                  (scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13];
            break;
      case READ_12:
            dprintk((KERN_DEBUG "aachba: received a read(12) command on id %d.\n", cid));

            lba = ((u64)scsicmd->cmnd[2] << 24) | 
                  (scsicmd->cmnd[3] << 16) |
                  (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
            count = (scsicmd->cmnd[6] << 24) | 
                  (scsicmd->cmnd[7] << 16) |
                        (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
            break;
      default:
            dprintk((KERN_DEBUG "aachba: received a read(10) command on id %d.\n", cid));

            lba = ((u64)scsicmd->cmnd[2] << 24) | 
                  (scsicmd->cmnd[3] << 16) | 
                  (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
            count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
            break;
      }
      dprintk((KERN_DEBUG "aac_read[cpu %d]: lba = %llu, t = %ld.\n",
        smp_processor_id(), (unsigned long long)lba, jiffies));
      if ((!(dev->raw_io_interface) || !(dev->raw_io_64)) &&
            (lba & 0xffffffff00000000LL)) {
            dprintk((KERN_DEBUG "aac_read: Illegal lba\n"));
            scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 
                  SAM_STAT_CHECK_CONDITION;
            set_sense((u8 *) &dev->fsa_dev[cid].sense_data,
                      HARDWARE_ERROR,
                      SENCODE_INTERNAL_TARGET_FAILURE,
                      ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0,
                      0, 0);
            memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
              (sizeof(dev->fsa_dev[cid].sense_data) > sizeof(scsicmd->sense_buffer))
                ? sizeof(scsicmd->sense_buffer)
                : sizeof(dev->fsa_dev[cid].sense_data));
            scsicmd->scsi_done(scsicmd);
            return 0;
      }
      /*
       *    Alocate and initialize a Fib
       */
      if (!(cmd_fibcontext = aac_fib_alloc(dev))) {
            return -1;
      }

      aac_fib_init(cmd_fibcontext);

      if (dev->raw_io_interface) {
            struct aac_raw_io *readcmd;
            readcmd = (struct aac_raw_io *) fib_data(cmd_fibcontext);
            readcmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff));
            readcmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
            readcmd->count = cpu_to_le32(count<<9);
            readcmd->cid = cpu_to_le16(cid);
            readcmd->flags = cpu_to_le16(1);
            readcmd->bpTotal = 0;
            readcmd->bpComplete = 0;
            
            aac_build_sgraw(scsicmd, &readcmd->sg);
            fibsize = sizeof(struct aac_raw_io) + ((le32_to_cpu(readcmd->sg.count) - 1) * sizeof (struct sgentryraw));
            BUG_ON(fibsize > (dev->max_fib_size - sizeof(struct aac_fibhdr)));
            /*
             *    Now send the Fib to the adapter
             */
            status = aac_fib_send(ContainerRawIo,
                    cmd_fibcontext, 
                    fibsize, 
                    FsaNormal, 
                    0, 1, 
                    (fib_callback) io_callback, 
                    (void *) scsicmd);
      } else if (dev->dac_support == 1) {
            struct aac_read64 *readcmd;
            readcmd = (struct aac_read64 *) fib_data(cmd_fibcontext);
            readcmd->command = cpu_to_le32(VM_CtHostRead64);
            readcmd->cid = cpu_to_le16(cid);
            readcmd->sector_count = cpu_to_le16(count);
            readcmd->block = cpu_to_le32((u32)(lba&0xffffffff));
            readcmd->pad   = 0;
            readcmd->flags = 0; 

            aac_build_sg64(scsicmd, &readcmd->sg);
            fibsize = sizeof(struct aac_read64) + 
                  ((le32_to_cpu(readcmd->sg.count) - 1) * 
                   sizeof (struct sgentry64));
            BUG_ON (fibsize > (dev->max_fib_size - 
                              sizeof(struct aac_fibhdr)));
            /*
             *    Now send the Fib to the adapter
             */
            status = aac_fib_send(ContainerCommand64,
                    cmd_fibcontext, 
                    fibsize, 
                    FsaNormal, 
                    0, 1, 
                    (fib_callback) io_callback, 
                    (void *) scsicmd);
      } else {
            struct aac_read *readcmd;
            readcmd = (struct aac_read *) fib_data(cmd_fibcontext);
            readcmd->command = cpu_to_le32(VM_CtBlockRead);
            readcmd->cid = cpu_to_le32(cid);
            readcmd->block = cpu_to_le32((u32)(lba&0xffffffff));
            readcmd->count = cpu_to_le32(count * 512);

            aac_build_sg(scsicmd, &readcmd->sg);
            fibsize = sizeof(struct aac_read) + 
                  ((le32_to_cpu(readcmd->sg.count) - 1) * 
                   sizeof (struct sgentry));
            BUG_ON (fibsize > (dev->max_fib_size -
                              sizeof(struct aac_fibhdr)));
            /*
             *    Now send the Fib to the adapter
             */
            status = aac_fib_send(ContainerCommand,
                    cmd_fibcontext, 
                    fibsize, 
                    FsaNormal, 
                    0, 1, 
                    (fib_callback) io_callback, 
                    (void *) scsicmd);
      }

      

      /*
       *    Check that the command queued to the controller
       */
      if (status == -EINPROGRESS) {
            scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
            return 0;
      }
            
      printk(KERN_WARNING "aac_read: aac_fib_send failed with status: %d.\n", status);
      /*
       *    For some reason, the Fib didn't queue, return QUEUE_FULL
       */
      scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL;
      scsicmd->scsi_done(scsicmd);
      aac_fib_complete(cmd_fibcontext);
      aac_fib_free(cmd_fibcontext);
      return 0;
}

static int aac_write(struct scsi_cmnd * scsicmd, int cid)
{
      u64 lba;
      u32 count;
      int status;
      u16 fibsize;
      struct aac_dev *dev;
      struct fib * cmd_fibcontext;

      dev = (struct aac_dev *)scsicmd->device->host->hostdata;
      /*
       *    Get block address and transfer length
       */
      if (scsicmd->cmnd[0] == WRITE_6)    /* 6 byte command */
      {
            lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
            count = scsicmd->cmnd[4];
            if (count == 0)
                  count = 256;
      } else if (scsicmd->cmnd[0] == WRITE_16) { /* 16 byte command */
            dprintk((KERN_DEBUG "aachba: received a write(16) command on id %d.\n", cid));

            lba =       ((u64)scsicmd->cmnd[2] << 56) |
                  ((u64)scsicmd->cmnd[3] << 48) |
                  ((u64)scsicmd->cmnd[4] << 40) |
                  ((u64)scsicmd->cmnd[5] << 32) |
                  ((u64)scsicmd->cmnd[6] << 24) | 
                  (scsicmd->cmnd[7] << 16) |
                  (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
            count = (scsicmd->cmnd[10] << 24) | (scsicmd->cmnd[11] << 16) |
                  (scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13];
      } else if (scsicmd->cmnd[0] == WRITE_12) { /* 12 byte command */
            dprintk((KERN_DEBUG "aachba: received a write(12) command on id %d.\n", cid));

            lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16)
                | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
            count = (scsicmd->cmnd[6] << 24) | (scsicmd->cmnd[7] << 16)
                  | (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
      } else {
            dprintk((KERN_DEBUG "aachba: received a write(10) command on id %d.\n", cid));
            lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
            count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
      }
      dprintk((KERN_DEBUG "aac_write[cpu %d]: lba = %llu, t = %ld.\n",
        smp_processor_id(), (unsigned long long)lba, jiffies));
      if ((!(dev->raw_io_interface) || !(dev->raw_io_64))
       && (lba & 0xffffffff00000000LL)) {
            dprintk((KERN_DEBUG "aac_write: Illegal lba\n"));
            scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
            set_sense((u8 *) &dev->fsa_dev[cid].sense_data,
                      HARDWARE_ERROR,
                      SENCODE_INTERNAL_TARGET_FAILURE,
                      ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0,
                      0, 0);
            memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
              (sizeof(dev->fsa_dev[cid].sense_data) > sizeof(scsicmd->sense_buffer))
                ? sizeof(scsicmd->sense_buffer)
                : sizeof(dev->fsa_dev[cid].sense_data));
            scsicmd->scsi_done(scsicmd);
            return 0;
      }
      /*
       *    Allocate and initialize a Fib then setup a BlockWrite command
       */
      if (!(cmd_fibcontext = aac_fib_alloc(dev))) {
            scsicmd->result = DID_ERROR << 16;
            scsicmd->scsi_done(scsicmd);
            return 0;
      }
      aac_fib_init(cmd_fibcontext);

      if (dev->raw_io_interface) {
            struct aac_raw_io *writecmd;
            writecmd = (struct aac_raw_io *) fib_data(cmd_fibcontext);
            writecmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff));
            writecmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
            writecmd->count = cpu_to_le32(count<<9);
            writecmd->cid = cpu_to_le16(cid);
            writecmd->flags = 0; 
            writecmd->bpTotal = 0;
            writecmd->bpComplete = 0;
            
            aac_build_sgraw(scsicmd, &writecmd->sg);
            fibsize = sizeof(struct aac_raw_io) + ((le32_to_cpu(writecmd->sg.count) - 1) * sizeof (struct sgentryraw));
            BUG_ON(fibsize > (dev->max_fib_size - sizeof(struct aac_fibhdr)));
            /*
             *    Now send the Fib to the adapter
             */
            status = aac_fib_send(ContainerRawIo,
                    cmd_fibcontext, 
                    fibsize, 
                    FsaNormal, 
                    0, 1, 
                    (fib_callback) io_callback, 
                    (void *) scsicmd);
      } else if (dev->dac_support == 1) {
            struct aac_write64 *writecmd;
            writecmd = (struct aac_write64 *) fib_data(cmd_fibcontext);
            writecmd->command = cpu_to_le32(VM_CtHostWrite64);
            writecmd->cid = cpu_to_le16(cid);
            writecmd->sector_count = cpu_to_le16(count); 
            writecmd->block = cpu_to_le32((u32)(lba&0xffffffff));
            writecmd->pad     = 0;
            writecmd->flags   = 0;

            aac_build_sg64(scsicmd, &writecmd->sg);
            fibsize = sizeof(struct aac_write64) + 
                  ((le32_to_cpu(writecmd->sg.count) - 1) * 
                   sizeof (struct sgentry64));
            BUG_ON (fibsize > (dev->max_fib_size -
                              sizeof(struct aac_fibhdr)));
            /*
             *    Now send the Fib to the adapter
             */
            status = aac_fib_send(ContainerCommand64,
                    cmd_fibcontext, 
                    fibsize, 
                    FsaNormal, 
                    0, 1, 
                    (fib_callback) io_callback, 
                    (void *) scsicmd);
      } else {
            struct aac_write *writecmd;
            writecmd = (struct aac_write *) fib_data(cmd_fibcontext);
            writecmd->command = cpu_to_le32(VM_CtBlockWrite);
            writecmd->cid = cpu_to_le32(cid);
            writecmd->block = cpu_to_le32((u32)(lba&0xffffffff));
            writecmd->count = cpu_to_le32(count * 512);
            writecmd->sg.count = cpu_to_le32(1);
            /* ->stable is not used - it did mean which type of write */

            aac_build_sg(scsicmd, &writecmd->sg);
            fibsize = sizeof(struct aac_write) + 
                  ((le32_to_cpu(writecmd->sg.count) - 1) * 
                   sizeof (struct sgentry));
            BUG_ON (fibsize > (dev->max_fib_size -
                              sizeof(struct aac_fibhdr)));
            /*
             *    Now send the Fib to the adapter
             */
            status = aac_fib_send(ContainerCommand,
                    cmd_fibcontext, 
                    fibsize, 
                    FsaNormal, 
                    0, 1, 
                    (fib_callback) io_callback, 
                    (void *) scsicmd);
      }

      /*
       *    Check that the command queued to the controller
       */
      if (status == -EINPROGRESS) {
            scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
            return 0;
      }

      printk(KERN_WARNING "aac_write: aac_fib_send failed with status: %d\n", status);
      /*
       *    For some reason, the Fib didn't queue, return QUEUE_FULL
       */
      scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL;
      scsicmd->scsi_done(scsicmd);

      aac_fib_complete(cmd_fibcontext);
      aac_fib_free(cmd_fibcontext);
      return 0;
}

static void synchronize_callback(void *context, struct fib *fibptr)
{
      struct aac_synchronize_reply *synchronizereply;
      struct scsi_cmnd *cmd;

      cmd = context;
      cmd->SCp.phase = AAC_OWNER_MIDLEVEL;

      dprintk((KERN_DEBUG "synchronize_callback[cpu %d]: t = %ld.\n", 
                        smp_processor_id(), jiffies));
      BUG_ON(fibptr == NULL);


      synchronizereply = fib_data(fibptr);
      if (le32_to_cpu(synchronizereply->status) == CT_OK)
            cmd->result = DID_OK << 16 | 
                  COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
      else {
            struct scsi_device *sdev = cmd->device;
            struct aac_dev *dev = (struct aac_dev *)sdev->host->hostdata;
            u32 cid = sdev_id(sdev);
            printk(KERN_WARNING 
                 "synchronize_callback: synchronize failed, status = %d\n",
                 le32_to_cpu(synchronizereply->status));
            cmd->result = DID_OK << 16 | 
                  COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
            set_sense((u8 *)&dev->fsa_dev[cid].sense_data,
                            HARDWARE_ERROR,
                            SENCODE_INTERNAL_TARGET_FAILURE,
                            ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0,
                            0, 0);
            memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
              min(sizeof(dev->fsa_dev[cid].sense_data), 
                    sizeof(cmd->sense_buffer)));
      }

      aac_fib_complete(fibptr);
      aac_fib_free(fibptr);
      cmd->scsi_done(cmd);
}

static int aac_synchronize(struct scsi_cmnd *scsicmd, int cid)
{
      int status;
      struct fib *cmd_fibcontext;
      struct aac_synchronize *synchronizecmd;
      struct scsi_cmnd *cmd;
      struct scsi_device *sdev = scsicmd->device;
      int active = 0;
      unsigned long flags;

      /*
       * Wait for all outstanding queued commands to complete to this
       * specific target (block).
       */
      spin_lock_irqsave(&sdev->list_lock, flags);
      list_for_each_entry(cmd, &sdev->cmd_list, list)
            if (cmd != scsicmd && cmd->SCp.phase == AAC_OWNER_FIRMWARE) {
                  ++active;
                  break;
            }

      spin_unlock_irqrestore(&sdev->list_lock, flags);

      /*
       *    Yield the processor (requeue for later)
       */
      if (active)
            return SCSI_MLQUEUE_DEVICE_BUSY;

      /*
       *    Allocate and initialize a Fib
       */
      if (!(cmd_fibcontext = 
          aac_fib_alloc((struct aac_dev *)scsicmd->device->host->hostdata)))
            return SCSI_MLQUEUE_HOST_BUSY;

      aac_fib_init(cmd_fibcontext);

      synchronizecmd = fib_data(cmd_fibcontext);
      synchronizecmd->command = cpu_to_le32(VM_ContainerConfig);
      synchronizecmd->type = cpu_to_le32(CT_FLUSH_CACHE);
      synchronizecmd->cid = cpu_to_le32(cid);
      synchronizecmd->count = 
           cpu_to_le32(sizeof(((struct aac_synchronize_reply *)NULL)->data));

      /*
       *    Now send the Fib to the adapter
       */
      status = aac_fib_send(ContainerCommand,
              cmd_fibcontext,
              sizeof(struct aac_synchronize),
              FsaNormal,
              0, 1,
              (fib_callback)synchronize_callback,
              (void *)scsicmd);

      /*
       *    Check that the command queued to the controller
       */
      if (status == -EINPROGRESS) {
            scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
            return 0;
      }

      printk(KERN_WARNING 
            "aac_synchronize: aac_fib_send failed with status: %d.\n", status);
      aac_fib_complete(cmd_fibcontext);
      aac_fib_free(cmd_fibcontext);
      return SCSI_MLQUEUE_HOST_BUSY;
}

/**
 *    aac_scsi_cmd()          -     Process SCSI command
 *    @scsicmd:         SCSI command block
 *
 *    Emulate a SCSI command and queue the required request for the
 *    aacraid firmware.
 */
 
int aac_scsi_cmd(struct scsi_cmnd * scsicmd)
{
      u32 cid = 0;
      struct Scsi_Host *host = scsicmd->device->host;
      struct aac_dev *dev = (struct aac_dev *)host->hostdata;
      struct fsa_dev_info *fsa_dev_ptr = dev->fsa_dev;
      
      /*
       *    If the bus, id or lun is out of range, return fail
       *    Test does not apply to ID 16, the pseudo id for the controller
       *    itself.
       */
      if (scmd_id(scsicmd) != host->this_id) {
            if ((scmd_channel(scsicmd) == CONTAINER_CHANNEL)) {
                  if((scmd_id(scsicmd) >= dev->maximum_num_containers) ||
                              (scsicmd->device->lun != 0)) {
                        scsicmd->result = DID_NO_CONNECT << 16;
                        scsicmd->scsi_done(scsicmd);
                        return 0;
                  }
                  cid = scmd_id(scsicmd);

                  /*
                   *    If the target container doesn't exist, it may have
                   *    been newly created
                   */
                  if ((fsa_dev_ptr[cid].valid & 1) == 0) {
                        switch (scsicmd->cmnd[0]) {
                        case SERVICE_ACTION_IN:
                              if (!(dev->raw_io_interface) ||
                                  !(dev->raw_io_64) ||
                                  ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
                                    break;
                        case INQUIRY:
                        case READ_CAPACITY:
                        case TEST_UNIT_READY:
                              spin_unlock_irq(host->host_lock);
                              aac_probe_container(dev, cid);
                              if ((fsa_dev_ptr[cid].valid & 1) == 0)
                                    fsa_dev_ptr[cid].valid = 0;
                              spin_lock_irq(host->host_lock);
                              if (fsa_dev_ptr[cid].valid == 0) {
                                    scsicmd->result = DID_NO_CONNECT << 16;
                                    scsicmd->scsi_done(scsicmd);
                                    return 0;
                              }
                        default:
                              break;
                        }
                  }
                  /*
                   *    If the target container still doesn't exist, 
                   *    return failure
                   */
                  if (fsa_dev_ptr[cid].valid == 0) {
                        scsicmd->result = DID_BAD_TARGET << 16;
                        scsicmd->scsi_done(scsicmd);
                        return 0;
                  }
            } else {  /* check for physical non-dasd devices */
                  if(dev->nondasd_support == 1){
                        return aac_send_srb_fib(scsicmd);
                  } else {
                        scsicmd->result = DID_NO_CONNECT << 16;
                        scsicmd->scsi_done(scsicmd);
                        return 0;
                  }
            }
      }
      /*
       * else Command for the controller itself
       */
      else if ((scsicmd->cmnd[0] != INQUIRY) && /* only INQUIRY & TUR cmnd supported for controller */
            (scsicmd->cmnd[0] != TEST_UNIT_READY)) 
      {
            dprintk((KERN_WARNING "Only INQUIRY & TUR command supported for controller, rcvd = 0x%x.\n", scsicmd->cmnd[0]));
            scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
            set_sense((u8 *) &dev->fsa_dev[cid].sense_data,
                      ILLEGAL_REQUEST,
                      SENCODE_INVALID_COMMAND,
                      ASENCODE_INVALID_COMMAND, 0, 0, 0, 0);
            memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
              (sizeof(dev->fsa_dev[cid].sense_data) > sizeof(scsicmd->sense_buffer))
                ? sizeof(scsicmd->sense_buffer)
                : sizeof(dev->fsa_dev[cid].sense_data));
            scsicmd->scsi_done(scsicmd);
            return 0;
      }


      /* Handle commands here that don't really require going out to the adapter */
      switch (scsicmd->cmnd[0]) {
      case INQUIRY:
      {
            struct inquiry_data inq_data;

            dprintk((KERN_DEBUG "INQUIRY command, ID: %d.\n", scmd_id(scsicmd)));
            memset(&inq_data, 0, sizeof (struct inquiry_data));

            inq_data.inqd_ver = 2;  /* claim compliance to SCSI-2 */
            inq_data.inqd_rdf = 2;  /* A response data format value of two indicates that the data shall be in the format specified in SCSI-2 */
            inq_data.inqd_len = 31;
            /*Format for "pad2" is  RelAdr | WBus32 | WBus16 |  Sync  | Linked |Reserved| CmdQue | SftRe */
            inq_data.inqd_pad2= 0x32 ;     /*WBus16|Sync|CmdQue */
            /*
             *    Set the Vendor, Product, and Revision Level
             *    see: <vendor>.c i.e. aac.c
             */
            if (scmd_id(scsicmd) == host->this_id) {
                  setinqstr(dev, (void *) (inq_data.inqd_vid), ARRAY_SIZE(container_types));
                  inq_data.inqd_pdt = INQD_PDT_PROC;  /* Processor device */
                  aac_internal_transfer(scsicmd, &inq_data, 0, sizeof(inq_data));
                  scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
                  scsicmd->scsi_done(scsicmd);
                  return 0;
            }
            setinqstr(dev, (void *) (inq_data.inqd_vid), fsa_dev_ptr[cid].type);
            inq_data.inqd_pdt = INQD_PDT_DA;    /* Direct/random access device */
            aac_internal_transfer(scsicmd, &inq_data, 0, sizeof(inq_data));
            return aac_get_container_name(scsicmd, cid);
      }
      case SERVICE_ACTION_IN:
            if (!(dev->raw_io_interface) ||
                !(dev->raw_io_64) ||
                ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
                  break;
      {
            u64 capacity;
            char cp[13];

            dprintk((KERN_DEBUG "READ CAPACITY_16 command.\n"));
            capacity = fsa_dev_ptr[cid].size - 1;
            cp[0] = (capacity >> 56) & 0xff;
            cp[1] = (capacity >> 48) & 0xff;
            cp[2] = (capacity >> 40) & 0xff;
            cp[3] = (capacity >> 32) & 0xff;
            cp[4] = (capacity >> 24) & 0xff;
            cp[5] = (capacity >> 16) & 0xff;
            cp[6] = (capacity >> 8) & 0xff;
            cp[7] = (capacity >> 0) & 0xff;
            cp[8] = 0;
            cp[9] = 0;
            cp[10] = 2;
            cp[11] = 0;
            cp[12] = 0;
            aac_internal_transfer(scsicmd, cp, 0,
              min_t(size_t, scsicmd->cmnd[13], sizeof(cp)));
            if (sizeof(cp) < scsicmd->cmnd[13]) {
                  unsigned int len, offset = sizeof(cp);

                  memset(cp, 0, offset);
                  do {
                        len = min_t(size_t, scsicmd->cmnd[13] - offset,
                                    sizeof(cp));
                        aac_internal_transfer(scsicmd, cp, offset, len);
                  } while ((offset += len) < scsicmd->cmnd[13]);
            }

            /* Do not cache partition table for arrays */
            scsicmd->device->removable = 1;

            scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
            scsicmd->scsi_done(scsicmd);

            return 0;
      }

      case READ_CAPACITY:
      {
            u32 capacity;
            char cp[8];

            dprintk((KERN_DEBUG "READ CAPACITY command.\n"));
            if (fsa_dev_ptr[cid].size <= 0x100000000ULL)
                  capacity = fsa_dev_ptr[cid].size - 1;
            else
                  capacity = (u32)-1;

            cp[0] = (capacity >> 24) & 0xff;
            cp[1] = (capacity >> 16) & 0xff;
            cp[2] = (capacity >> 8) & 0xff;
            cp[3] = (capacity >> 0) & 0xff;
            cp[4] = 0;
            cp[5] = 0;
            cp[6] = 2;
            cp[7] = 0;
            aac_internal_transfer(scsicmd, cp, 0, sizeof(cp));
            /* Do not cache partition table for arrays */
            scsicmd->device->removable = 1;

            scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
            scsicmd->scsi_done(scsicmd);

            return 0;
      }

      case MODE_SENSE:
      {
            char mode_buf[4];

            dprintk((KERN_DEBUG "MODE SENSE command.\n"));
            mode_buf[0] = 3;  /* Mode data length */
            mode_buf[1] = 0;  /* Medium type - default */
            mode_buf[2] = 0;  /* Device-specific param, bit 8: 0/1 = write enabled/protected */
            mode_buf[3] = 0;  /* Block descriptor length */

            aac_internal_transfer(scsicmd, mode_buf, 0, sizeof(mode_buf));
            scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
            scsicmd->scsi_done(scsicmd);

            return 0;
      }
      case MODE_SENSE_10:
      {
            char mode_buf[8];

            dprintk((KERN_DEBUG "MODE SENSE 10 byte command.\n"));
            mode_buf[0] = 0;  /* Mode data length (MSB) */
            mode_buf[1] = 6;  /* Mode data length (LSB) */
            mode_buf[2] = 0;  /* Medium type - default */
            mode_buf[3] = 0;  /* Device-specific param, bit 8: 0/1 = write enabled/protected */
            mode_buf[4] = 0;  /* reserved */
            mode_buf[5] = 0;  /* reserved */
            mode_buf[6] = 0;  /* Block descriptor length (MSB) */
            mode_buf[7] = 0;  /* Block descriptor length (LSB) */
            aac_internal_transfer(scsicmd, mode_buf, 0, sizeof(mode_buf));

            scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
            scsicmd->scsi_done(scsicmd);

            return 0;
      }
      case REQUEST_SENSE:
            dprintk((KERN_DEBUG "REQUEST SENSE command.\n"));
            memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, sizeof (struct sense_data));
            memset(&dev->fsa_dev[cid].sense_data, 0, sizeof (struct sense_data));
            scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
            scsicmd->scsi_done(scsicmd);
            return 0;

      case ALLOW_MEDIUM_REMOVAL:
            dprintk((KERN_DEBUG "LOCK command.\n"));
            if (scsicmd->cmnd[4])
                  fsa_dev_ptr[cid].locked = 1;
            else
                  fsa_dev_ptr[cid].locked = 0;

            scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
            scsicmd->scsi_done(scsicmd);
            return 0;
      /*
       *    These commands are all No-Ops
       */
      case TEST_UNIT_READY:
      case RESERVE:
      case RELEASE:
      case REZERO_UNIT:
      case REASSIGN_BLOCKS:
      case SEEK_10:
      case START_STOP:
            scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
            scsicmd->scsi_done(scsicmd);
            return 0;
      }

      switch (scsicmd->cmnd[0]) 
      {
            case READ_6:
            case READ_10:
            case READ_12:
            case READ_16:
                  /*
                   *    Hack to keep track of ordinal number of the device that
                   *    corresponds to a container. Needed to convert
                   *    containers to /dev/sd device names
                   */
                   
                  if (scsicmd->request->rq_disk)
                        strlcpy(fsa_dev_ptr[cid].devname,
                        scsicmd->request->rq_disk->disk_name,
                        min(sizeof(fsa_dev_ptr[cid].devname),
                        sizeof(scsicmd->request->rq_disk->disk_name) + 1));

                  return aac_read(scsicmd, cid);

            case WRITE_6:
            case WRITE_10:
            case WRITE_12:
            case WRITE_16:
                  return aac_write(scsicmd, cid);

            case SYNCHRONIZE_CACHE:
                  /* Issue FIB to tell Firmware to flush it's cache */
                  return aac_synchronize(scsicmd, cid);
                  
            default:
                  /*
                   *    Unhandled commands
                   */
                  dprintk((KERN_WARNING "Unhandled SCSI Command: 0x%x.\n", scsicmd->cmnd[0]));
                  scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
                  set_sense((u8 *) &dev->fsa_dev[cid].sense_data,
                        ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND,
                        ASENCODE_INVALID_COMMAND, 0, 0, 0, 0);
                  memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
                    (sizeof(dev->fsa_dev[cid].sense_data) > sizeof(scsicmd->sense_buffer))
                      ? sizeof(scsicmd->sense_buffer)
                      : sizeof(dev->fsa_dev[cid].sense_data));
                  scsicmd->scsi_done(scsicmd);
                  return 0;
      }
}

static int query_disk(struct aac_dev *dev, void __user *arg)
{
      struct aac_query_disk qd;
      struct fsa_dev_info *fsa_dev_ptr;

      fsa_dev_ptr = dev->fsa_dev;
      if (copy_from_user(&qd, arg, sizeof (struct aac_query_disk)))
            return -EFAULT;
      if (qd.cnum == -1)
            qd.cnum = qd.id;
      else if ((qd.bus == -1) && (qd.id == -1) && (qd.lun == -1)) 
      {
            if (qd.cnum < 0 || qd.cnum >= dev->maximum_num_containers)
                  return -EINVAL;
            qd.instance = dev->scsi_host_ptr->host_no;
            qd.bus = 0;
            qd.id = CONTAINER_TO_ID(qd.cnum);
            qd.lun = CONTAINER_TO_LUN(qd.cnum);
      }
      else return -EINVAL;

      qd.valid = fsa_dev_ptr[qd.cnum].valid;
      qd.locked = fsa_dev_ptr[qd.cnum].locked;
      qd.deleted = fsa_dev_ptr[qd.cnum].deleted;

      if (fsa_dev_ptr[qd.cnum].devname[0] == '\0')
            qd.unmapped = 1;
      else
            qd.unmapped = 0;

      strlcpy(qd.name, fsa_dev_ptr[qd.cnum].devname,
        min(sizeof(qd.name), sizeof(fsa_dev_ptr[qd.cnum].devname) + 1));

      if (copy_to_user(arg, &qd, sizeof (struct aac_query_disk)))
            return -EFAULT;
      return 0;
}

static int force_delete_disk(struct aac_dev *dev, void __user *arg)
{
      struct aac_delete_disk dd;
      struct fsa_dev_info *fsa_dev_ptr;

      fsa_dev_ptr = dev->fsa_dev;

      if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
            return -EFAULT;

      if (dd.cnum >= dev->maximum_num_containers)
            return -EINVAL;
      /*
       *    Mark this container as being deleted.
       */
      fsa_dev_ptr[dd.cnum].deleted = 1;
      /*
       *    Mark the container as no longer valid
       */
      fsa_dev_ptr[dd.cnum].valid = 0;
      return 0;
}

static int delete_disk(struct aac_dev *dev, void __user *arg)
{
      struct aac_delete_disk dd;
      struct fsa_dev_info *fsa_dev_ptr;

      fsa_dev_ptr = dev->fsa_dev;

      if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
            return -EFAULT;

      if (dd.cnum >= dev->maximum_num_containers)
            return -EINVAL;
      /*
       *    If the container is locked, it can not be deleted by the API.
       */
      if (fsa_dev_ptr[dd.cnum].locked)
            return -EBUSY;
      else {
            /*
             *    Mark the container as no longer being valid.
             */
            fsa_dev_ptr[dd.cnum].valid = 0;
            fsa_dev_ptr[dd.cnum].devname[0] = '\0';
            return 0;
      }
}

int aac_dev_ioctl(struct aac_dev *dev, int cmd, void __user *arg)
{
      switch (cmd) {
      case FSACTL_QUERY_DISK:
            return query_disk(dev, arg);
      case FSACTL_DELETE_DISK:
            return delete_disk(dev, arg);
      case FSACTL_FORCE_DELETE_DISK:
            return force_delete_disk(dev, arg);
      case FSACTL_GET_CONTAINERS:
            return aac_get_containers(dev);
      default:
            return -ENOTTY;
      }
}

/**
 *
 * aac_srb_callback
 * @context: the context set in the fib - here it is scsi cmd
 * @fibptr: pointer to the fib
 *
 * Handles the completion of a scsi command to a non dasd device
 *
 */

static void aac_srb_callback(void *context, struct fib * fibptr)
{
      struct aac_dev *dev;
      struct aac_srb_reply *srbreply;
      struct scsi_cmnd *scsicmd;

      scsicmd = (struct scsi_cmnd *) context;
      scsicmd->SCp.phase = AAC_OWNER_MIDLEVEL;
      dev = (struct aac_dev *)scsicmd->device->host->hostdata;

      BUG_ON(fibptr == NULL);

      srbreply = (struct aac_srb_reply *) fib_data(fibptr);

      scsicmd->sense_buffer[0] = '\0';  /* Initialize sense valid flag to false */
      /*
       *    Calculate resid for sg 
       */
       
      scsicmd->resid = scsicmd->request_bufflen - 
            le32_to_cpu(srbreply->data_xfer_length);

      if(scsicmd->use_sg)
            pci_unmap_sg(dev->pdev, 
                  (struct scatterlist *)scsicmd->request_buffer,
                  scsicmd->use_sg,
                  scsicmd->sc_data_direction);
      else if(scsicmd->request_bufflen)
            pci_unmap_single(dev->pdev, scsicmd->SCp.dma_handle, scsicmd->request_bufflen,
                  scsicmd->sc_data_direction);

      /*
       * First check the fib status
       */

      if (le32_to_cpu(srbreply->status) != ST_OK){
            int len;
            printk(KERN_WARNING "aac_srb_callback: srb failed, status = %d\n", le32_to_cpu(srbreply->status));
            len = (le32_to_cpu(srbreply->sense_data_size) > 
                        sizeof(scsicmd->sense_buffer)) ?
                        sizeof(scsicmd->sense_buffer) : 
                        le32_to_cpu(srbreply->sense_data_size);
            scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
            memcpy(scsicmd->sense_buffer, srbreply->sense_data, len);
      }

      /*
       * Next check the srb status
       */
      switch( (le32_to_cpu(srbreply->srb_status))&0x3f){
      case SRB_STATUS_ERROR_RECOVERY:
      case SRB_STATUS_PENDING:
      case SRB_STATUS_SUCCESS:
            scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
            break;
      case SRB_STATUS_DATA_OVERRUN:
            switch(scsicmd->cmnd[0]){
            case  READ_6:
            case  WRITE_6:
            case  READ_10:
            case  WRITE_10:
            case  READ_12:
            case  WRITE_12:
            case  READ_16:
            case  WRITE_16:
                  if(le32_to_cpu(srbreply->data_xfer_length) < scsicmd->underflow ) {
                        printk(KERN_WARNING"aacraid: SCSI CMD underflow\n");
                  } else {
                        printk(KERN_WARNING"aacraid: SCSI CMD Data Overrun\n");
                  }
                  scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8;
                  break;
            case INQUIRY: {
                  scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
                  break;
            }
            default:
                  scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
                  break;
            }
            break;
      case SRB_STATUS_ABORTED:
            scsicmd->result = DID_ABORT << 16 | ABORT << 8;
            break;
      case SRB_STATUS_ABORT_FAILED:
            // Not sure about this one - but assuming the hba was trying to abort for some reason
            scsicmd->result = DID_ERROR << 16 | ABORT << 8;
            break;
      case SRB_STATUS_PARITY_ERROR:
            scsicmd->result = DID_PARITY << 16 | MSG_PARITY_ERROR << 8;
            break;
      case SRB_STATUS_NO_DEVICE:
      case SRB_STATUS_INVALID_PATH_ID:
      case SRB_STATUS_INVALID_TARGET_ID:
      case SRB_STATUS_INVALID_LUN:
      case SRB_STATUS_SELECTION_TIMEOUT:
            scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8;
            break;

      case SRB_STATUS_COMMAND_TIMEOUT:
      case SRB_STATUS_TIMEOUT:
            scsicmd->result = DID_TIME_OUT << 16 | COMMAND_COMPLETE << 8;
            break;

      case SRB_STATUS_BUSY:
            scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8;
            break;

      case SRB_STATUS_BUS_RESET:
            scsicmd->result = DID_RESET << 16 | COMMAND_COMPLETE << 8;
            break;

      case SRB_STATUS_MESSAGE_REJECTED:
            scsicmd->result = DID_ERROR << 16 | MESSAGE_REJECT << 8;
            break;
      case SRB_STATUS_REQUEST_FLUSHED:
      case SRB_STATUS_ERROR:
      case SRB_STATUS_INVALID_REQUEST:
      case SRB_STATUS_REQUEST_SENSE_FAILED:
      case SRB_STATUS_NO_HBA:
      case SRB_STATUS_UNEXPECTED_BUS_FREE:
      case SRB_STATUS_PHASE_SEQUENCE_FAILURE:
      case SRB_STATUS_BAD_SRB_BLOCK_LENGTH:
      case SRB_STATUS_DELAYED_RETRY:
      case SRB_STATUS_BAD_FUNCTION:
      case SRB_STATUS_NOT_STARTED:
      case SRB_STATUS_NOT_IN_USE:
      case SRB_STATUS_FORCE_ABORT:
      case SRB_STATUS_DOMAIN_VALIDATION_FAIL:
      default:
#ifdef AAC_DETAILED_STATUS_INFO
            printk("aacraid: SRB ERROR(%u) %s scsi cmd 0x%x - scsi status 0x%x\n",
                  le32_to_cpu(srbreply->srb_status) & 0x3F,
                  aac_get_status_string(
                        le32_to_cpu(srbreply->srb_status) & 0x3F), 
                  scsicmd->cmnd[0], 
                  le32_to_cpu(srbreply->scsi_status));
#endif
            scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8;
            break;
      }
      if (le32_to_cpu(srbreply->scsi_status) == 0x02 ){  // Check Condition
            int len;
            scsicmd->result |= SAM_STAT_CHECK_CONDITION;
            len = (le32_to_cpu(srbreply->sense_data_size) > 
                        sizeof(scsicmd->sense_buffer)) ?
                        sizeof(scsicmd->sense_buffer) :
                        le32_to_cpu(srbreply->sense_data_size);
#ifdef AAC_DETAILED_STATUS_INFO
            printk(KERN_WARNING "aac_srb_callback: check condition, status = %d len=%d\n",
                              le32_to_cpu(srbreply->status), len);
#endif
            memcpy(scsicmd->sense_buffer, srbreply->sense_data, len);
            
      }
      /*
       * OR in the scsi status (already shifted up a bit)
       */
      scsicmd->result |= le32_to_cpu(srbreply->scsi_status);

      aac_fib_complete(fibptr);
      aac_fib_free(fibptr);
      scsicmd->scsi_done(scsicmd);
}

/**
 *
 * aac_send_scb_fib
 * @scsicmd: the scsi command block
 *
 * This routine will form a FIB and fill in the aac_srb from the 
 * scsicmd passed in.
 */

static int aac_send_srb_fib(struct scsi_cmnd* scsicmd)
{
      struct fib* cmd_fibcontext;
      struct aac_dev* dev;
      int status;
      struct aac_srb *srbcmd;
      u16 fibsize;
      u32 flag;
      u32 timeout;

      dev = (struct aac_dev *)scsicmd->device->host->hostdata;
      if (scmd_id(scsicmd) >= dev->maximum_num_physicals ||
                  scsicmd->device->lun > 7) {
            scsicmd->result = DID_NO_CONNECT << 16;
            scsicmd->scsi_done(scsicmd);
            return 0;
      }

      switch(scsicmd->sc_data_direction){
      case DMA_TO_DEVICE:
            flag = SRB_DataOut;
            break;
      case DMA_BIDIRECTIONAL:
            flag = SRB_DataIn | SRB_DataOut;
            break;
      case DMA_FROM_DEVICE:
            flag = SRB_DataIn;
            break;
      case DMA_NONE:
      default:    /* shuts up some versions of gcc */
            flag = SRB_NoDataXfer;
            break;
      }


      /*
       *    Allocate and initialize a Fib then setup a BlockWrite command
       */
      if (!(cmd_fibcontext = aac_fib_alloc(dev))) {
            return -1;
      }
      aac_fib_init(cmd_fibcontext);

      srbcmd = (struct aac_srb*) fib_data(cmd_fibcontext);
      srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
      srbcmd->channel  = cpu_to_le32(aac_logical_to_phys(scmd_channel(scsicmd)));
      srbcmd->id   = cpu_to_le32(scmd_id(scsicmd));
      srbcmd->lun      = cpu_to_le32(scsicmd->device->lun);
      srbcmd->flags    = cpu_to_le32(flag);
      timeout = scsicmd->timeout_per_command/HZ;
      if(timeout == 0){
            timeout = 1;
      }
      srbcmd->timeout  = cpu_to_le32(timeout);  // timeout in seconds
      srbcmd->retry_limit = 0; /* Obsolete parameter */
      srbcmd->cdb_size = cpu_to_le32(scsicmd->cmd_len);
      
      if( dev->dac_support == 1 ) {
            aac_build_sg64(scsicmd, (struct sgmap64*) &srbcmd->sg);
            srbcmd->count = cpu_to_le32(scsicmd->request_bufflen);

            memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
            memcpy(srbcmd->cdb, scsicmd->cmnd, scsicmd->cmd_len);
            /*
             *    Build Scatter/Gather list
             */
            fibsize = sizeof (struct aac_srb) - sizeof (struct sgentry) +
                  ((le32_to_cpu(srbcmd->sg.count) & 0xff) * 
                   sizeof (struct sgentry64));
            BUG_ON (fibsize > (dev->max_fib_size -
                              sizeof(struct aac_fibhdr)));

            /*
             *    Now send the Fib to the adapter
             */
            status = aac_fib_send(ScsiPortCommand64, cmd_fibcontext,
                        fibsize, FsaNormal, 0, 1,
                          (fib_callback) aac_srb_callback, 
                          (void *) scsicmd);
      } else {
            aac_build_sg(scsicmd, (struct sgmap*)&srbcmd->sg);
            srbcmd->count = cpu_to_le32(scsicmd->request_bufflen);

            memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
            memcpy(srbcmd->cdb, scsicmd->cmnd, scsicmd->cmd_len);
            /*
             *    Build Scatter/Gather list
             */
            fibsize = sizeof (struct aac_srb) + 
                  (((le32_to_cpu(srbcmd->sg.count) & 0xff) - 1) * 
                   sizeof (struct sgentry));
            BUG_ON (fibsize > (dev->max_fib_size -
                              sizeof(struct aac_fibhdr)));

            /*
             *    Now send the Fib to the adapter
             */
            status = aac_fib_send(ScsiPortCommand, cmd_fibcontext, fibsize, FsaNormal, 0, 1,
                          (fib_callback) aac_srb_callback, (void *) scsicmd);
      }
      /*
       *    Check that the command queued to the controller
       */
      if (status == -EINPROGRESS) {
            scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
            return 0;
      }

      printk(KERN_WARNING "aac_srb: aac_fib_send failed with status: %d\n", status);
      aac_fib_complete(cmd_fibcontext);
      aac_fib_free(cmd_fibcontext);

      return -1;
}

static unsigned long aac_build_sg(struct scsi_cmnd* scsicmd, struct sgmap* psg)
{
      struct aac_dev *dev;
      unsigned long byte_count = 0;

      dev = (struct aac_dev *)scsicmd->device->host->hostdata;
      // Get rid of old data
      psg->count = 0;
      psg->sg[0].addr = 0;
      psg->sg[0].count = 0;  
      if (scsicmd->use_sg) {
            struct scatterlist *sg;
            int i;
            int sg_count;
            sg = (struct scatterlist *) scsicmd->request_buffer;

            sg_count = pci_map_sg(dev->pdev, sg, scsicmd->use_sg,
                  scsicmd->sc_data_direction);
            psg->count = cpu_to_le32(sg_count);

            for (i = 0; i < sg_count; i++) {
                  psg->sg[i].addr = cpu_to_le32(sg_dma_address(sg));
                  psg->sg[i].count = cpu_to_le32(sg_dma_len(sg));
                  byte_count += sg_dma_len(sg);
                  sg++;
            }
            /* hba wants the size to be exact */
            if(byte_count > scsicmd->request_bufflen){
                  u32 temp = le32_to_cpu(psg->sg[i-1].count) - 
                        (byte_count - scsicmd->request_bufflen);
                  psg->sg[i-1].count = cpu_to_le32(temp);
                  byte_count = scsicmd->request_bufflen;
            }
            /* Check for command underflow */
            if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
                  printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
                              byte_count, scsicmd->underflow);
            }
      }
      else if(scsicmd->request_bufflen) {
            u32 addr;
            scsicmd->SCp.dma_handle = pci_map_single(dev->pdev,
                        scsicmd->request_buffer,
                        scsicmd->request_bufflen,
                        scsicmd->sc_data_direction);
            addr = scsicmd->SCp.dma_handle;
            psg->count = cpu_to_le32(1);
            psg->sg[0].addr = cpu_to_le32(addr);
            psg->sg[0].count = cpu_to_le32(scsicmd->request_bufflen);  
            byte_count = scsicmd->request_bufflen;
      }
      return byte_count;
}


static unsigned long aac_build_sg64(struct scsi_cmnd* scsicmd, struct sgmap64* psg)
{
      struct aac_dev *dev;
      unsigned long byte_count = 0;
      u64 addr;

      dev = (struct aac_dev *)scsicmd->device->host->hostdata;
      // Get rid of old data
      psg->count = 0;
      psg->sg[0].addr[0] = 0;
      psg->sg[0].addr[1] = 0;
      psg->sg[0].count = 0;
      if (scsicmd->use_sg) {
            struct scatterlist *sg;
            int i;
            int sg_count;
            sg = (struct scatterlist *) scsicmd->request_buffer;

            sg_count = pci_map_sg(dev->pdev, sg, scsicmd->use_sg,
                  scsicmd->sc_data_direction);

            for (i = 0; i < sg_count; i++) {
                  int count = sg_dma_len(sg);
                  addr = sg_dma_address(sg);
                  psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff);
                  psg->sg[i].addr[1] = cpu_to_le32(addr>>32);
                  psg->sg[i].count = cpu_to_le32(count);
                  byte_count += count;
                  sg++;
            }
            psg->count = cpu_to_le32(sg_count);
            /* hba wants the size to be exact */
            if(byte_count > scsicmd->request_bufflen){
                  u32 temp = le32_to_cpu(psg->sg[i-1].count) - 
                        (byte_count - scsicmd->request_bufflen);
                  psg->sg[i-1].count = cpu_to_le32(temp);
                  byte_count = scsicmd->request_bufflen;
            }
            /* Check for command underflow */
            if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
                  printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
                              byte_count, scsicmd->underflow);
            }
      }
      else if(scsicmd->request_bufflen) {
            scsicmd->SCp.dma_handle = pci_map_single(dev->pdev,
                        scsicmd->request_buffer,
                        scsicmd->request_bufflen,
                        scsicmd->sc_data_direction);
            addr = scsicmd->SCp.dma_handle;
            psg->count = cpu_to_le32(1);
            psg->sg[0].addr[0] = cpu_to_le32(addr & 0xffffffff);
            psg->sg[0].addr[1] = cpu_to_le32(addr >> 32);
            psg->sg[0].count = cpu_to_le32(scsicmd->request_bufflen);  
            byte_count = scsicmd->request_bufflen;
      }
      return byte_count;
}

static unsigned long aac_build_sgraw(struct scsi_cmnd* scsicmd, struct sgmapraw* psg)
{
      struct Scsi_Host *host = scsicmd->device->host;
      struct aac_dev *dev = (struct aac_dev *)host->hostdata;
      unsigned long byte_count = 0;

      // Get rid of old data
      psg->count = 0;
      psg->sg[0].next = 0;
      psg->sg[0].prev = 0;
      psg->sg[0].addr[0] = 0;
      psg->sg[0].addr[1] = 0;
      psg->sg[0].count = 0;
      psg->sg[0].flags = 0;
      if (scsicmd->use_sg) {
            struct scatterlist *sg;
            int i;
            int sg_count;
            sg = (struct scatterlist *) scsicmd->request_buffer;

            sg_count = pci_map_sg(dev->pdev, sg, scsicmd->use_sg,
                  scsicmd->sc_data_direction);

            for (i = 0; i < sg_count; i++) {
                  int count = sg_dma_len(sg);
                  u64 addr = sg_dma_address(sg);
                  psg->sg[i].next = 0;
                  psg->sg[i].prev = 0;
                  psg->sg[i].addr[1] = cpu_to_le32((u32)(addr>>32));
                  psg->sg[i].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
                  psg->sg[i].count = cpu_to_le32(count);
                  psg->sg[i].flags = 0;
                  byte_count += count;
                  sg++;
            }
            psg->count = cpu_to_le32(sg_count);
            /* hba wants the size to be exact */
            if(byte_count > scsicmd->request_bufflen){
                  u32 temp = le32_to_cpu(psg->sg[i-1].count) - 
                        (byte_count - scsicmd->request_bufflen);
                  psg->sg[i-1].count = cpu_to_le32(temp);
                  byte_count = scsicmd->request_bufflen;
            }
            /* Check for command underflow */
            if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
                  printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
                              byte_count, scsicmd->underflow);
            }
      }
      else if(scsicmd->request_bufflen) {
            int count;
            u64 addr;
            scsicmd->SCp.dma_handle = pci_map_single(dev->pdev,
                        scsicmd->request_buffer,
                        scsicmd->request_bufflen,
                        scsicmd->sc_data_direction);
            addr = scsicmd->SCp.dma_handle;
            count = scsicmd->request_bufflen;
            psg->count = cpu_to_le32(1);
            psg->sg[0].next = 0;
            psg->sg[0].prev = 0;
            psg->sg[0].addr[1] = cpu_to_le32((u32)(addr>>32));
            psg->sg[0].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
            psg->sg[0].count = cpu_to_le32(count);
            psg->sg[0].flags = 0;
            byte_count = scsicmd->request_bufflen;
      }
      return byte_count;
}

#ifdef AAC_DETAILED_STATUS_INFO

struct aac_srb_status_info {
      u32   status;
      char  *str;
};


static struct aac_srb_status_info srb_status_info[] = {
      { SRB_STATUS_PENDING,         "Pending Status"},
      { SRB_STATUS_SUCCESS,         "Success"},
      { SRB_STATUS_ABORTED,         "Aborted Command"},
      { SRB_STATUS_ABORT_FAILED,    "Abort Failed"},
      { SRB_STATUS_ERROR,           "Error Event"},
      { SRB_STATUS_BUSY,            "Device Busy"},
      { SRB_STATUS_INVALID_REQUEST, "Invalid Request"},
      { SRB_STATUS_INVALID_PATH_ID, "Invalid Path ID"},
      { SRB_STATUS_NO_DEVICE,       "No Device"},
      { SRB_STATUS_TIMEOUT,         "Timeout"},
      { SRB_STATUS_SELECTION_TIMEOUT,     "Selection Timeout"},
      { SRB_STATUS_COMMAND_TIMEOUT, "Command Timeout"},
      { SRB_STATUS_MESSAGE_REJECTED,      "Message Rejected"},
      { SRB_STATUS_BUS_RESET,       "Bus Reset"},
      { SRB_STATUS_PARITY_ERROR,    "Parity Error"},
      { SRB_STATUS_REQUEST_SENSE_FAILED,"Request Sense Failed"},
      { SRB_STATUS_NO_HBA,          "No HBA"},
      { SRB_STATUS_DATA_OVERRUN,    "Data Overrun/Data Underrun"},
      { SRB_STATUS_UNEXPECTED_BUS_FREE,"Unexpected Bus Free"},
      { SRB_STATUS_PHASE_SEQUENCE_FAILURE,"Phase Error"},
      { SRB_STATUS_BAD_SRB_BLOCK_LENGTH,"Bad Srb Block Length"},
      { SRB_STATUS_REQUEST_FLUSHED, "Request Flushed"},
      { SRB_STATUS_DELAYED_RETRY,   "Delayed Retry"},
      { SRB_STATUS_INVALID_LUN,     "Invalid LUN"},
      { SRB_STATUS_INVALID_TARGET_ID,     "Invalid TARGET ID"},
      { SRB_STATUS_BAD_FUNCTION,    "Bad Function"},
      { SRB_STATUS_ERROR_RECOVERY,  "Error Recovery"},
      { SRB_STATUS_NOT_STARTED,     "Not Started"},
      { SRB_STATUS_NOT_IN_USE,      "Not In Use"},
      { SRB_STATUS_FORCE_ABORT,     "Force Abort"},
      { SRB_STATUS_DOMAIN_VALIDATION_FAIL,"Domain Validation Failure"},
      { 0xff,                       "Unknown Error"}
};

char *aac_get_status_string(u32 status)
{
      int i;

      for (i = 0; i < ARRAY_SIZE(srb_status_info); i++)
            if (srb_status_info[i].status == status)
                  return srb_status_info[i].str;

      return "Bad Status Code";
}

#endif

Generated by  Doxygen 1.6.0   Back to index