Logo Search packages:      
Sourcecode: linux-2.6 version File versions  Download package

cmpci.c

/*
 *      cmpci.c  --  C-Media PCI audio driver.
 *
 *      Copyright (C) 1999  C-media support (support@cmedia.com.tw)
 *
 *      Based on the PCI drivers by Thomas Sailer (sailer@ife.ee.ethz.ch)
 *
 *    For update, visit:
 *          http://www.cmedia.com.tw
 *
 *      This program is free software; you can redistribute it and/or modify
 *      it under the terms of the GNU General Public License as published by
 *      the Free Software Foundation; either version 2 of the License, or
 *      (at your option) any later version.
 *
 *      This program is distributed in the hope that it will be useful,
 *      but WITHOUT ANY WARRANTY; without even the implied warranty of
 *      MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *      GNU General Public License for more details.
 *
 *      You should have received a copy of the GNU General Public License
 *      along with this program; if not, write to the Free Software
 *      Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 *
 * Special thanks to David C. Niemi, Jan Pfeifer
 *
 *
 * Module command line parameters:
 *   none so far
 *
 *
 *  Supported devices:
 *  /dev/dsp    standard /dev/dsp device, (mostly) OSS compatible
 *  /dev/mixer  standard /dev/mixer device, (mostly) OSS compatible
 *  /dev/midi   simple MIDI UART interface, no ioctl
 *
 *  The card has both an FM and a Wavetable synth, but I have to figure
 *  out first how to drive them...
 *
 *  Revision history
 *    06.05.98   0.1   Initial release
 *    10.05.98   0.2   Fixed many bugs, esp. ADC rate calculation
 *                     First stab at a simple midi interface (no bells&whistles)
 *    13.05.98   0.3   Fix stupid cut&paste error: set_adc_rate was called instead of
 *                     set_dac_rate in the FMODE_WRITE case in cm_open
 *                     Fix hwptr out of bounds (now mpg123 works)
 *    14.05.98   0.4   Don't allow excessive interrupt rates
 *    08.06.98   0.5   First release using Alan Cox' soundcore instead of miscdevice
 *    03.08.98   0.6   Do not include modversions.h
 *                     Now mixer behaviour can basically be selected between
 *                     "OSS documented" and "OSS actual" behaviour
 *    31.08.98   0.7   Fix realplayer problems - dac.count issues
 *    10.12.98   0.8   Fix drain_dac trying to wait on not yet initialized DMA
 *    16.12.98   0.9   Fix a few f_file & FMODE_ bugs
 *    06.01.99   0.10  remove the silly SA_INTERRUPT flag.
 *                     hopefully killed the egcs section type conflict
 *    12.03.99   0.11  cinfo.blocks should be reset after GETxPTR ioctl.
 *                     reported by Johan Maes <joma@telindus.be>
 *    22.03.99   0.12  return EAGAIN instead of EBUSY when O_NONBLOCK
 *                     read/write cannot be executed
 *    18.08.99   1.5   Only deallocate DMA buffer when unloading.
 *    02.09.99   1.6   Enable SPDIF LOOP
 *                     Change the mixer read back
 *    21.09.99   2.33  Use RCS version as driver version.
 *                     Add support for modem, S/PDIF loop and 4 channels.
 *                     (8738 only)
 *                     Fix bug cause x11amp cannot play.
 *
 *    Fixes:
 *    Arnaldo Carvalho de Melo <acme@conectiva.com.br>
 *    18/05/2001 - .bss nitpicks, fix a bug in set_dac_channels where it
 *                   was calling prog_dmabuf with s->lock held, call missing
 *                   unlock_kernel in cm_midi_release
 *    08/10/2001 - use set_current_state in some more places
 *
 *    Carlos Eduardo Gorges <carlos@techlinux.com.br>
 *    Fri May 25 2001
 *    - SMP support ( spin[un]lock* revision )
 *    - speaker mixer support
 *    Mon Aug 13 2001
 *    - optimizations and cleanups
 *
 *    03/01/2003 - open_mode fixes from Georg Acher <acher@in.tum.de>
 *    Simon Braunschmidt <brasimon@web.de>
 *     Sat Jan 31 2004
 *    - provide support for opl3 FM by releasing IO range after initialization
 *
 *    ChenLi Tien <cltien@cmedia.com.tw>
 *    Mar 9 2004
 *    - Fix S/PDIF out if spdif_loop enabled
 *    - Load opl3 driver if enabled (fmio in proper range)
 *    - Load mpu401 if enabled (mpuio in proper range)
 *    Apr 5 2004
 *    - Fix DUAL_DAC dma synchronization bug
 *    - Check exist FM/MPU401 I/O before activate.
 *    - Add AFTM_S16_BE format support, so MPlayer/Xine can play AC3/mutlichannel
 *      on Mac
 *    - Change to support kernel 2.6 so only small patch needed
 *    - All parameters default to 0
 *    - Add spdif_out to send PCM through S/PDIF out jack
 *    - Add hw_copy to get 4-spaker output for general PCM/analog output
 *
 *    Stefan Thater <stefan.thaeter@gmx.de>
 *    Apr 5 2004
 *    - Fix mute single channel for CD/Line-in/AUX-in
 */
/*****************************************************************************/

#include <linux/config.h>
#include <linux/module.h>
#include <linux/string.h>
#include <linux/interrupt.h>
#include <linux/ioport.h>
#include <linux/sched.h>
#include <linux/delay.h>
#include <linux/sound.h>
#include <linux/slab.h>
#include <linux/soundcard.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/poll.h>
#include <linux/spinlock.h>
#include <linux/smp_lock.h>
#include <linux/bitops.h>
#include <linux/wait.h>
#include <linux/dma-mapping.h>

#include <asm/io.h>
#include <asm/page.h>
#include <asm/uaccess.h>

#ifdef CONFIG_SOUND_CMPCI_MIDI
#include "sound_config.h"
#include "mpu401.h"
#endif
#ifdef CONFIG_SOUND_CMPCI_FM
#include "opl3.h"
#endif
#ifdef CONFIG_SOUND_CMPCI_JOYSTICK
#include <linux/gameport.h>
#include <linux/mutex.h>

#endif

/* --------------------------------------------------------------------- */
#undef OSS_DOCUMENTED_MIXER_SEMANTICS
#undef DMABYTEIO
#define     DBG(x) {}
/* --------------------------------------------------------------------- */

#define CM_MAGIC  ((PCI_VENDOR_ID_CMEDIA<<16)|PCI_DEVICE_ID_CMEDIA_CM8338A)

/* CM8338 registers definition ****************/

#define CODEC_CMI_FUNCTRL0          (0x00)
#define CODEC_CMI_FUNCTRL1          (0x04)
#define CODEC_CMI_CHFORMAT          (0x08)
#define CODEC_CMI_INT_HLDCLR        (0x0C)
#define CODEC_CMI_INT_STATUS        (0x10)
#define CODEC_CMI_LEGACY_CTRL       (0x14)
#define CODEC_CMI_MISC_CTRL         (0x18)
#define CODEC_CMI_TDMA_POS          (0x1C)
#define CODEC_CMI_MIXER             (0x20)
#define CODEC_SB16_DATA             (0x22)
#define CODEC_SB16_ADDR             (0x23)
#define CODEC_CMI_MIXER1            (0x24)
#define CODEC_CMI_MIXER2            (0x25)
#define CODEC_CMI_AUX_VOL           (0x26)
#define CODEC_CMI_MISC              (0x27)
#define CODEC_CMI_AC97              (0x28)

#define CODEC_CMI_CH0_FRAME1        (0x80)
#define CODEC_CMI_CH0_FRAME2        (0x84)
#define CODEC_CMI_CH1_FRAME1        (0x88)
#define CODEC_CMI_CH1_FRAME2        (0x8C)

#define CODEC_CMI_SPDIF_CTRL        (0x90)
#define CODEC_CMI_MISC_CTRL2        (0x92)

#define CODEC_CMI_EXT_REG           (0xF0)

/*  Mixer registers for SB16 ******************/

#define DSP_MIX_DATARESETIDX        ((unsigned char)(0x00))

#define DSP_MIX_MASTERVOLIDX_L            ((unsigned char)(0x30))
#define DSP_MIX_MASTERVOLIDX_R            ((unsigned char)(0x31))
#define DSP_MIX_VOICEVOLIDX_L       ((unsigned char)(0x32))
#define DSP_MIX_VOICEVOLIDX_R       ((unsigned char)(0x33))
#define DSP_MIX_FMVOLIDX_L          ((unsigned char)(0x34))
#define DSP_MIX_FMVOLIDX_R          ((unsigned char)(0x35))
#define DSP_MIX_CDVOLIDX_L          ((unsigned char)(0x36))
#define DSP_MIX_CDVOLIDX_R          ((unsigned char)(0x37))
#define DSP_MIX_LINEVOLIDX_L        ((unsigned char)(0x38))
#define DSP_MIX_LINEVOLIDX_R        ((unsigned char)(0x39))

#define DSP_MIX_MICVOLIDX           ((unsigned char)(0x3A))
#define DSP_MIX_SPKRVOLIDX          ((unsigned char)(0x3B))

#define DSP_MIX_OUTMIXIDX           ((unsigned char)(0x3C))

#define DSP_MIX_ADCMIXIDX_L         ((unsigned char)(0x3D))
#define DSP_MIX_ADCMIXIDX_R         ((unsigned char)(0x3E))

#define DSP_MIX_INGAINIDX_L         ((unsigned char)(0x3F))
#define DSP_MIX_INGAINIDX_R         ((unsigned char)(0x40))
#define DSP_MIX_OUTGAINIDX_L        ((unsigned char)(0x41))
#define DSP_MIX_OUTGAINIDX_R        ((unsigned char)(0x42))

#define DSP_MIX_AGCIDX              ((unsigned char)(0x43))

#define DSP_MIX_TREBLEIDX_L         ((unsigned char)(0x44))
#define DSP_MIX_TREBLEIDX_R         ((unsigned char)(0x45))
#define DSP_MIX_BASSIDX_L           ((unsigned char)(0x46))
#define DSP_MIX_BASSIDX_R           ((unsigned char)(0x47))
#define DSP_MIX_EXTENSION           ((unsigned char)(0xf0))
// pseudo register for AUX
#define     DSP_MIX_AUXVOL_L        ((unsigned char)(0x50))
#define     DSP_MIX_AUXVOL_R        ((unsigned char)(0x51))

// I/O length
#define CM_EXTENT_CODEC   0x100
#define CM_EXTENT_MIDI    0x2
#define CM_EXTENT_SYNTH   0x4
#define CM_EXTENT_GAME    0x8

// Function Control Register 0 (00h)
#define CHADC0          0x01
#define CHADC1          0x02
#define PAUSE0          0x04
#define PAUSE1          0x08

// Function Control Register 0+2 (02h)
#define CHEN0           0x01
#define CHEN1           0x02
#define RST_CH0         0x04
#define RST_CH1         0x08

// Function Control Register 1 (04h)
#define JYSTK_EN  0x02
#define UART_EN         0x04
#define     SPDO2DAC    0x40
#define     SPDFLOOP    0x80

// Function Control Register 1+1 (05h)
#define     SPDF_0            0x01
#define     SPDF_1            0x02
#define     ASFC        0x1c
#define     DSFC        0xe0
#define     SPDIF2DAC   (SPDF_1 << 8 | SPDO2DAC)

// Channel Format Register (08h)
#define CM_CFMT_STEREO  0x01
#define CM_CFMT_16BIT   0x02
#define CM_CFMT_MASK    0x03
#define     POLVALID    0x20
#define     INVSPDIFI   0x80

// Channel Format Register+2 (0ah)
#define SPD24SEL  0x20

// Channel Format Register+3 (0bh)
#define CHB3D           0x20
#define CHB3D5C         0x80

// Interrupt Hold/Clear Register+2 (0eh)
#define     CH0_INT_EN  0x01
#define     CH1_INT_EN  0x02

// Interrupt Register (10h)
#define CHINT0          0x01
#define CHINT1          0x02
#define     CH0BUSY           0x04
#define     CH1BUSY           0x08

// Legacy Control/Status Register+1 (15h)
#define     EXBASEN           0x10
#define     BASE2LIN    0x20
#define     CENTR2LIN   0x40
#define     CB2LIN            (BASE2LIN | CENTR2LIN)
#define     CHB3D6C           0x80

// Legacy Control/Status Register+2 (16h)
#define     DAC2SPDO    0x20
#define     SPDCOPYRHT  0x40
#define     ENSPDOUT    0x80

// Legacy Control/Status Register+3 (17h)
#define     FMSEL       0x03
#define     VSBSEL            0x0c
#define     VMPU        0x60
#define     NXCHG       0x80

// Miscellaneous Control Register (18h)
#define     REAR2LIN    0x20
#define     MUTECH1           0x40
#define     ENCENTER    0x80

// Miscellaneous Control Register+1 (19h)
#define     SELSPDIFI2  0x01
#define     SPDF_AC97   0x80

// Miscellaneous Control Register+2 (1ah)
#define     AC3_EN            0x04
#define     FM_EN       0x08
#define     SPD32SEL    0x20
#define     XCHGDAC           0x40
#define     ENDBDAC           0x80

// Miscellaneous Control Register+3 (1bh)
#define     SPDIFI48K   0x01
#define     SPDO5V            0x02
#define     N4SPK3D           0x04
#define     RESET       0x40
#define     PWD         0x80
#define     SPDIF48K    (SPDIFI48K << 24 | SPDF_AC97 << 8)

// Mixer1 (24h)
#define     CDPLAY            0x01
#define     X3DEN       0x02
#define     REAR2FRONT  0x10
#define     SPK4        0x20
#define     WSMUTE            0x40
#define     FMMUTE            0x80

// Miscellaneous Register (27h)
#define     SPDVALID    0x02
#define     CENTR2MIC   0x04

// Miscellaneous Register2 (92h)
#define     SPD32KFMT   0x10

#define CM_CFMT_DACSHIFT   2
#define CM_CFMT_ADCSHIFT   0
#define CM_FREQ_DACSHIFT   5
#define CM_FREQ_ADCSHIFT   2
#define     RSTDAC      RST_CH1
#define     RSTADC      RST_CH0
#define     ENDAC CHEN1
#define     ENADC CHEN0
#define     PAUSEDAC    PAUSE1
#define     PAUSEADC    PAUSE0
#define CODEC_CMI_ADC_FRAME1  CODEC_CMI_CH0_FRAME1
#define CODEC_CMI_ADC_FRAME2  CODEC_CMI_CH0_FRAME2
#define CODEC_CMI_DAC_FRAME1  CODEC_CMI_CH1_FRAME1
#define CODEC_CMI_DAC_FRAME2  CODEC_CMI_CH1_FRAME2
#define     DACINT      CHINT1
#define     ADCINT      CHINT0
#define     DACBUSY     CH1BUSY
#define     ADCBUSY     CH0BUSY
#define     ENDACINT    CH1_INT_EN
#define     ENADCINT    CH0_INT_EN

static const unsigned sample_size[] = { 1, 2, 2, 4 };
static const unsigned sample_shift[]      = { 0, 1, 1, 2 };

#define SND_DEV_DSP16   5

#define NR_DEVICE 3           /* maximum number of devices */

#define     set_dac1_rate     set_adc_rate
#define     set_dac1_rate_unlocked  set_adc_rate_unlocked
#define     stop_dac1   stop_adc
#define     stop_dac1_unlocked      stop_adc_unlocked
#define     get_dmadac1 get_dmaadc

static unsigned int devindex = 0;

//*********************************************/

struct cm_state {
      /* magic */
      unsigned int magic;

      /* list of cmedia devices */
      struct list_head devs;

      /* the corresponding pci_dev structure */
      struct pci_dev *dev;

      int dev_audio;                /* soundcore stuff */
      int dev_mixer;

      unsigned int iosb, iobase, iosynth,
                   iomidi, iogame, irq;   /* hardware resources */
      unsigned short deviceid;            /* pci_id */

        struct {                    /* mixer stuff */
                unsigned int modcnt;
            unsigned short vol[13];
        } mix;

      unsigned int rateadc, ratedac;            /* wave stuff */
      unsigned char fmt, enable;

      spinlock_t lock;
      struct mutex open_mutex;
      mode_t open_mode;
      wait_queue_head_t open_wait;

      struct dmabuf {
            void *rawbuf;
            dma_addr_t dmaaddr;
            unsigned buforder;
            unsigned numfrag;
            unsigned fragshift;
            unsigned hwptr, swptr;
            unsigned total_bytes;
            int count;
            unsigned error;         /* over/underrun */
            wait_queue_head_t wait;

            unsigned fragsize;      /* redundant, but makes calculations easier */
            unsigned dmasize;
            unsigned fragsamples;
            unsigned dmasamples;

            unsigned mapped:1;      /* OSS stuff */
            unsigned ready:1;
            unsigned endcleared:1;
            unsigned enabled:1;
            unsigned ossfragshift;
            int ossmaxfrags;
            unsigned subdivision;
      } dma_dac, dma_adc;

#ifdef CONFIG_SOUND_CMPCI_MIDI
      int midi_devc;
      struct address_info mpu_data;
#endif
#ifdef CONFIG_SOUND_CMPCI_JOYSTICK
      struct gameport *gameport;
#endif

      int   chip_version;
      int   max_channels;
      int   curr_channels;
      int   capability;       /* HW capability, various for chip versions */

      int   status;                 /* HW or SW state */

      int   spdif_counter;          /* spdif frame counter */
};

/* flags used for capability */
#define     CAN_AC3_HW        0x00000001        /* 037 or later */
#define     CAN_AC3_SW        0x00000002        /* 033 or later */
#define     CAN_AC3                 (CAN_AC3_HW | CAN_AC3_SW)
#define CAN_DUAL_DAC          0x00000004        /* 033 or later */
#define     CAN_MULTI_CH_HW         0x00000008        /* 039 or later */
#define     CAN_MULTI_CH            (CAN_MULTI_CH_HW | CAN_DUAL_DAC)
#define     CAN_LINE_AS_REAR  0x00000010        /* 033 or later */
#define     CAN_LINE_AS_BASS  0x00000020        /* 039 or later */
#define     CAN_MIC_AS_BASS         0x00000040        /* 039 or later */

/* flags used for status */
#define     DO_AC3_HW         0x00000001
#define     DO_AC3_SW         0x00000002
#define     DO_AC3                  (DO_AC3_HW | DO_AC3_SW)
#define     DO_DUAL_DAC       0x00000004
#define     DO_MULTI_CH_HW          0x00000008
#define     DO_MULTI_CH       (DO_MULTI_CH_HW | DO_DUAL_DAC)
#define     DO_LINE_AS_REAR         0x00000010        /* 033 or later */
#define     DO_LINE_AS_BASS         0x00000020        /* 039 or later */
#define     DO_MIC_AS_BASS          0x00000040        /* 039 or later */
#define     DO_SPDIF_OUT            0x00000100
#define     DO_SPDIF_IN       0x00000200
#define     DO_SPDIF_LOOP           0x00000400
#define     DO_BIGENDIAN_W          0x00001000        /* used in PowerPC */
#define     DO_BIGENDIAN_R          0x00002000        /* used in PowerPC */

static LIST_HEAD(devs);

static      int   mpuio;
static      int   fmio;
static      int   joystick;
static      int   spdif_inverse;
static      int   spdif_loop;
static      int   spdif_out;
static      int   use_line_as_rear;
static      int   use_line_as_bass;
static      int   use_mic_as_bass;
static      int   mic_boost;
static      int   hw_copy;
module_param(mpuio, int, 0);
module_param(fmio, int, 0);
module_param(joystick, bool, 0);
module_param(spdif_inverse, bool, 0);
module_param(spdif_loop, bool, 0);
module_param(spdif_out, bool, 0);
module_param(use_line_as_rear, bool, 0);
module_param(use_line_as_bass, bool, 0);
module_param(use_mic_as_bass, bool, 0);
module_param(mic_boost, bool, 0);
module_param(hw_copy, bool, 0);
MODULE_PARM_DESC(mpuio, "(0x330, 0x320, 0x310, 0x300) Base of MPU-401, 0 to disable");
MODULE_PARM_DESC(fmio, "(0x388, 0x3C8, 0x3E0) Base of OPL3, 0 to disable");
MODULE_PARM_DESC(joystick, "(1/0) Enable joystick interface, still need joystick driver");
MODULE_PARM_DESC(spdif_inverse, "(1/0) Invert S/PDIF-in signal");
MODULE_PARM_DESC(spdif_loop, "(1/0) Route S/PDIF-in to S/PDIF-out directly");
MODULE_PARM_DESC(spdif_out, "(1/0) Send PCM to S/PDIF-out (PCM volume will not function)");
MODULE_PARM_DESC(use_line_as_rear, "(1/0) Use line-in jack as rear-out");
MODULE_PARM_DESC(use_line_as_bass, "(1/0) Use line-in jack as bass/center");
MODULE_PARM_DESC(use_mic_as_bass, "(1/0) Use mic-in jack as bass/center");
MODULE_PARM_DESC(mic_boost, "(1/0) Enable microphone boost");
MODULE_PARM_DESC(hw_copy, "Copy front channel to surround channel");

/* --------------------------------------------------------------------- */

static inline unsigned ld2(unsigned int x)
{
      unsigned exp=16,l=5,r=0;
      static const unsigned num[]={0x2,0x4,0x10,0x100,0x10000};

      /* num: 2, 4, 16, 256, 65536 */
      /* exp: 1, 2,  4,   8,    16 */

      while(l--) {
            if( x >= num[l] ) {
                  if(num[l]>2) x >>= exp;
                  r+=exp;
            }
            exp>>=1;
      }

      return r;
}

/* --------------------------------------------------------------------- */

static void maskb(unsigned int addr, unsigned int mask, unsigned int value)
{
      outb((inb(addr) & mask) | value, addr);
}

static void maskw(unsigned int addr, unsigned int mask, unsigned int value)
{
      outw((inw(addr) & mask) | value, addr);
}

static void maskl(unsigned int addr, unsigned int mask, unsigned int value)
{
      outl((inl(addr) & mask) | value, addr);
}

static void set_dmadac1(struct cm_state *s, unsigned int addr, unsigned int count)
{
      if (addr)
          outl(addr, s->iobase + CODEC_CMI_ADC_FRAME1);
      outw(count - 1, s->iobase + CODEC_CMI_ADC_FRAME2);
      maskb(s->iobase + CODEC_CMI_FUNCTRL0, ~CHADC0, 0);
}

static void set_dmaadc(struct cm_state *s, unsigned int addr, unsigned int count)
{
      outl(addr, s->iobase + CODEC_CMI_ADC_FRAME1);
      outw(count - 1, s->iobase + CODEC_CMI_ADC_FRAME2);
      maskb(s->iobase + CODEC_CMI_FUNCTRL0, ~0, CHADC0);
}

static void set_dmadac(struct cm_state *s, unsigned int addr, unsigned int count)
{
      outl(addr, s->iobase + CODEC_CMI_DAC_FRAME1);
      outw(count - 1, s->iobase + CODEC_CMI_DAC_FRAME2);
      maskb(s->iobase + CODEC_CMI_FUNCTRL0, ~CHADC1, 0);
      if (s->status & DO_DUAL_DAC)
            set_dmadac1(s, 0, count);
}

static void set_countadc(struct cm_state *s, unsigned count)
{
      outw(count - 1, s->iobase + CODEC_CMI_ADC_FRAME2 + 2);
}

static void set_countdac(struct cm_state *s, unsigned count)
{
      outw(count - 1, s->iobase + CODEC_CMI_DAC_FRAME2 + 2);
      if (s->status & DO_DUAL_DAC)
          set_countadc(s, count);
}

static unsigned get_dmadac(struct cm_state *s)
{
      unsigned int curr_addr;

      curr_addr = inw(s->iobase + CODEC_CMI_DAC_FRAME2) + 1;
      curr_addr <<= sample_shift[(s->fmt >> CM_CFMT_DACSHIFT) & CM_CFMT_MASK];
      curr_addr = s->dma_dac.dmasize - curr_addr;

      return curr_addr;
}

static unsigned get_dmaadc(struct cm_state *s)
{
      unsigned int curr_addr;

      curr_addr = inw(s->iobase + CODEC_CMI_ADC_FRAME2) + 1;
      curr_addr <<= sample_shift[(s->fmt >> CM_CFMT_ADCSHIFT) & CM_CFMT_MASK];
      curr_addr = s->dma_adc.dmasize - curr_addr;

      return curr_addr;
}

static void wrmixer(struct cm_state *s, unsigned char idx, unsigned char data)
{
      unsigned char regval, pseudo;

      // pseudo register
      if (idx == DSP_MIX_AUXVOL_L) {
            data >>= 4;
            data &= 0x0f;
            regval = inb(s->iobase + CODEC_CMI_AUX_VOL) & ~0x0f;
            outb(regval | data, s->iobase + CODEC_CMI_AUX_VOL);
            return;
      }
      if (idx == DSP_MIX_AUXVOL_R) {
            data &= 0xf0;
            regval = inb(s->iobase + CODEC_CMI_AUX_VOL) & ~0xf0;
            outb(regval | data, s->iobase + CODEC_CMI_AUX_VOL);
            return;
      }
      outb(idx, s->iobase + CODEC_SB16_ADDR);
      udelay(10);
      // pseudo bits
      if (idx == DSP_MIX_OUTMIXIDX) {
            pseudo = data & ~0x1f;
            pseudo >>= 1;
            regval = inb(s->iobase + CODEC_CMI_MIXER2) & ~0x30;
            outb(regval | pseudo, s->iobase + CODEC_CMI_MIXER2);
      }
      if (idx == DSP_MIX_ADCMIXIDX_L) {
            pseudo = data & 0x80;
            pseudo >>= 1;
            regval = inb(s->iobase + CODEC_CMI_MIXER2) & ~0x40;
            outb(regval | pseudo, s->iobase + CODEC_CMI_MIXER2);
      }
      if (idx == DSP_MIX_ADCMIXIDX_R) {
            pseudo = data & 0x80;
            regval = inb(s->iobase + CODEC_CMI_MIXER2) & ~0x80;
            outb(regval | pseudo, s->iobase + CODEC_CMI_MIXER2);
      }
      outb(data, s->iobase + CODEC_SB16_DATA);
      udelay(10);
}

static unsigned char rdmixer(struct cm_state *s, unsigned char idx)
{
      unsigned char v, pseudo;

      // pseudo register
      if (idx == DSP_MIX_AUXVOL_L) {
            v = inb(s->iobase + CODEC_CMI_AUX_VOL) & 0x0f;
            v <<= 4;
            return v;
      }
      if (idx == DSP_MIX_AUXVOL_L) {
            v = inb(s->iobase + CODEC_CMI_AUX_VOL) & 0xf0;
            return v;
      }
      outb(idx, s->iobase + CODEC_SB16_ADDR);
      udelay(10);
      v = inb(s->iobase + CODEC_SB16_DATA);
      udelay(10);
      // pseudo bits
      if (idx == DSP_MIX_OUTMIXIDX) {
            pseudo = inb(s->iobase + CODEC_CMI_MIXER2) & 0x30;
            pseudo <<= 1;
            v |= pseudo;
      }
      if (idx == DSP_MIX_ADCMIXIDX_L) {
            pseudo = inb(s->iobase + CODEC_CMI_MIXER2) & 0x40;
            pseudo <<= 1;
            v |= pseudo;
      }
      if (idx == DSP_MIX_ADCMIXIDX_R) {
            pseudo = inb(s->iobase + CODEC_CMI_MIXER2) & 0x80;
            v |= pseudo;
      }
      return v;
}

static void set_fmt_unlocked(struct cm_state *s, unsigned char mask, unsigned char data)
{
      if (mask && s->chip_version > 0) {  /* 8338 cannot keep this */
            s->fmt = inb(s->iobase + CODEC_CMI_CHFORMAT);
            udelay(10);
      }
      s->fmt = (s->fmt & mask) | data;
      outb(s->fmt, s->iobase + CODEC_CMI_CHFORMAT);
      udelay(10);
}

static void set_fmt(struct cm_state *s, unsigned char mask, unsigned char data)
{
      unsigned long flags;

      spin_lock_irqsave(&s->lock, flags);
      set_fmt_unlocked(s,mask,data);
      spin_unlock_irqrestore(&s->lock, flags);
}

static void frobindir(struct cm_state *s, unsigned char idx, unsigned char mask, unsigned char data)
{
      outb(idx, s->iobase + CODEC_SB16_ADDR);
      udelay(10);
      outb((inb(s->iobase + CODEC_SB16_DATA) & mask) | data, s->iobase + CODEC_SB16_DATA);
      udelay(10);
}

static struct {
      unsigned    rate;
      unsigned    lower;
      unsigned    upper;
      unsigned char     freq;
} rate_lookup[] =
{
      { 5512,           (0 + 5512) / 2,         (5512 + 8000) / 2,      0 },
      { 8000,           (5512 + 8000) / 2,      (8000 + 11025) / 2,     4 },
      { 11025,    (8000 + 11025) / 2,     (11025 + 16000) / 2,    1 },
      { 16000,    (11025 + 16000) / 2,    (16000 + 22050) / 2,    5 },
      { 22050,    (16000 + 22050) / 2,    (22050 + 32000) / 2,    2 },
      { 32000,    (22050 + 32000) / 2,    (32000 + 44100) / 2,    6 },
      { 44100,    (32000 + 44100) / 2,    (44100 + 48000) / 2,    3 },
      { 48000,    (44100 + 48000) / 2,    48000,                  7 }
};

static void set_spdif_copyright(struct cm_state *s, int spdif_copyright)
{
      /* enable SPDIF-in Copyright */
      maskb(s->iobase + CODEC_CMI_LEGACY_CTRL + 2, ~SPDCOPYRHT, spdif_copyright ? SPDCOPYRHT : 0);
}

static void set_spdif_loop(struct cm_state *s, int spdif_loop)
{
      /* enable SPDIF loop */
      if (spdif_loop) {
            s->status |= DO_SPDIF_LOOP;
            /* turn on spdif-in to spdif-out */
            maskb(s->iobase + CODEC_CMI_FUNCTRL1, ~0, SPDFLOOP);
      } else {
            s->status &= ~DO_SPDIF_LOOP;
            /* turn off spdif-in to spdif-out */
            maskb(s->iobase + CODEC_CMI_FUNCTRL1, ~SPDFLOOP, 0);
      }
}

static void set_spdif_monitor(struct cm_state *s, int channel)
{
      // SPDO2DAC
      maskw(s->iobase + CODEC_CMI_FUNCTRL1, ~SPDO2DAC, channel == 2 ? SPDO2DAC : 0);
      // CDPLAY
      if (s->chip_version >= 39)
            maskb(s->iobase + CODEC_CMI_MIXER1, ~CDPLAY, channel ? CDPLAY : 0);
}

static void set_spdifout_level(struct cm_state *s, int level5v)
{
      /* SPDO5V */
      if (s->chip_version > 0)
            maskb(s->iobase + CODEC_CMI_MISC_CTRL + 3, ~SPDO5V, level5v ? SPDO5V : 0);
}

static void set_spdifin_inverse(struct cm_state *s, int spdif_inverse)
{
      if (s->chip_version == 0)     /* 8338 has not this feature */
            return;
      if (spdif_inverse) {
            /* turn on spdif-in inverse */
            if (s->chip_version >= 39)
                  maskb(s->iobase + CODEC_CMI_CHFORMAT, ~0, INVSPDIFI);
            else
                  maskb(s->iobase + CODEC_CMI_CHFORMAT + 2, ~0, 1);
      } else {
            /* turn off spdif-ininverse */
            if (s->chip_version >= 39)
                  maskb(s->iobase + CODEC_CMI_CHFORMAT, ~INVSPDIFI, 0);
            else
                  maskb(s->iobase + CODEC_CMI_CHFORMAT + 2, ~1, 0);
      }
}

static void set_spdifin_channel2(struct cm_state *s, int channel2)
{
      /* SELSPDIFI2 */
      if (s->chip_version >= 39)
            maskb(s->iobase + CODEC_CMI_MISC_CTRL + 1, ~SELSPDIFI2, channel2 ? SELSPDIFI2 : 0);
}

static void set_spdifin_valid(struct cm_state *s, int valid)
{
      /* SPDVALID */
      maskb(s->iobase + CODEC_CMI_MISC, ~SPDVALID, valid ? SPDVALID : 0);
}

static void set_spdifout_unlocked(struct cm_state *s, unsigned rate)
{
      if (rate != 48000 && rate != 44100)
            rate = 0;
      if (rate == 48000 || rate == 44100) {
            set_spdif_loop(s, 0);
            // SPDF_1
            maskb(s->iobase + CODEC_CMI_FUNCTRL1 + 1, ~0, SPDF_1);
            // SPDIFI48K SPDF_AC97
            maskl(s->iobase + CODEC_CMI_MISC_CTRL, ~SPDIF48K, rate == 48000 ? SPDIF48K : 0);
            if (s->chip_version >= 55)
            // SPD32KFMT
                  maskb(s->iobase + CODEC_CMI_MISC_CTRL2, ~SPD32KFMT, rate == 48000 ? SPD32KFMT : 0);
            if (s->chip_version > 0)
            // ENSPDOUT
                  maskb(s->iobase + CODEC_CMI_LEGACY_CTRL + 2, ~0, ENSPDOUT);
            // monitor SPDIF out
            set_spdif_monitor(s, 2);
            s->status |= DO_SPDIF_OUT;
      } else {
            maskb(s->iobase + CODEC_CMI_FUNCTRL1 + 1, ~SPDF_1, 0);
            maskb(s->iobase + CODEC_CMI_LEGACY_CTRL + 2, ~ENSPDOUT, 0);
            // monitor none
            set_spdif_monitor(s, 0);
            s->status &= ~DO_SPDIF_OUT;
      }
}

static void set_spdifout(struct cm_state *s, unsigned rate)
{
      unsigned long flags;

      spin_lock_irqsave(&s->lock, flags);
      set_spdifout_unlocked(s,rate);
      spin_unlock_irqrestore(&s->lock, flags);
}

static void set_spdifin_unlocked(struct cm_state *s, unsigned rate)
{
      if (rate == 48000 || rate == 44100) {
            // SPDF_1
            maskb(s->iobase + CODEC_CMI_FUNCTRL1 + 1, ~0, SPDF_1);
            // SPDIFI48K SPDF_AC97
            maskl(s->iobase + CODEC_CMI_MISC_CTRL, ~SPDIF48K, rate == 48000 ? SPDIF48K : 0);
            s->status |= DO_SPDIF_IN;
      } else {
            maskb(s->iobase + CODEC_CMI_FUNCTRL1 + 1, ~SPDF_1, 0);
            s->status &= ~DO_SPDIF_IN;
      }
}

static void set_spdifin(struct cm_state *s, unsigned rate)
{
      unsigned long flags;

      spin_lock_irqsave(&s->lock, flags);
      set_spdifin_unlocked(s,rate);
      spin_unlock_irqrestore(&s->lock, flags);
}

/* find parity for bit 4~30 */
static unsigned parity(unsigned data)
{
      unsigned parity = 0;
      int counter = 4;

      data >>= 4; // start from bit 4
      while (counter <= 30) {
            if (data & 1)
                  parity++;
            data >>= 1;
            counter++;
      }
      return parity & 1;
}

static void set_ac3_unlocked(struct cm_state *s, unsigned rate)
{
      if (!(s->capability & CAN_AC3))
            return;
      /* enable AC3 */
      if (rate && rate != 44100)
            rate = 48000;
      if (rate == 48000 || rate == 44100) {
            // mute DAC
            maskb(s->iobase + CODEC_CMI_MIXER1, ~0, WSMUTE);
            if (s->chip_version >= 39)
                  maskb(s->iobase + CODEC_CMI_MISC_CTRL, ~0, MUTECH1);
            // AC3EN for 039, 0x04
            if (s->chip_version >= 39) {
                  maskb(s->iobase + CODEC_CMI_MISC_CTRL + 2, ~0, AC3_EN);
                  if (s->chip_version == 55)
                        maskb(s->iobase + CODEC_CMI_SPDIF_CTRL, ~2, 0);
            // AC3EN for 037, 0x10
            } else if (s->chip_version == 37)
                  maskb(s->iobase + CODEC_CMI_CHFORMAT + 2, ~0, 0x10);
            if (s->capability & CAN_AC3_HW) {
                  // SPD24SEL for 039, 0x20, but cannot be set
                  if (s->chip_version == 39)
                        maskb(s->iobase + CODEC_CMI_CHFORMAT + 2, ~0, SPD24SEL);
                  // SPD24SEL for 037, 0x02
                  else if (s->chip_version == 37)
                        maskb(s->iobase + CODEC_CMI_CHFORMAT + 2, ~0, 0x02);
                  if (s->chip_version >= 39)
                        maskb(s->iobase + CODEC_CMI_MIXER1, ~CDPLAY, 0);

                  s->status |= DO_AC3_HW;
             } else {
                  // SPD32SEL for 037 & 039
                  maskb(s->iobase + CODEC_CMI_MISC_CTRL + 2, ~0, SPD32SEL);
                  // set 176K sample rate to fix 033 HW bug
                  if (s->chip_version == 33) {
                        if (rate == 48000)
                              maskb(s->iobase + CODEC_CMI_CHFORMAT + 1, ~0, 0x08);
                        else
                              maskb(s->iobase + CODEC_CMI_CHFORMAT + 1, ~0x08, 0);
                  }
                  s->status |= DO_AC3_SW;
            }
      } else {
            maskb(s->iobase + CODEC_CMI_MIXER1, ~WSMUTE, 0);
            if (s->chip_version >= 39)
                  maskb(s->iobase + CODEC_CMI_MISC_CTRL, ~MUTECH1, 0);
            maskb(s->iobase + CODEC_CMI_CHFORMAT + 2, ~(SPD24SEL|0x12), 0);
            maskb(s->iobase + CODEC_CMI_MISC_CTRL + 2, ~(SPD32SEL|AC3_EN), 0);
            if (s->chip_version == 33)
                  maskb(s->iobase + CODEC_CMI_CHFORMAT + 1, ~0x08, 0);
            if (s->chip_version >= 39)
                  maskb(s->iobase + CODEC_CMI_MIXER1, ~0, CDPLAY);
            s->status &= ~DO_AC3;
      }
      s->spdif_counter = 0;
}

static void set_line_as_rear(struct cm_state *s, int use_line_as_rear)
{
      if (!(s->capability & CAN_LINE_AS_REAR))
            return;
      if (use_line_as_rear) {
            maskb(s->iobase + CODEC_CMI_MIXER1, ~0, SPK4);
            s->status |= DO_LINE_AS_REAR;
      } else {
            maskb(s->iobase + CODEC_CMI_MIXER1, ~SPK4, 0);
            s->status &= ~DO_LINE_AS_REAR;
      }
}

static void set_line_as_bass(struct cm_state *s, int use_line_as_bass)
{
      if (!(s->capability & CAN_LINE_AS_BASS))
            return;
      if (use_line_as_bass) {
            maskb(s->iobase + CODEC_CMI_LEGACY_CTRL + 1, ~0, CB2LIN);
            s->status |= DO_LINE_AS_BASS;
      } else {
            maskb(s->iobase + CODEC_CMI_LEGACY_CTRL + 1, ~CB2LIN, 0);
            s->status &= ~DO_LINE_AS_BASS;
      }
}

static void set_mic_as_bass(struct cm_state *s, int use_mic_as_bass)
{
      if (!(s->capability & CAN_MIC_AS_BASS))
            return;
      if (use_mic_as_bass) {
            maskb(s->iobase + CODEC_CMI_MISC, ~0, 0x04);
            s->status |= DO_MIC_AS_BASS;
      } else {
            maskb(s->iobase + CODEC_CMI_MISC, ~0x04, 0);
            s->status &= ~DO_MIC_AS_BASS;
      }
}

static void set_hw_copy(struct cm_state *s, int hw_copy)
{
      if (s->max_channels > 2 && hw_copy)
            maskb(s->iobase + CODEC_CMI_MISC_CTRL + 3, ~0, N4SPK3D);
      else
            maskb(s->iobase + CODEC_CMI_MISC_CTRL + 3, ~N4SPK3D, 0);
}

static void set_ac3(struct cm_state *s, unsigned rate)
{
      unsigned long flags;

      spin_lock_irqsave(&s->lock, flags);
      set_spdifout_unlocked(s, rate);
      set_ac3_unlocked(s, rate);
      spin_unlock_irqrestore(&s->lock, flags);
}

static int trans_ac3(struct cm_state *s, void *dest, const char __user *source, int size)
{
      int   i = size / 2;
      unsigned long data;
      unsigned short data16;
      unsigned long *dst = (unsigned long *) dest;
      unsigned short __user *src = (unsigned short __user *)source;
      int err;

      do {
            if ((err = __get_user(data16, src++)))
                  return err;
            data = (unsigned long)le16_to_cpu(data16);
            data <<= 12;                  // ok for 16-bit data
            if (s->spdif_counter == 2 || s->spdif_counter == 3)
                  data |= 0x40000000;     // indicate AC-3 raw data
            if (parity(data))
                  data |= 0x80000000;     // parity
            if (s->spdif_counter == 0)
                  data |= 3;        // preamble 'M'
            else if (s->spdif_counter & 1)
                  data |= 5;        // odd, 'W'
            else
                  data |= 9;        // even, 'M'
            *dst++ = cpu_to_le32(data);
            s->spdif_counter++;
            if (s->spdif_counter == 384)
                  s->spdif_counter = 0;
      } while (--i);

      return 0;
}

static void set_adc_rate_unlocked(struct cm_state *s, unsigned rate)
{
      unsigned char freq = 4;
      int   i;

      if (rate > 48000)
            rate = 48000;
      if (rate < 8000)
            rate = 8000;
      for (i = 0; i < sizeof(rate_lookup) / sizeof(rate_lookup[0]); i++) {
            if (rate > rate_lookup[i].lower && rate <= rate_lookup[i].upper) {
                  rate = rate_lookup[i].rate;
                  freq = rate_lookup[i].freq;
                  break;
            }
      }
      s->rateadc = rate;
      freq <<= CM_FREQ_ADCSHIFT;

      maskb(s->iobase + CODEC_CMI_FUNCTRL1 + 1, ~ASFC, freq);
}

static void set_adc_rate(struct cm_state *s, unsigned rate)
{
      unsigned long flags;
      unsigned char freq = 4;
      int   i;

      if (rate > 48000)
            rate = 48000;
      if (rate < 8000)
            rate = 8000;
      for (i = 0; i < sizeof(rate_lookup) / sizeof(rate_lookup[0]); i++) {
            if (rate > rate_lookup[i].lower && rate <= rate_lookup[i].upper) {
                  rate = rate_lookup[i].rate;
                  freq = rate_lookup[i].freq;
                  break;
            }
      }
      s->rateadc = rate;
      freq <<= CM_FREQ_ADCSHIFT;

      spin_lock_irqsave(&s->lock, flags);
      maskb(s->iobase + CODEC_CMI_FUNCTRL1 + 1, ~ASFC, freq);
      spin_unlock_irqrestore(&s->lock, flags);
}

static void set_dac_rate(struct cm_state *s, unsigned rate)
{
      unsigned long flags;
      unsigned char freq = 4;
      int   i;

      if (rate > 48000)
            rate = 48000;
      if (rate < 8000)
            rate = 8000;
      for (i = 0; i < sizeof(rate_lookup) / sizeof(rate_lookup[0]); i++) {
            if (rate > rate_lookup[i].lower && rate <= rate_lookup[i].upper) {
                  rate = rate_lookup[i].rate;
                  freq = rate_lookup[i].freq;
                  break;
            }
      }
      s->ratedac = rate;
      freq <<= CM_FREQ_DACSHIFT;

      spin_lock_irqsave(&s->lock, flags);
      maskb(s->iobase + CODEC_CMI_FUNCTRL1 + 1, ~DSFC, freq);
      spin_unlock_irqrestore(&s->lock, flags);

      if (s->curr_channels <= 2 && spdif_out)
            set_spdifout(s, rate);
      if (s->status & DO_DUAL_DAC)
            set_dac1_rate(s, rate);
}

/* --------------------------------------------------------------------- */
static inline void reset_adc(struct cm_state *s)
{
      /* reset bus master */
      outb(s->enable | RSTADC, s->iobase + CODEC_CMI_FUNCTRL0 + 2);
      udelay(10);
      outb(s->enable & ~RSTADC, s->iobase + CODEC_CMI_FUNCTRL0 + 2);
}

static inline void reset_dac(struct cm_state *s)
{
      /* reset bus master */
      outb(s->enable | RSTDAC, s->iobase + CODEC_CMI_FUNCTRL0 + 2);
      udelay(10);
      outb(s->enable & ~RSTDAC, s->iobase + CODEC_CMI_FUNCTRL0 + 2);
      if (s->status & DO_DUAL_DAC)
            reset_adc(s);
}

static inline void pause_adc(struct cm_state *s)
{
      maskb(s->iobase + CODEC_CMI_FUNCTRL0, ~0, PAUSEADC);
}

static inline void pause_dac(struct cm_state *s)
{
      maskb(s->iobase + CODEC_CMI_FUNCTRL0, ~0, PAUSEDAC);
      if (s->status & DO_DUAL_DAC)
            pause_adc(s);
}

static inline void disable_adc(struct cm_state *s)
{
      /* disable channel */
      s->enable &= ~ENADC;
      outb(s->enable, s->iobase + CODEC_CMI_FUNCTRL0 + 2);
      reset_adc(s);
}

static inline void disable_dac(struct cm_state *s)
{
      /* disable channel */
      s->enable &= ~ENDAC;
      outb(s->enable, s->iobase + CODEC_CMI_FUNCTRL0 + 2);
      reset_dac(s);
      if (s->status & DO_DUAL_DAC)
            disable_adc(s);
}

static inline void enable_adc(struct cm_state *s)
{
      if (!(s->enable & ENADC)) {
            /* enable channel */
            s->enable |= ENADC;
            outb(s->enable, s->iobase + CODEC_CMI_FUNCTRL0 + 2);
      }
      maskb(s->iobase + CODEC_CMI_FUNCTRL0, ~PAUSEADC, 0);
}

static inline void enable_dac_unlocked(struct cm_state *s)
{
      if (!(s->enable & ENDAC)) {
            /* enable channel */
            s->enable |= ENDAC;
            outb(s->enable, s->iobase + CODEC_CMI_FUNCTRL0 + 2);
      }
      maskb(s->iobase + CODEC_CMI_FUNCTRL0, ~PAUSEDAC, 0);

      if (s->status & DO_DUAL_DAC)
            enable_adc(s);
}

static inline void stop_adc_unlocked(struct cm_state *s)
{
      if (s->enable & ENADC) {
            /* disable interrupt */
            maskb(s->iobase + CODEC_CMI_INT_HLDCLR + 2, ~ENADCINT, 0);
            disable_adc(s);
      }
}

static inline void stop_adc(struct cm_state *s)
{
      unsigned long flags;

      spin_lock_irqsave(&s->lock, flags);
      stop_adc_unlocked(s);
      spin_unlock_irqrestore(&s->lock, flags);

}

static inline void stop_dac_unlocked(struct cm_state *s)
{
      if (s->enable & ENDAC) {
            /* disable interrupt */
            maskb(s->iobase + CODEC_CMI_INT_HLDCLR + 2, ~ENDACINT, 0);
            disable_dac(s);
      }
      if (s->status & DO_DUAL_DAC)
            stop_dac1_unlocked(s);
}

static inline void stop_dac(struct cm_state *s)
{
      unsigned long flags;

      spin_lock_irqsave(&s->lock, flags);
      stop_dac_unlocked(s);
      spin_unlock_irqrestore(&s->lock, flags);
}

static inline void start_adc_unlocked(struct cm_state *s)
{
      if ((s->dma_adc.mapped || s->dma_adc.count < (signed)(s->dma_adc.dmasize - 2*s->dma_adc.fragsize))
          && s->dma_adc.ready) {
            /* enable interrupt */
            maskb(s->iobase + CODEC_CMI_INT_HLDCLR + 2, ~0, ENADCINT);
            enable_adc(s);
      }
}

static void start_adc(struct cm_state *s)
{
      unsigned long flags;

      spin_lock_irqsave(&s->lock, flags);
      start_adc_unlocked(s);
      spin_unlock_irqrestore(&s->lock, flags);
}

static void start_dac1_unlocked(struct cm_state *s)
{
      if ((s->dma_adc.mapped || s->dma_adc.count > 0) && s->dma_adc.ready) {
            /* enable interrupt */
            maskb(s->iobase + CODEC_CMI_INT_HLDCLR + 2, ~0, ENADCINT);
            enable_dac_unlocked(s);
      }
}

static void start_dac_unlocked(struct cm_state *s)
{
      if ((s->dma_dac.mapped || s->dma_dac.count > 0) && s->dma_dac.ready) {
            /* enable interrupt */
            maskb(s->iobase + CODEC_CMI_INT_HLDCLR + 2, ~0, ENDACINT);
            enable_dac_unlocked(s);
      }
      if (s->status & DO_DUAL_DAC)
            start_dac1_unlocked(s);
}

static void start_dac(struct cm_state *s)
{
      unsigned long flags;

      spin_lock_irqsave(&s->lock, flags);
      start_dac_unlocked(s);
      spin_unlock_irqrestore(&s->lock, flags);
}

static int prog_dmabuf(struct cm_state *s, unsigned rec);

static int set_dac_channels(struct cm_state *s, int channels)
{
      unsigned long flags;
      static unsigned int fmmute = 0;

      spin_lock_irqsave(&s->lock, flags);

      if ((channels > 2) && (channels <= s->max_channels)
       && (((s->fmt >> CM_CFMT_DACSHIFT) & CM_CFMT_MASK) == (CM_CFMT_STEREO | CM_CFMT_16BIT))) {
          set_spdifout_unlocked(s, 0);
          if (s->capability & CAN_MULTI_CH_HW) {
            // NXCHG
            maskb(s->iobase + CODEC_CMI_LEGACY_CTRL + 3, ~0, NXCHG);
            // CHB3D or CHB3D5C
                  maskb(s->iobase + CODEC_CMI_CHFORMAT + 3, ~(CHB3D5C|CHB3D), channels > 4 ? CHB3D5C : CHB3D);
            // CHB3D6C
            maskb(s->iobase + CODEC_CMI_LEGACY_CTRL + 1, ~CHB3D6C, channels == 6 ? CHB3D6C : 0);
            // ENCENTER
            maskb(s->iobase + CODEC_CMI_MISC_CTRL, ~ENCENTER, channels == 6 ? ENCENTER : 0);
            s->status |= DO_MULTI_CH_HW;
          } else if (s->capability & CAN_DUAL_DAC) {
            unsigned char fmtm = ~0, fmts = 0;
            ssize_t ret;

            // ENDBDAC, turn on double DAC mode
            // XCHGDAC, CH0 -> back, CH1->front
            maskb(s->iobase + CODEC_CMI_MISC_CTRL + 2, ~0, ENDBDAC|XCHGDAC);
            // mute FM
            fmmute = inb(s->iobase + CODEC_CMI_MIXER1) & FMMUTE;
            maskb(s->iobase + CODEC_CMI_MIXER1, ~0, FMMUTE);
            s->status |= DO_DUAL_DAC;
            // prepare secondary buffer
            spin_unlock_irqrestore(&s->lock, flags);
            ret = prog_dmabuf(s, 1);
            if (ret) return ret;
            spin_lock_irqsave(&s->lock, flags);

            // copy the hw state
            fmtm &= ~((CM_CFMT_STEREO | CM_CFMT_16BIT) << CM_CFMT_DACSHIFT);
            fmtm &= ~((CM_CFMT_STEREO | CM_CFMT_16BIT) << CM_CFMT_ADCSHIFT);
            // the HW only support 16-bit stereo
            fmts |= CM_CFMT_16BIT << CM_CFMT_DACSHIFT;
            fmts |= CM_CFMT_16BIT << CM_CFMT_ADCSHIFT;
            fmts |= CM_CFMT_STEREO << CM_CFMT_DACSHIFT;
            fmts |= CM_CFMT_STEREO << CM_CFMT_ADCSHIFT;

            set_fmt_unlocked(s, fmtm, fmts);
            set_adc_rate_unlocked(s, s->ratedac);
          }
          // disable 4 speaker mode (analog duplicate)
          set_hw_copy(s, 0);
          s->curr_channels = channels;

          // enable jack redirect
          set_line_as_rear(s, use_line_as_rear);
          if (channels > 4) {
                set_line_as_bass(s, use_line_as_bass);
                set_mic_as_bass(s, use_mic_as_bass);
          }
      } else {
          if (s->status & DO_MULTI_CH_HW) {
            maskb(s->iobase + CODEC_CMI_LEGACY_CTRL + 3, ~NXCHG, 0);
            maskb(s->iobase + CODEC_CMI_CHFORMAT + 3, ~(CHB3D5C|CHB3D), 0);
            maskb(s->iobase + CODEC_CMI_LEGACY_CTRL + 1, ~CHB3D6C, 0);
          } else if (s->status & DO_DUAL_DAC) {
            maskb(s->iobase + CODEC_CMI_MISC_CTRL + 2, ~ENDBDAC, 0);
            maskb(s->iobase + CODEC_CMI_MIXER1, ~FMMUTE, fmmute);
          }
          // enable 4 speaker mode (analog duplicate)
          set_hw_copy(s, hw_copy);
          s->status &= ~DO_MULTI_CH;
          s->curr_channels = s->fmt & (CM_CFMT_STEREO << CM_CFMT_DACSHIFT) ? 2 : 1;
          // disable jack redirect
          set_line_as_rear(s, hw_copy ? use_line_as_rear : 0);
          set_line_as_bass(s, 0);
          set_mic_as_bass(s, 0);
      }
      spin_unlock_irqrestore(&s->lock, flags);
      return s->curr_channels;
}

/* --------------------------------------------------------------------- */

#define DMABUF_DEFAULTORDER (16-PAGE_SHIFT)
#define DMABUF_MINORDER 1

static void dealloc_dmabuf(struct cm_state *s, struct dmabuf *db)
{
      struct page *pstart, *pend;

      if (db->rawbuf) {
            /* undo marking the pages as reserved */
            pend = virt_to_page(db->rawbuf + (PAGE_SIZE << db->buforder) - 1);
            for (pstart = virt_to_page(db->rawbuf); pstart <= pend; pstart++)
                  ClearPageReserved(pstart);
            pci_free_consistent(s->dev, PAGE_SIZE << db->buforder, db->rawbuf, db->dmaaddr);
      }
      db->rawbuf = NULL;
      db->mapped = db->ready = 0;
}

/* Ch1 is used for playback, Ch0 is used for recording */

static int prog_dmabuf(struct cm_state *s, unsigned rec)
{
      struct dmabuf *db = rec ? &s->dma_adc : &s->dma_dac;
      unsigned rate = rec ? s->rateadc : s->ratedac;
      int order;
      unsigned bytepersec;
      unsigned bufs;
      struct page *pstart, *pend;
      unsigned char fmt;
      unsigned long flags;

      fmt = s->fmt;
      if (rec) {
            stop_adc(s);
            fmt >>= CM_CFMT_ADCSHIFT;
      } else {
            stop_dac(s);
            fmt >>= CM_CFMT_DACSHIFT;
      }

      fmt &= CM_CFMT_MASK;
      db->hwptr = db->swptr = db->total_bytes = db->count = db->error = db->endcleared = 0;
      if (!db->rawbuf) {
            db->ready = db->mapped = 0;
            for (order = DMABUF_DEFAULTORDER; order >= DMABUF_MINORDER; order--)
                  if ((db->rawbuf = pci_alloc_consistent(s->dev, PAGE_SIZE << order, &db->dmaaddr)))
                        break;
            if (!db->rawbuf || !db->dmaaddr)
                  return -ENOMEM;
            db->buforder = order;
            /* now mark the pages as reserved; otherwise remap_pfn_range doesn't do what we want */
            pend = virt_to_page(db->rawbuf + (PAGE_SIZE << db->buforder) - 1);
            for (pstart = virt_to_page(db->rawbuf); pstart <= pend; pstart++)
                  SetPageReserved(pstart);
      }
      bytepersec = rate << sample_shift[fmt];
      bufs = PAGE_SIZE << db->buforder;
      if (db->ossfragshift) {
            if ((1000 << db->ossfragshift) < bytepersec)
                  db->fragshift = ld2(bytepersec/1000);
            else
                  db->fragshift = db->ossfragshift;
      } else {
            db->fragshift = ld2(bytepersec/100/(db->subdivision ? db->subdivision : 1));
            if (db->fragshift < 3)
                  db->fragshift = 3;
      }
      db->numfrag = bufs >> db->fragshift;
      while (db->numfrag < 4 && db->fragshift > 3) {
            db->fragshift--;
            db->numfrag = bufs >> db->fragshift;
      }
      db->fragsize = 1 << db->fragshift;
      if (db->ossmaxfrags >= 4 && db->ossmaxfrags < db->numfrag)
            db->numfrag = db->ossmaxfrags;
      /* to make fragsize >= 4096 */
      db->fragsamples = db->fragsize >> sample_shift[fmt];
      db->dmasize = db->numfrag << db->fragshift;
      db->dmasamples = db->dmasize >> sample_shift[fmt];
      memset(db->rawbuf, (fmt & CM_CFMT_16BIT) ? 0 : 0x80, db->dmasize);
      spin_lock_irqsave(&s->lock, flags);
      if (rec) {
            if (s->status & DO_DUAL_DAC)
                set_dmadac1(s, db->dmaaddr, db->dmasize >> sample_shift[fmt]);
            else
                set_dmaadc(s, db->dmaaddr, db->dmasize >> sample_shift[fmt]);
            /* program sample counts */
            set_countdac(s, db->fragsamples);
      } else {
            set_dmadac(s, db->dmaaddr, db->dmasize >> sample_shift[fmt]);
            /* program sample counts */
            set_countdac(s, db->fragsamples);
      }
      spin_unlock_irqrestore(&s->lock, flags);
      db->enabled = 1;
      db->ready = 1;
      return 0;
}

static inline void clear_advance(struct cm_state *s)
{
      unsigned char c = (s->fmt & (CM_CFMT_16BIT << CM_CFMT_DACSHIFT)) ? 0 : 0x80;
      unsigned char *buf = s->dma_dac.rawbuf;
      unsigned char *buf1 = s->dma_adc.rawbuf;
      unsigned bsize = s->dma_dac.dmasize;
      unsigned bptr = s->dma_dac.swptr;
      unsigned len = s->dma_dac.fragsize;

      if (bptr + len > bsize) {
            unsigned x = bsize - bptr;
            memset(buf + bptr, c, x);
            if (s->status & DO_DUAL_DAC)
                  memset(buf1 + bptr, c, x);
            bptr = 0;
            len -= x;
      }
      memset(buf + bptr, c, len);
      if (s->status & DO_DUAL_DAC)
            memset(buf1 + bptr, c, len);
}

/* call with spinlock held! */
static void cm_update_ptr(struct cm_state *s)
{
      unsigned hwptr;
      int diff;

      /* update ADC pointer */
      if (s->dma_adc.ready) {
          if (s->status & DO_DUAL_DAC) {
                /* the dac part will finish for this */
          } else {
            hwptr = get_dmaadc(s) % s->dma_adc.dmasize;
            diff = (s->dma_adc.dmasize + hwptr - s->dma_adc.hwptr) % s->dma_adc.dmasize;
            s->dma_adc.hwptr = hwptr;
            s->dma_adc.total_bytes += diff;
            s->dma_adc.count += diff;
            if (s->dma_adc.count >= (signed)s->dma_adc.fragsize)
                  wake_up(&s->dma_adc.wait);
            if (!s->dma_adc.mapped) {
                  if (s->dma_adc.count > (signed)(s->dma_adc.dmasize - ((3 * s->dma_adc.fragsize) >> 1))) {
                        pause_adc(s);
                        s->dma_adc.error++;
                  }
            }
          }
      }
      /* update DAC pointer */
      if (s->dma_dac.ready) {
            hwptr = get_dmadac(s) % s->dma_dac.dmasize;
            diff = (s->dma_dac.dmasize + hwptr - s->dma_dac.hwptr) % s->dma_dac.dmasize;
            s->dma_dac.hwptr = hwptr;
            s->dma_dac.total_bytes += diff;
            if (s->status & DO_DUAL_DAC) {
                  s->dma_adc.hwptr = hwptr;
                  s->dma_adc.total_bytes += diff;
            }
            if (s->dma_dac.mapped) {
                  s->dma_dac.count += diff;
                  if (s->status & DO_DUAL_DAC)
                        s->dma_adc.count += diff;
                  if (s->dma_dac.count >= (signed)s->dma_dac.fragsize)
                        wake_up(&s->dma_dac.wait);
            } else {
                  s->dma_dac.count -= diff;
                  if (s->status & DO_DUAL_DAC)
                        s->dma_adc.count -= diff;
                  if (s->dma_dac.count <= 0) {
                        pause_dac(s);
                        s->dma_dac.error++;
                  } else if (s->dma_dac.count <= (signed)s->dma_dac.fragsize && !s->dma_dac.endcleared) {
                        clear_advance(s);
                        s->dma_dac.endcleared = 1;
                        if (s->status & DO_DUAL_DAC)
                              s->dma_adc.endcleared = 1;
                  }
                  if (s->dma_dac.count + (signed)s->dma_dac.fragsize <= (signed)s->dma_dac.dmasize)
                        wake_up(&s->dma_dac.wait);
            }
      }
}

static irqreturn_t cm_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
        struct cm_state *s = (struct cm_state *)dev_id;
      unsigned int intsrc, intstat;
      unsigned char mask = 0;

      /* fastpath out, to ease interrupt sharing */
      intsrc = inl(s->iobase + CODEC_CMI_INT_STATUS);
      if (!(intsrc & 0x80000000))
            return IRQ_NONE;
      spin_lock(&s->lock);
      intstat = inb(s->iobase + CODEC_CMI_INT_HLDCLR + 2);
      /* acknowledge interrupt */
      if (intsrc & ADCINT)
            mask |= ENADCINT;
      if (intsrc & DACINT)
            mask |= ENDACINT;
      outb(intstat & ~mask, s->iobase + CODEC_CMI_INT_HLDCLR + 2);
      outb(intstat | mask, s->iobase + CODEC_CMI_INT_HLDCLR + 2);
      cm_update_ptr(s);
      spin_unlock(&s->lock);
#ifdef CONFIG_SOUND_CMPCI_MIDI
      if (intsrc & 0x00010000) {    // UART interrupt
            if (s->midi_devc && intchk_mpu401((void *)s->midi_devc))
                  mpuintr(irq, (void *)s->midi_devc, regs);
            else
                  inb(s->iomidi);// dummy read
      }
#endif
      return IRQ_HANDLED;
}

/* --------------------------------------------------------------------- */

static const char invalid_magic[] = KERN_CRIT "cmpci: invalid magic value\n";

#define VALIDATE_STATE(s)                         \
({                                                \
      if (!(s) || (s)->magic != CM_MAGIC) { \
            printk(invalid_magic);            \
            return -ENXIO;                    \
      }                                         \
})

/* --------------------------------------------------------------------- */

#define MT_4          1
#define MT_5MUTE      2
#define MT_4MUTEMONO  3
#define MT_6MUTE      4
#define MT_5MUTEMONO  5

static const struct {
      unsigned left;
      unsigned right;
      unsigned type;
      unsigned rec;
      unsigned play;
} mixtable[SOUND_MIXER_NRDEVICES] = {
      [SOUND_MIXER_CD]     = { DSP_MIX_CDVOLIDX_L,     DSP_MIX_CDVOLIDX_R,     MT_5MUTE,     0x04, 0x06 },
      [SOUND_MIXER_LINE]   = { DSP_MIX_LINEVOLIDX_L,   DSP_MIX_LINEVOLIDX_R,   MT_5MUTE,     0x10, 0x18 },
      [SOUND_MIXER_MIC]    = { DSP_MIX_MICVOLIDX,      DSP_MIX_MICVOLIDX,      MT_5MUTEMONO, 0x01, 0x01 },
      [SOUND_MIXER_SYNTH]  = { DSP_MIX_FMVOLIDX_L,     DSP_MIX_FMVOLIDX_R,     MT_5MUTE,     0x40, 0x00 },
      [SOUND_MIXER_VOLUME] = { DSP_MIX_MASTERVOLIDX_L, DSP_MIX_MASTERVOLIDX_R, MT_5MUTE,     0x00, 0x00 },
      [SOUND_MIXER_PCM]    = { DSP_MIX_VOICEVOLIDX_L,  DSP_MIX_VOICEVOLIDX_R,  MT_5MUTE,     0x00, 0x00 },
      [SOUND_MIXER_LINE1]  = { DSP_MIX_AUXVOL_L,       DSP_MIX_AUXVOL_R,       MT_5MUTE,     0x80, 0x60 },
      [SOUND_MIXER_SPEAKER]= { DSP_MIX_SPKRVOLIDX,     DSP_MIX_SPKRVOLIDX,     MT_5MUTEMONO, 0x00, 0x01 }
};

static const unsigned char volidx[SOUND_MIXER_NRDEVICES] =
{
      [SOUND_MIXER_CD]     = 1,
      [SOUND_MIXER_LINE]   = 2,
      [SOUND_MIXER_MIC]    = 3,
      [SOUND_MIXER_SYNTH]  = 4,
      [SOUND_MIXER_VOLUME] = 5,
      [SOUND_MIXER_PCM]    = 6,
      [SOUND_MIXER_LINE1]  = 7,
      [SOUND_MIXER_SPEAKER]= 8
};

static unsigned mixer_outmask(struct cm_state *s)
{
      unsigned long flags;
      int i, j, k;

      spin_lock_irqsave(&s->lock, flags);
      j = rdmixer(s, DSP_MIX_OUTMIXIDX);
      spin_unlock_irqrestore(&s->lock, flags);
      for (k = i = 0; i < SOUND_MIXER_NRDEVICES; i++)
            if (j & mixtable[i].play)
                  k |= 1 << i;
      return k;
}

static unsigned mixer_recmask(struct cm_state *s)
{
      unsigned long flags;
      int i, j, k;

      spin_lock_irqsave(&s->lock, flags);
      j = rdmixer(s, DSP_MIX_ADCMIXIDX_L);
      spin_unlock_irqrestore(&s->lock, flags);
      for (k = i = 0; i < SOUND_MIXER_NRDEVICES; i++)
            if (j & mixtable[i].rec)
                  k |= 1 << i;
      return k;
}

static int mixer_ioctl(struct cm_state *s, unsigned int cmd, unsigned long arg)
{
      unsigned long flags;
      int i, val, j;
      unsigned char l, r, rl, rr;
      void __user *argp = (void __user *)arg;
      int __user *p = argp;

      VALIDATE_STATE(s);
        if (cmd == SOUND_MIXER_INFO) {
            mixer_info info;
            memset(&info, 0, sizeof(info));
            strlcpy(info.id, "cmpci", sizeof(info.id));
            strlcpy(info.name, "C-Media PCI", sizeof(info.name));
            info.modify_counter = s->mix.modcnt;
            if (copy_to_user(argp, &info, sizeof(info)))
                  return -EFAULT;
            return 0;
      }
      if (cmd == SOUND_OLD_MIXER_INFO) {
            _old_mixer_info info;
            memset(&info, 0, sizeof(info));
            strlcpy(info.id, "cmpci", sizeof(info.id));
            strlcpy(info.name, "C-Media cmpci", sizeof(info.name));
            if (copy_to_user(argp, &info, sizeof(info)))
                  return -EFAULT;
            return 0;
      }
      if (cmd == OSS_GETVERSION)
            return put_user(SOUND_VERSION, p);
      if (_IOC_TYPE(cmd) != 'M' || _SIOC_SIZE(cmd) != sizeof(int))
                return -EINVAL;
        if (_SIOC_DIR(cmd) == _SIOC_READ) {
                switch (_IOC_NR(cmd)) {
                case SOUND_MIXER_RECSRC: /* Arg contains a bit for each recording source */
                  val = mixer_recmask(s);
                  return put_user(val, p);

                case SOUND_MIXER_OUTSRC: /* Arg contains a bit for each recording source */
                  val = mixer_outmask(s);
                  return put_user(val, p);

                case SOUND_MIXER_DEVMASK: /* Arg contains a bit for each supported device */
                  for (val = i = 0; i < SOUND_MIXER_NRDEVICES; i++)
                        if (mixtable[i].type)
                              val |= 1 << i;
                  return put_user(val, p);

                case SOUND_MIXER_RECMASK: /* Arg contains a bit for each supported recording source */
                  for (val = i = 0; i < SOUND_MIXER_NRDEVICES; i++)
                        if (mixtable[i].rec)
                              val |= 1 << i;
                  return put_user(val, p);

                case SOUND_MIXER_OUTMASK: /* Arg contains a bit for each supported recording source */
                  for (val = i = 0; i < SOUND_MIXER_NRDEVICES; i++)
                        if (mixtable[i].play)
                              val |= 1 << i;
                  return put_user(val, p);

                 case SOUND_MIXER_STEREODEVS: /* Mixer channels supporting stereo */
                  for (val = i = 0; i < SOUND_MIXER_NRDEVICES; i++)
                        if (mixtable[i].type && mixtable[i].type != MT_4MUTEMONO)
                              val |= 1 << i;
                  return put_user(val, p);

                case SOUND_MIXER_CAPS:
                  return put_user(0, p);

            default:
                  i = _IOC_NR(cmd);
                        if (i >= SOUND_MIXER_NRDEVICES || !mixtable[i].type)
                                return -EINVAL;
                  if (!volidx[i])
                        return -EINVAL;
                  return put_user(s->mix.vol[volidx[i]-1], p);
            }
      }
        if (_SIOC_DIR(cmd) != (_SIOC_READ|_SIOC_WRITE))
            return -EINVAL;
      s->mix.modcnt++;
      switch (_IOC_NR(cmd)) {
      case SOUND_MIXER_RECSRC: /* Arg contains a bit for each recording source */
            if (get_user(val, p))
                  return -EFAULT;
            i = hweight32(val);
            for (j = i = 0; i < SOUND_MIXER_NRDEVICES; i++) {
                  if (!(val & (1 << i)))
                        continue;
                  if (!mixtable[i].rec) {
                        val &= ~(1 << i);
                        continue;
                  }
                  j |= mixtable[i].rec;
            }
            spin_lock_irqsave(&s->lock, flags);
            wrmixer(s, DSP_MIX_ADCMIXIDX_L, j);
            wrmixer(s, DSP_MIX_ADCMIXIDX_R, (j & 1) | (j>>1) | (j & 0x80));
            spin_unlock_irqrestore(&s->lock, flags);
            return 0;

      case SOUND_MIXER_OUTSRC: /* Arg contains a bit for each recording source */
            if (get_user(val, p))
                  return -EFAULT;
            for (j = i = 0; i < SOUND_MIXER_NRDEVICES; i++) {
                  if (!(val & (1 << i)))
                        continue;
                  if (!mixtable[i].play) {
                        val &= ~(1 << i);
                        continue;
                  }
                  j |= mixtable[i].play;
            }
            spin_lock_irqsave(&s->lock, flags);
            wrmixer(s, DSP_MIX_OUTMIXIDX, j);
            spin_unlock_irqrestore(&s->lock, flags);
            return 0;

      default:
            i = _IOC_NR(cmd);
            if (i >= SOUND_MIXER_NRDEVICES || !mixtable[i].type)
                  return -EINVAL;
            if (get_user(val, p))
                  return -EFAULT;
            l = val & 0xff;
            r = (val >> 8) & 0xff;
            if (l > 100)
                  l = 100;
            if (r > 100)
                  r = 100;
            spin_lock_irqsave(&s->lock, flags);
            switch (mixtable[i].type) {
            case MT_4:
                  if (l >= 10)
                        l -= 10;
                  if (r >= 10)
                        r -= 10;
                  frobindir(s, mixtable[i].left, 0xf0, l / 6);
                  frobindir(s, mixtable[i].right, 0xf0, l / 6);
                  break;

            case MT_4MUTEMONO:
                  rl = (l < 4 ? 0 : (l - 5) / 3) & 31;
                  rr = (rl >> 2) & 7;
                  wrmixer(s, mixtable[i].left, rl<<3);
                  if (i == SOUND_MIXER_MIC)
                        maskb(s->iobase + CODEC_CMI_MIXER2, ~0x0e, rr<<1);
                  break;

            case MT_5MUTEMONO:
                  rl = l < 4 ? 0 : (l - 5) / 3;
                  wrmixer(s, mixtable[i].left, rl<<3);
                  l = rdmixer(s, DSP_MIX_OUTMIXIDX) & ~mixtable[i].play;
                  r = rl ? mixtable[i].play : 0;
                  wrmixer(s, DSP_MIX_OUTMIXIDX, l | r);
                  /* for recording */
                  if (i == SOUND_MIXER_MIC) {
                        if (s->chip_version >= 37) {
                              rr = rl >> 1;
                              maskb(s->iobase + CODEC_CMI_MIXER2, ~0x0e, (rr&0x07)<<1);
                              frobindir(s, DSP_MIX_EXTENSION, ~0x01, rr>>3);
                        } else {
                              rr = rl >> 2;
                              maskb(s->iobase + CODEC_CMI_MIXER2, ~0x0e, rr<<1);
                        }
                  }
                  break;

            case MT_5MUTE:
                  rl = l < 4 ? 0 : (l - 5) / 3;
                  rr = r < 4 ? 0 : (r - 5) / 3;
                  wrmixer(s, mixtable[i].left, rl<<3);
                  wrmixer(s, mixtable[i].right, rr<<3);
                  l = rdmixer(s, DSP_MIX_OUTMIXIDX);
                  l &= ~mixtable[i].play;
                  r = (rl|rr) ? mixtable[i].play : 0;
                  wrmixer(s, DSP_MIX_OUTMIXIDX, l | r);
                  break;

            case MT_6MUTE:
                  if (l < 6)
                        rl = 0x00;
                  else
                        rl = l * 2 / 3;
                  if (r < 6)
                        rr = 0x00;
                  else
                        rr = r * 2 / 3;
                  wrmixer(s, mixtable[i].left, rl);
                  wrmixer(s, mixtable[i].right, rr);
                  break;
            }
            spin_unlock_irqrestore(&s->lock, flags);

            if (!volidx[i])
                  return -EINVAL;
            s->mix.vol[volidx[i]-1] = val;
            return put_user(s->mix.vol[volidx[i]-1], p);
      }
}

/* --------------------------------------------------------------------- */

static int cm_open_mixdev(struct inode *inode, struct file *file)
{
      int minor = iminor(inode);
      struct list_head *list;
      struct cm_state *s;

      for (list = devs.next; ; list = list->next) {
            if (list == &devs)
                  return -ENODEV;
            s = list_entry(list, struct cm_state, devs);
            if (s->dev_mixer == minor)
                  break;
      }
            VALIDATE_STATE(s);
      file->private_data = s;
      return nonseekable_open(inode, file);
}

static int cm_release_mixdev(struct inode *inode, struct file *file)
{
      struct cm_state *s = (struct cm_state *)file->private_data;

      VALIDATE_STATE(s);
      return 0;
}

static int cm_ioctl_mixdev(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
{
      return mixer_ioctl((struct cm_state *)file->private_data, cmd, arg);
}

static /*const*/ struct file_operations cm_mixer_fops = {
      .owner       = THIS_MODULE,
      .llseek      = no_llseek,
      .ioctl       = cm_ioctl_mixdev,
      .open  = cm_open_mixdev,
      .release = cm_release_mixdev,
};


/* --------------------------------------------------------------------- */

static int drain_dac(struct cm_state *s, int nonblock)
{
      DECLARE_WAITQUEUE(wait, current);
      unsigned long flags;
      int count, tmo;

      if (s->dma_dac.mapped || !s->dma_dac.ready)
            return 0;
        add_wait_queue(&s->dma_dac.wait, &wait);
        for (;;) {
            __set_current_state(TASK_INTERRUPTIBLE);
                spin_lock_irqsave(&s->lock, flags);
            count = s->dma_dac.count;
                spin_unlock_irqrestore(&s->lock, flags);
            if (count <= 0)
                  break;
            if (signal_pending(current))
                        break;
                if (nonblock) {
                        remove_wait_queue(&s->dma_dac.wait, &wait);
                        set_current_state(TASK_RUNNING);
                        return -EBUSY;
                }
            tmo = 3 * HZ * (count + s->dma_dac.fragsize) / 2 / s->ratedac;
            tmo >>= sample_shift[(s->fmt >> CM_CFMT_DACSHIFT) & CM_CFMT_MASK];
            if (!schedule_timeout(tmo + 1))
                  DBG(printk(KERN_DEBUG "cmpci: dma timed out??\n");)
        }
        remove_wait_queue(&s->dma_dac.wait, &wait);
        set_current_state(TASK_RUNNING);
        if (signal_pending(current))
                return -ERESTARTSYS;
        return 0;
}

/* --------------------------------------------------------------------- */

static ssize_t cm_read(struct file *file, char __user *buffer, size_t count, loff_t *ppos)
{
      struct cm_state *s = (struct cm_state *)file->private_data;
      DECLARE_WAITQUEUE(wait, current);
      ssize_t ret;
      unsigned long flags;
      unsigned swptr;
      int cnt;

      VALIDATE_STATE(s);
      if (s->dma_adc.mapped)
            return -ENXIO;
      if (!s->dma_adc.ready && (ret = prog_dmabuf(s, 1)))
            return ret;
      if (!access_ok(VERIFY_WRITE, buffer, count))
            return -EFAULT;
      ret = 0;

        add_wait_queue(&s->dma_adc.wait, &wait);
      while (count > 0) {
            spin_lock_irqsave(&s->lock, flags);
            swptr = s->dma_adc.swptr;
            cnt = s->dma_adc.dmasize-swptr;
            if (s->dma_adc.count < cnt)
                  cnt = s->dma_adc.count;
            if (cnt <= 0)
                  __set_current_state(TASK_INTERRUPTIBLE);
            spin_unlock_irqrestore(&s->lock, flags);
            if (cnt > count)
                  cnt = count;
            if (cnt <= 0) {
                  if (s->dma_adc.enabled)
                        start_adc(s);
                  if (file->f_flags & O_NONBLOCK) {
                        if (!ret)
                              ret = -EAGAIN;
                        goto out;
                  }
                  if (!schedule_timeout(HZ)) {
                        printk(KERN_DEBUG "cmpci: read: chip lockup? dmasz %u fragsz %u count %i hwptr %u swptr %u\n",
                               s->dma_adc.dmasize, s->dma_adc.fragsize, s->dma_adc.count,
                               s->dma_adc.hwptr, s->dma_adc.swptr);
                        spin_lock_irqsave(&s->lock, flags);
                        stop_adc_unlocked(s);
                        set_dmaadc(s, s->dma_adc.dmaaddr, s->dma_adc.dmasamples);
                        /* program sample counts */
                        set_countadc(s, s->dma_adc.fragsamples);
                        s->dma_adc.count = s->dma_adc.hwptr = s->dma_adc.swptr = 0;
                        spin_unlock_irqrestore(&s->lock, flags);
                  }
                  if (signal_pending(current)) {
                        if (!ret)
                              ret = -ERESTARTSYS;
                        goto out;
                  }
                  continue;
            }
            if (s->status & DO_BIGENDIAN_R) {
                  int   i, err;
                  unsigned char *src;
                  char __user *dst = buffer;
                  unsigned char data[2];

                  src = (unsigned char *) (s->dma_adc.rawbuf + swptr);
                  // copy left/right sample at one time
                  for (i = 0; i < cnt / 2; i++) {
                        data[0] = src[1];
                        data[1] = src[0];
                        if ((err = __put_user(data[0], dst++))) {
                              ret = err;
                              goto out;
                        }
                        if ((err = __put_user(data[1], dst++))) {
                              ret = err;
                              goto out;
                        }
                        src += 2;
                  }
            } else if (copy_to_user(buffer, s->dma_adc.rawbuf + swptr, cnt)) {
                  if (!ret)
                        ret = -EFAULT;
                  goto out;
            }
            swptr = (swptr + cnt) % s->dma_adc.dmasize;
            spin_lock_irqsave(&s->lock, flags);
            s->dma_adc.swptr = swptr;
            s->dma_adc.count -= cnt;
            count -= cnt;
            buffer += cnt;
            ret += cnt;
            if (s->dma_adc.enabled)
                  start_adc_unlocked(s);
            spin_unlock_irqrestore(&s->lock, flags);
      }
out:
        remove_wait_queue(&s->dma_adc.wait, &wait);
      set_current_state(TASK_RUNNING);
      return ret;
}

static ssize_t cm_write(struct file *file, const char __user *buffer, size_t count, loff_t *ppos)
{
      struct cm_state *s = (struct cm_state *)file->private_data;
      DECLARE_WAITQUEUE(wait, current);
      ssize_t ret;
      unsigned long flags;
      unsigned swptr;
      int cnt;

      VALIDATE_STATE(s);
      if (s->dma_dac.mapped)
            return -ENXIO;
      if (!s->dma_dac.ready && (ret = prog_dmabuf(s, 0)))
            return ret;
      if (!access_ok(VERIFY_READ, buffer, count))
            return -EFAULT;
      if (s->status & DO_DUAL_DAC) {
            if (s->dma_adc.mapped)
                  return -ENXIO;
            if (!s->dma_adc.ready && (ret = prog_dmabuf(s, 1)))
                  return ret;
      }
      if (!access_ok(VERIFY_READ, buffer, count))
            return -EFAULT;
      ret = 0;

        add_wait_queue(&s->dma_dac.wait, &wait);
      while (count > 0) {
            spin_lock_irqsave(&s->lock, flags);
            if (s->dma_dac.count < 0) {
                  s->dma_dac.count = 0;
                  s->dma_dac.swptr = s->dma_dac.hwptr;
            }
            if (s->status & DO_DUAL_DAC) {
                  s->dma_adc.swptr = s->dma_dac.swptr;
                  s->dma_adc.count = s->dma_dac.count;
                  s->dma_adc.endcleared = s->dma_dac.endcleared;
            }
            swptr = s->dma_dac.swptr;
            cnt = s->dma_dac.dmasize-swptr;
            if (s->status & DO_AC3_SW) {
                  if (s->dma_dac.count + 2 * cnt > s->dma_dac.dmasize)
                        cnt = (s->dma_dac.dmasize - s->dma_dac.count) / 2;
            } else {
                  if (s->dma_dac.count + cnt > s->dma_dac.dmasize)
                        cnt = s->dma_dac.dmasize - s->dma_dac.count;
            }
            if (cnt <= 0)
                  __set_current_state(TASK_INTERRUPTIBLE);
            spin_unlock_irqrestore(&s->lock, flags);
            if (cnt > count)
                  cnt = count;
            if ((s->status & DO_DUAL_DAC) && (cnt > count / 2))
                cnt = count / 2;
            if (cnt <= 0) {
                  if (s->dma_dac.enabled)
                        start_dac(s);
                  if (file->f_flags & O_NONBLOCK) {
                        if (!ret)
                              ret = -EAGAIN;
                        goto out;
                  }
                  if (!schedule_timeout(HZ)) {
                        printk(KERN_DEBUG "cmpci: write: chip lockup? dmasz %u fragsz %u count %i hwptr %u swptr %u\n",
                               s->dma_dac.dmasize, s->dma_dac.fragsize, s->dma_dac.count,
                               s->dma_dac.hwptr, s->dma_dac.swptr);
                        spin_lock_irqsave(&s->lock, flags);
                        stop_dac_unlocked(s);
                        set_dmadac(s, s->dma_dac.dmaaddr, s->dma_dac.dmasamples);
                        /* program sample counts */
                        set_countdac(s, s->dma_dac.fragsamples);
                        s->dma_dac.count = s->dma_dac.hwptr = s->dma_dac.swptr = 0;
                        if (s->status & DO_DUAL_DAC)  {
                              set_dmadac1(s, s->dma_adc.dmaaddr, s->dma_adc.dmasamples);
                              s->dma_adc.count = s->dma_adc.hwptr = s->dma_adc.swptr = 0;
                        }
                        spin_unlock_irqrestore(&s->lock, flags);
                  }
                  if (signal_pending(current)) {
                        if (!ret)
                              ret = -ERESTARTSYS;
                        goto out;
                  }
                  continue;
            }
            if (s->status & DO_AC3_SW) {
                  int err;

                  // clip exceeded data, caught by 033 and 037
                  if (swptr + 2 * cnt > s->dma_dac.dmasize)
                        cnt = (s->dma_dac.dmasize - swptr) / 2;
                  if ((err = trans_ac3(s, s->dma_dac.rawbuf + swptr, buffer, cnt))) {
                        ret = err;
                        goto out;
                  }
                  swptr = (swptr + 2 * cnt) % s->dma_dac.dmasize;
            } else if ((s->status & DO_DUAL_DAC) && (s->status & DO_BIGENDIAN_W)) {
                  int   i, err;
                  const char __user *src = buffer;
                  unsigned char *dst0, *dst1;
                  unsigned char data[8];

                  dst0 = (unsigned char *) (s->dma_dac.rawbuf + swptr);
                  dst1 = (unsigned char *) (s->dma_adc.rawbuf + swptr);
                  // copy left/right sample at one time
                  for (i = 0; i < cnt / 4; i++) {
                        if ((err = __get_user(data[0], src++))) {
                              ret = err;
                              goto out;
                        }
                        if ((err = __get_user(data[1], src++))) {
                              ret = err;
                              goto out;
                        }
                        if ((err = __get_user(data[2], src++))) {
                              ret = err;
                              goto out;
                        }
                        if ((err = __get_user(data[3], src++))) {
                              ret = err;
                              goto out;
                        }
                        if ((err = __get_user(data[4], src++))) {
                              ret = err;
                              goto out;
                        }
                        if ((err = __get_user(data[5], src++))) {
                              ret = err;
                              goto out;
                        }
                        if ((err = __get_user(data[6], src++))) {
                              ret = err;
                              goto out;
                        }
                        if ((err = __get_user(data[7], src++))) {
                              ret = err;
                              goto out;
                        }
                        dst0[0] = data[1];
                        dst0[1] = data[0];
                        dst0[2] = data[3];
                        dst0[3] = data[2];
                        dst1[0] = data[5];
                        dst1[1] = data[4];
                        dst1[2] = data[7];
                        dst1[3] = data[6];
                        dst0 += 4;
                        dst1 += 4;
                  }
                  swptr = (swptr + cnt) % s->dma_dac.dmasize;
            } else if (s->status & DO_DUAL_DAC) {
                  int   i, err;
                  unsigned long __user *src = (unsigned long __user *) buffer;
                  unsigned long *dst0, *dst1;

                  dst0 = (unsigned long *) (s->dma_dac.rawbuf + swptr);
                  dst1 = (unsigned long *) (s->dma_adc.rawbuf + swptr);
                  // copy left/right sample at one time
                  for (i = 0; i < cnt / 4; i++) {
                        if ((err = __get_user(*dst0++, src++))) {
                              ret = err;
                              goto out;
                        }
                        if ((err = __get_user(*dst1++, src++))) {
                              ret = err;
                              goto out;
                        }
                  }
                  swptr = (swptr + cnt) % s->dma_dac.dmasize;
            } else if (s->status & DO_BIGENDIAN_W) {
                  int   i, err;
                  const char __user *src = buffer;
                  unsigned char *dst;
                  unsigned char data[2];

                  dst = (unsigned char *) (s->dma_dac.rawbuf + swptr);
                  // swap hi/lo bytes for each sample
                  for (i = 0; i < cnt / 2; i++) {
                        if ((err = __get_user(data[0], src++))) {
                              ret = err;
                              goto out;
                        }
                        if ((err = __get_user(data[1], src++))) {
                              ret = err;
                              goto out;
                        }
                        dst[0] = data[1];
                        dst[1] = data[0];
                        dst += 2;
                  }
                  swptr = (swptr + cnt) % s->dma_dac.dmasize;
            } else {
                  if (copy_from_user(s->dma_dac.rawbuf + swptr, buffer, cnt)) {
                        if (!ret)
                              ret = -EFAULT;
                        goto out;
                  }
                  swptr = (swptr + cnt) % s->dma_dac.dmasize;
            }
            spin_lock_irqsave(&s->lock, flags);
            s->dma_dac.swptr = swptr;
            s->dma_dac.count += cnt;
            if (s->status & DO_AC3_SW)
                  s->dma_dac.count += cnt;
            s->dma_dac.endcleared = 0;
            spin_unlock_irqrestore(&s->lock, flags);
            count -= cnt;
            buffer += cnt;
            ret += cnt;
            if (s->status & DO_DUAL_DAC) {
                  count -= cnt;
                  buffer += cnt;
                  ret += cnt;
            }
            if (s->dma_dac.enabled)
                  start_dac(s);
      }
out:
        remove_wait_queue(&s->dma_dac.wait, &wait);
      set_current_state(TASK_RUNNING);
      return ret;
}

static unsigned int cm_poll(struct file *file, struct poll_table_struct *wait)
{
      struct cm_state *s = (struct cm_state *)file->private_data;
      unsigned long flags;
      unsigned int mask = 0;

      VALIDATE_STATE(s);
      if (file->f_mode & FMODE_WRITE) {
            if (!s->dma_dac.ready && prog_dmabuf(s, 0))
                  return 0;
            poll_wait(file, &s->dma_dac.wait, wait);
      }
      if (file->f_mode & FMODE_READ) {
            if (!s->dma_adc.ready && prog_dmabuf(s, 1))
                  return 0;
            poll_wait(file, &s->dma_adc.wait, wait);
      }
      spin_lock_irqsave(&s->lock, flags);
      cm_update_ptr(s);
      if (file->f_mode & FMODE_READ) {
            if (s->dma_adc.count >= (signed)s->dma_adc.fragsize)
                  mask |= POLLIN | POLLRDNORM;
      }
      if (file->f_mode & FMODE_WRITE) {
            if (s->dma_dac.mapped) {
                  if (s->dma_dac.count >= (signed)s->dma_dac.fragsize)
                        mask |= POLLOUT | POLLWRNORM;
            } else {
                  if ((signed)s->dma_dac.dmasize >= s->dma_dac.count + (signed)s->dma_dac.fragsize)
                        mask |= POLLOUT | POLLWRNORM;
            }
      }
      spin_unlock_irqrestore(&s->lock, flags);
      return mask;
}

static int cm_mmap(struct file *file, struct vm_area_struct *vma)
{
      struct cm_state *s = (struct cm_state *)file->private_data;
      struct dmabuf *db;
      int ret = -EINVAL;
      unsigned long size;

      VALIDATE_STATE(s);
      lock_kernel();
      if (vma->vm_flags & VM_WRITE) {
            if ((ret = prog_dmabuf(s, 0)) != 0)
                  goto out;
            db = &s->dma_dac;
      } else if (vma->vm_flags & VM_READ) {
            if ((ret = prog_dmabuf(s, 1)) != 0)
                  goto out;
            db = &s->dma_adc;
      } else
            goto out;
      ret = -EINVAL;
      if (vma->vm_pgoff != 0)
            goto out;
      size = vma->vm_end - vma->vm_start;
      if (size > (PAGE_SIZE << db->buforder))
            goto out;
      ret = -EINVAL;
      if (remap_pfn_range(vma, vma->vm_start,
                        virt_to_phys(db->rawbuf) >> PAGE_SHIFT,
                        size, vma->vm_page_prot))
            goto out;
      db->mapped = 1;
      ret = 0;
out:
      unlock_kernel();
      return ret;
}

#define SNDCTL_SPDIF_COPYRIGHT      _SIOW('S',  0, int)       // set/reset S/PDIF copy protection
#define SNDCTL_SPDIF_LOOP     _SIOW('S',  1, int)       // set/reset S/PDIF loop
#define SNDCTL_SPDIF_MONITOR  _SIOW('S',  2, int)       // set S/PDIF monitor
#define SNDCTL_SPDIF_LEVEL    _SIOW('S',  3, int)       // set/reset S/PDIF out level
#define SNDCTL_SPDIF_INV      _SIOW('S',  4, int)       // set/reset S/PDIF in inverse
#define SNDCTL_SPDIF_SEL2     _SIOW('S',  5, int)       // set S/PDIF in #2
#define SNDCTL_SPDIF_VALID    _SIOW('S',  6, int)       // set S/PDIF valid
#define SNDCTL_SPDIFOUT       _SIOW('S',  7, int)       // set S/PDIF out
#define SNDCTL_SPDIFIN        _SIOW('S',  8, int)       // set S/PDIF out

static int cm_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
{
      struct cm_state *s = (struct cm_state *)file->private_data;
      unsigned long flags;
        audio_buf_info abinfo;
        count_info cinfo;
      int val, mapped, ret;
      unsigned char fmtm, fmtd;
      void __user *argp = (void __user *)arg;
      int __user *p = argp;

      VALIDATE_STATE(s);
        mapped = ((file->f_mode & FMODE_WRITE) && s->dma_dac.mapped) ||
            ((file->f_mode & FMODE_READ) && s->dma_adc.mapped);
      switch (cmd) {
      case OSS_GETVERSION:
            return put_user(SOUND_VERSION, p);

      case SNDCTL_DSP_SYNC:
            if (file->f_mode & FMODE_WRITE)
                  return drain_dac(s, 0/*file->f_flags & O_NONBLOCK*/);
            return 0;

      case SNDCTL_DSP_SETDUPLEX:
            return 0;

      case SNDCTL_DSP_GETCAPS:
            return put_user(DSP_CAP_DUPLEX | DSP_CAP_REALTIME | DSP_CAP_TRIGGER | DSP_CAP_MMAP | DSP_CAP_BIND, p);

        case SNDCTL_DSP_RESET:
            if (file->f_mode & FMODE_WRITE) {
                  stop_dac(s);
                  synchronize_irq(s->irq);
                  s->dma_dac.swptr = s->dma_dac.hwptr = s->dma_dac.count = s->dma_dac.total_bytes = 0;
                  if (s->status & DO_DUAL_DAC)
                        s->dma_adc.swptr = s->dma_adc.hwptr = s->dma_adc.count = s->dma_adc.total_bytes = 0;
            }
            if (file->f_mode & FMODE_READ) {
                  stop_adc(s);
                  synchronize_irq(s->irq);
                  s->dma_adc.swptr = s->dma_adc.hwptr = s->dma_adc.count = s->dma_adc.total_bytes = 0;
            }
            return 0;

        case SNDCTL_DSP_SPEED:
            if (get_user(val, p))
                  return -EFAULT;
            if (val >= 0) {
                  if (file->f_mode & FMODE_READ) {
                        spin_lock_irqsave(&s->lock, flags);
                        stop_adc_unlocked(s);
                        s->dma_adc.ready = 0;
                        set_adc_rate_unlocked(s, val);
                        spin_unlock_irqrestore(&s->lock, flags);
                  }
                  if (file->f_mode & FMODE_WRITE) {
                        stop_dac(s);
                        s->dma_dac.ready = 0;
                        if (s->status & DO_DUAL_DAC)
                              s->dma_adc.ready = 0;
                        set_dac_rate(s, val);
                  }
            }
            return put_user((file->f_mode & FMODE_READ) ? s->rateadc : s->ratedac, p);

        case SNDCTL_DSP_STEREO:
            if (get_user(val, p))
                  return -EFAULT;
            fmtd = 0;
            fmtm = ~0;
            if (file->f_mode & FMODE_READ) {
                  stop_adc(s);
                  s->dma_adc.ready = 0;
                  if (val)
                        fmtd |= CM_CFMT_STEREO << CM_CFMT_ADCSHIFT;
                  else
                        fmtm &= ~(CM_CFMT_STEREO << CM_CFMT_ADCSHIFT);
            }
            if (file->f_mode & FMODE_WRITE) {
                  stop_dac(s);
                  s->dma_dac.ready = 0;
                  if (val)
                        fmtd |= CM_CFMT_STEREO << CM_CFMT_DACSHIFT;
                  else
                        fmtm &= ~(CM_CFMT_STEREO << CM_CFMT_DACSHIFT);
                  if (s->status & DO_DUAL_DAC) {
                        s->dma_adc.ready = 0;
                        if (val)
                              fmtd |= CM_CFMT_STEREO << CM_CFMT_ADCSHIFT;
                        else
                              fmtm &= ~(CM_CFMT_STEREO << CM_CFMT_ADCSHIFT);
                  }
            }
            set_fmt(s, fmtm, fmtd);
            return 0;

        case SNDCTL_DSP_CHANNELS:
            if (get_user(val, p))
                  return -EFAULT;
            if (val != 0) {
                  fmtd = 0;
                  fmtm = ~0;
                  if (file->f_mode & FMODE_READ) {
                        stop_adc(s);
                        s->dma_adc.ready = 0;
                        if (val >= 2)
                              fmtd |= CM_CFMT_STEREO << CM_CFMT_ADCSHIFT;
                        else
                              fmtm &= ~(CM_CFMT_STEREO << CM_CFMT_ADCSHIFT);
                  }
                  if (file->f_mode & FMODE_WRITE) {
                        stop_dac(s);
                        s->dma_dac.ready = 0;
                        if (val >= 2)
                              fmtd |= CM_CFMT_STEREO << CM_CFMT_DACSHIFT;
                        else
                              fmtm &= ~(CM_CFMT_STEREO << CM_CFMT_DACSHIFT);
                        if (s->status & DO_DUAL_DAC) {
                              s->dma_adc.ready = 0;
                              if (val >= 2)
                                    fmtd |= CM_CFMT_STEREO << CM_CFMT_ADCSHIFT;
                              else
                                    fmtm &= ~(CM_CFMT_STEREO << CM_CFMT_ADCSHIFT);
                        }
                  }
                  set_fmt(s, fmtm, fmtd);
                  if ((s->capability & CAN_MULTI_CH)
                       && (file->f_mode & FMODE_WRITE)) {
                        val = set_dac_channels(s, val);
                        return put_user(val, p);
                  }
            }
            return put_user((s->fmt & ((file->f_mode & FMODE_READ) ? (CM_CFMT_STEREO << CM_CFMT_ADCSHIFT)
                                 : (CM_CFMT_STEREO << CM_CFMT_DACSHIFT))) ? 2 : 1, p);

      case SNDCTL_DSP_GETFMTS: /* Returns a mask */
                return put_user(AFMT_S16_BE|AFMT_S16_LE|AFMT_U8|
                  ((s->capability & CAN_AC3) ? AFMT_AC3 : 0), p);

      case SNDCTL_DSP_SETFMT: /* Selects ONE fmt*/
            if (get_user(val, p))
                  return -EFAULT;
            if (val != AFMT_QUERY) {
                  fmtd = 0;
                  fmtm = ~0;
                  if (file->f_mode & FMODE_READ) {
                        stop_adc(s);
                        s->dma_adc.ready = 0;
                        if (val == AFMT_S16_BE || val == AFMT_S16_LE)
                              fmtd |= CM_CFMT_16BIT << CM_CFMT_ADCSHIFT;
                        else
                              fmtm &= ~(CM_CFMT_16BIT << CM_CFMT_ADCSHIFT);
                        if (val == AFMT_S16_BE)
                              s->status |= DO_BIGENDIAN_R;
                        else
                              s->status &= ~DO_BIGENDIAN_R;
                  }
                  if (file->f_mode & FMODE_WRITE) {
                        stop_dac(s);
                        s->dma_dac.ready = 0;
                        if (val == AFMT_S16_BE || val == AFMT_S16_LE || val == AFMT_AC3)
                              fmtd |= CM_CFMT_16BIT << CM_CFMT_DACSHIFT;
                        else
                              fmtm &= ~(CM_CFMT_16BIT << CM_CFMT_DACSHIFT);
                        if (val == AFMT_AC3) {
                              fmtd |= CM_CFMT_STEREO << CM_CFMT_DACSHIFT;
                              set_ac3(s, 48000);
                        } else
                              set_ac3(s, 0);
                        if (s->status & DO_DUAL_DAC) {
                              s->dma_adc.ready = 0;
                              if (val == AFMT_S16_BE || val == AFMT_S16_LE)
                                    fmtd |= CM_CFMT_STEREO << CM_CFMT_ADCSHIFT;
                              else
                                    fmtm &= ~(CM_CFMT_STEREO << CM_CFMT_ADCSHIFT);
                        }
                        if (val == AFMT_S16_BE)
                              s->status |= DO_BIGENDIAN_W;
                        else
                              s->status &= ~DO_BIGENDIAN_W;
                  }
                  set_fmt(s, fmtm, fmtd);
            }
            if (s->status & DO_AC3) return put_user(AFMT_AC3, p);
            return put_user((s->fmt & ((file->f_mode & FMODE_READ) ? (CM_CFMT_16BIT << CM_CFMT_ADCSHIFT)
                                 : (CM_CFMT_16BIT << CM_CFMT_DACSHIFT))) ? val : AFMT_U8, p);

      case SNDCTL_DSP_POST:
                return 0;

        case SNDCTL_DSP_GETTRIGGER:
            val = 0;
            if (s->status & DO_DUAL_DAC) {
                  if (file->f_mode & FMODE_WRITE &&
                   (s->enable & ENDAC) &&
                   (s->enable & ENADC))
                        val |= PCM_ENABLE_OUTPUT;
                  return put_user(val, p);
            }
            if (file->f_mode & FMODE_READ && s->enable & ENADC)
                  val |= PCM_ENABLE_INPUT;
            if (file->f_mode & FMODE_WRITE && s->enable & ENDAC)
                  val |= PCM_ENABLE_OUTPUT;
            return put_user(val, p);

      case SNDCTL_DSP_SETTRIGGER:
            if (get_user(val, p))
                  return -EFAULT;
            if (file->f_mode & FMODE_READ) {
                  if (val & PCM_ENABLE_INPUT) {
                        if (!s->dma_adc.ready && (ret = prog_dmabuf(s, 1)))
                              return ret;
                        s->dma_adc.enabled = 1;
                        start_adc(s);
                  } else {
                        s->dma_adc.enabled = 0;
                        stop_adc(s);
                  }
            }
            if (file->f_mode & FMODE_WRITE) {
                  if (val & PCM_ENABLE_OUTPUT) {
                        if (!s->dma_dac.ready && (ret = prog_dmabuf(s, 0)))
                              return ret;
                        if (s->status & DO_DUAL_DAC) {
                              if (!s->dma_adc.ready && (ret = prog_dmabuf(s, 1)))
                                    return ret;
                        }
                        s->dma_dac.enabled = 1;
                        start_dac(s);
                  } else {
                        s->dma_dac.enabled = 0;
                        stop_dac(s);
                  }
            }
            return 0;

      case SNDCTL_DSP_GETOSPACE:
            if (!(file->f_mode & FMODE_WRITE))
                  return -EINVAL;
            if (!(s->enable & ENDAC) && (val = prog_dmabuf(s, 0)) != 0)
                  return val;
            spin_lock_irqsave(&s->lock, flags);
            cm_update_ptr(s);
            abinfo.fragsize = s->dma_dac.fragsize;
                abinfo.bytes = s->dma_dac.dmasize - s->dma_dac.count;
                abinfo.fragstotal = s->dma_dac.numfrag;
                abinfo.fragments = abinfo.bytes >> s->dma_dac.fragshift;
            spin_unlock_irqrestore(&s->lock, flags);
            return copy_to_user(argp, &abinfo, sizeof(abinfo)) ? -EFAULT : 0;

      case SNDCTL_DSP_GETISPACE:
            if (!(file->f_mode & FMODE_READ))
                  return -EINVAL;
            if (!(s->enable & ENADC) && (val = prog_dmabuf(s, 1)) != 0)
                  return val;
            spin_lock_irqsave(&s->lock, flags);
            cm_update_ptr(s);
            abinfo.fragsize = s->dma_adc.fragsize;
                abinfo.bytes = s->dma_adc.count;
                abinfo.fragstotal = s->dma_adc.numfrag;
                abinfo.fragments = abinfo.bytes >> s->dma_adc.fragshift;
            spin_unlock_irqrestore(&s->lock, flags);
            return copy_to_user(argp, &abinfo, sizeof(abinfo)) ? -EFAULT : 0;

        case SNDCTL_DSP_NONBLOCK:
                file->f_flags |= O_NONBLOCK;
                return 0;

        case SNDCTL_DSP_GETODELAY:
            if (!(file->f_mode & FMODE_WRITE))
                  return -EINVAL;
            spin_lock_irqsave(&s->lock, flags);
            cm_update_ptr(s);
                val = s->dma_dac.count;
            spin_unlock_irqrestore(&s->lock, flags);
            return put_user(val, p);

        case SNDCTL_DSP_GETIPTR:
            if (!(file->f_mode & FMODE_READ))
                  return -EINVAL;
            spin_lock_irqsave(&s->lock, flags);
            cm_update_ptr(s);
                cinfo.bytes = s->dma_adc.total_bytes;
                cinfo.blocks = s->dma_adc.count >> s->dma_adc.fragshift;
                cinfo.ptr = s->dma_adc.hwptr;
            if (s->dma_adc.mapped)
                  s->dma_adc.count &= s->dma_adc.fragsize-1;
            spin_unlock_irqrestore(&s->lock, flags);
                return copy_to_user(argp, &cinfo, sizeof(cinfo))  ? -EFAULT : 0;

        case SNDCTL_DSP_GETOPTR:
            if (!(file->f_mode & FMODE_WRITE))
                  return -EINVAL;
            spin_lock_irqsave(&s->lock, flags);
            cm_update_ptr(s);
                cinfo.bytes = s->dma_dac.total_bytes;
                cinfo.blocks = s->dma_dac.count >> s->dma_dac.fragshift;
                cinfo.ptr = s->dma_dac.hwptr;
            if (s->dma_dac.mapped)
                  s->dma_dac.count &= s->dma_dac.fragsize-1;
            if (s->status & DO_DUAL_DAC) {
                  if (s->dma_adc.mapped)
                        s->dma_adc.count &= s->dma_adc.fragsize-1;
            }
            spin_unlock_irqrestore(&s->lock, flags);
                return copy_to_user(argp, &cinfo, sizeof(cinfo)) ? -EFAULT : 0;

        case SNDCTL_DSP_GETBLKSIZE:
            if (file->f_mode & FMODE_WRITE) {
                  if ((val = prog_dmabuf(s, 0)))
                        return val;
                  if (s->status & DO_DUAL_DAC) {
                        if ((val = prog_dmabuf(s, 1)))
                              return val;
                        return put_user(2 * s->dma_dac.fragsize, p);
                  }
                  return put_user(s->dma_dac.fragsize, p);
            }
            if ((val = prog_dmabuf(s, 1)))
                  return val;
            return put_user(s->dma_adc.fragsize, p);

        case SNDCTL_DSP_SETFRAGMENT:
            if (get_user(val, p))
                  return -EFAULT;
            if (file->f_mode & FMODE_READ) {
                  s->dma_adc.ossfragshift = val & 0xffff;
                  s->dma_adc.ossmaxfrags = (val >> 16) & 0xffff;
                  if (s->dma_adc.ossfragshift < 4)
                        s->dma_adc.ossfragshift = 4;
                  if (s->dma_adc.ossfragshift > 15)
                        s->dma_adc.ossfragshift = 15;
                  if (s->dma_adc.ossmaxfrags < 4)
                        s->dma_adc.ossmaxfrags = 4;
            }
            if (file->f_mode & FMODE_WRITE) {
                  s->dma_dac.ossfragshift = val & 0xffff;
                  s->dma_dac.ossmaxfrags = (val >> 16) & 0xffff;
                  if (s->dma_dac.ossfragshift < 4)
                        s->dma_dac.ossfragshift = 4;
                  if (s->dma_dac.ossfragshift > 15)
                        s->dma_dac.ossfragshift = 15;
                  if (s->dma_dac.ossmaxfrags < 4)
                        s->dma_dac.ossmaxfrags = 4;
                  if (s->status & DO_DUAL_DAC) {
                        s->dma_adc.ossfragshift = s->dma_dac.ossfragshift;
                        s->dma_adc.ossmaxfrags = s->dma_dac.ossmaxfrags;
                  }
            }
            return 0;

        case SNDCTL_DSP_SUBDIVIDE:
            if ((file->f_mode & FMODE_READ && s->dma_adc.subdivision) ||
                (file->f_mode & FMODE_WRITE && s->dma_dac.subdivision))
                  return -EINVAL;
            if (get_user(val, p))
                  return -EFAULT;
            if (val != 1 && val != 2 && val != 4)
                  return -EINVAL;
            if (file->f_mode & FMODE_READ)
                  s->dma_adc.subdivision = val;
            if (file->f_mode & FMODE_WRITE) {
                  s->dma_dac.subdivision = val;
                  if (s->status & DO_DUAL_DAC)
                        s->dma_adc.subdivision = val;
            }
            return 0;

        case SOUND_PCM_READ_RATE:
            return put_user((file->f_mode & FMODE_READ) ? s->rateadc : s->ratedac, p);

        case SOUND_PCM_READ_CHANNELS:
            return put_user((s->fmt & ((file->f_mode & FMODE_READ) ? (CM_CFMT_STEREO << CM_CFMT_ADCSHIFT) : (CM_CFMT_STEREO << CM_CFMT_DACSHIFT))) ? 2 : 1, p);

        case SOUND_PCM_READ_BITS:
            return put_user((s->fmt & ((file->f_mode & FMODE_READ) ? (CM_CFMT_16BIT << CM_CFMT_ADCSHIFT) : (CM_CFMT_16BIT << CM_CFMT_DACSHIFT))) ? 16 : 8, p);

        case SOUND_PCM_READ_FILTER:
            return put_user((file->f_mode & FMODE_READ) ? s->rateadc : s->ratedac, p);

      case SNDCTL_DSP_GETCHANNELMASK:
            return put_user(DSP_BIND_FRONT|DSP_BIND_SURR|DSP_BIND_CENTER_LFE|DSP_BIND_SPDIF, p);

      case SNDCTL_DSP_BIND_CHANNEL:
            if (get_user(val, p))
                  return -EFAULT;
            if (val == DSP_BIND_QUERY) {
                  val = DSP_BIND_FRONT;
                  if (s->status & DO_SPDIF_OUT)
                        val |= DSP_BIND_SPDIF;
                  else {
                        if (s->curr_channels == 4)
                              val |= DSP_BIND_SURR;
                        if (s->curr_channels > 4)
                              val |= DSP_BIND_CENTER_LFE;
                  }
            } else {
                  if (file->f_mode & FMODE_READ) {
                        stop_adc(s);
                        s->dma_adc.ready = 0;
                        if (val & DSP_BIND_SPDIF) {
                              set_spdifin(s, s->rateadc);
                              if (!(s->status & DO_SPDIF_OUT))
                                    val &= ~DSP_BIND_SPDIF;
                        }
                  }
                  if (file->f_mode & FMODE_WRITE) {
                        stop_dac(s);
                        s->dma_dac.ready = 0;
                        if (val & DSP_BIND_SPDIF) {
                              set_spdifout(s, s->ratedac);
                              set_dac_channels(s, s->fmt & (CM_CFMT_STEREO << CM_CFMT_DACSHIFT) ? 2 : 1);
                              if (!(s->status & DO_SPDIF_OUT))
                                    val &= ~DSP_BIND_SPDIF;
                        } else {
                              int channels;
                              int mask;

                              mask = val & (DSP_BIND_FRONT|DSP_BIND_SURR|DSP_BIND_CENTER_LFE);
                              switch (mask) {
                                  case DSP_BIND_FRONT:
                                    channels = 2;
                                    break;
                                  case DSP_BIND_FRONT|DSP_BIND_SURR:
                                    channels = 4;
                                    break;
                                  case DSP_BIND_FRONT|DSP_BIND_SURR|DSP_BIND_CENTER_LFE:
                                    channels = 6;
                                    break;
                                  default:
                                    channels = s->fmt & (CM_CFMT_STEREO << CM_CFMT_DACSHIFT) ? 2 : 1;
                                    break;
                              }
                              set_dac_channels(s, channels);
                        }
                  }
            }
            return put_user(val, p);

      case SOUND_PCM_WRITE_FILTER:
      case SNDCTL_DSP_MAPINBUF:
      case SNDCTL_DSP_MAPOUTBUF:
        case SNDCTL_DSP_SETSYNCRO:
                return -EINVAL;
      case SNDCTL_SPDIF_COPYRIGHT:
            if (get_user(val, p))
                  return -EFAULT;
            set_spdif_copyright(s, val);
                return 0;
      case SNDCTL_SPDIF_LOOP:
            if (get_user(val, p))
                  return -EFAULT;
            set_spdif_loop(s, val);
                return 0;
      case SNDCTL_SPDIF_MONITOR:
            if (get_user(val, p))
                  return -EFAULT;
            set_spdif_monitor(s, val);
                return 0;
      case SNDCTL_SPDIF_LEVEL:
            if (get_user(val, p))
                  return -EFAULT;
            set_spdifout_level(s, val);
                return 0;
      case SNDCTL_SPDIF_INV:
            if (get_user(val, p))
                  return -EFAULT;
            set_spdifin_inverse(s, val);
                return 0;
      case SNDCTL_SPDIF_SEL2:
            if (get_user(val, p))
                  return -EFAULT;
            set_spdifin_channel2(s, val);
                return 0;
      case SNDCTL_SPDIF_VALID:
            if (get_user(val, p))
                  return -EFAULT;
            set_spdifin_valid(s, val);
                return 0;
      case SNDCTL_SPDIFOUT:
            if (get_user(val, p))
                  return -EFAULT;
            set_spdifout(s, val ? s->ratedac : 0);
                return 0;
      case SNDCTL_SPDIFIN:
            if (get_user(val, p))
                  return -EFAULT;
            set_spdifin(s, val ? s->rateadc : 0);
                return 0;
      }
      return mixer_ioctl(s, cmd, arg);
}

static int cm_open(struct inode *inode, struct file *file)
{
      int minor = iminor(inode);
      DECLARE_WAITQUEUE(wait, current);
      unsigned char fmtm = ~0, fmts = 0;
      struct list_head *list;
      struct cm_state *s;

      for (list = devs.next; ; list = list->next) {
            if (list == &devs)
                  return -ENODEV;
            s = list_entry(list, struct cm_state, devs);
            if (!((s->dev_audio ^ minor) & ~0xf))
                  break;
      }
            VALIDATE_STATE(s);
      file->private_data = s;
      /* wait for device to become free */
      mutex_lock(&s->open_mutex);
      while (s->open_mode & file->f_mode) {
            if (file->f_flags & O_NONBLOCK) {
                  mutex_unlock(&s->open_mutex);
                  return -EBUSY;
            }
            add_wait_queue(&s->open_wait, &wait);
            __set_current_state(TASK_INTERRUPTIBLE);
            mutex_unlock(&s->open_mutex);
            schedule();
            remove_wait_queue(&s->open_wait, &wait);
            set_current_state(TASK_RUNNING);
            if (signal_pending(current))
                  return -ERESTARTSYS;
            mutex_lock(&s->open_mutex);
      }
      if (file->f_mode & FMODE_READ) {
            s->status &= ~DO_BIGENDIAN_R;
            fmtm &= ~((CM_CFMT_STEREO | CM_CFMT_16BIT) << CM_CFMT_ADCSHIFT);
            if ((minor & 0xf) == SND_DEV_DSP16)
                  fmts |= CM_CFMT_16BIT << CM_CFMT_ADCSHIFT;
            s->dma_adc.ossfragshift = s->dma_adc.ossmaxfrags = s->dma_adc.subdivision = 0;
            s->dma_adc.enabled = 1;
            set_adc_rate(s, 8000);
            // spdif-in is turnned off by default
            set_spdifin(s, 0);
      }
      if (file->f_mode & FMODE_WRITE) {
            s->status &= ~DO_BIGENDIAN_W;
            fmtm &= ~((CM_CFMT_STEREO | CM_CFMT_16BIT) << CM_CFMT_DACSHIFT);
            if ((minor & 0xf) == SND_DEV_DSP16)
                  fmts |= CM_CFMT_16BIT << CM_CFMT_DACSHIFT;
            s->dma_dac.ossfragshift = s->dma_dac.ossmaxfrags = s->dma_dac.subdivision = 0;
            s->dma_dac.enabled = 1;
            set_dac_rate(s, 8000);
            // clear previous multichannel, spdif, ac3 state
            set_spdifout(s, 0);
            set_ac3(s, 0);
            set_dac_channels(s, 1);
      }
      set_fmt(s, fmtm, fmts);
      s->open_mode |= file->f_mode & (FMODE_READ | FMODE_WRITE);
      mutex_unlock(&s->open_mutex);
      return nonseekable_open(inode, file);
}

static int cm_release(struct inode *inode, struct file *file)
{
      struct cm_state *s = (struct cm_state *)file->private_data;

      VALIDATE_STATE(s);
      lock_kernel();
      if (file->f_mode & FMODE_WRITE)
            drain_dac(s, file->f_flags & O_NONBLOCK);
      mutex_lock(&s->open_mutex);
      if (file->f_mode & FMODE_WRITE) {
            stop_dac(s);

            dealloc_dmabuf(s, &s->dma_dac);
            if (s->status & DO_DUAL_DAC)
                  dealloc_dmabuf(s, &s->dma_adc);

            if (s->status & DO_MULTI_CH)
                  set_dac_channels(s, 1);
            if (s->status & DO_AC3)
                  set_ac3(s, 0);
            if (s->status & DO_SPDIF_OUT)
                  set_spdifout(s, 0);
            /* enable SPDIF loop */
            set_spdif_loop(s, spdif_loop);
            s->status &= ~DO_BIGENDIAN_W;
      }
      if (file->f_mode & FMODE_READ) {
            stop_adc(s);
            dealloc_dmabuf(s, &s->dma_adc);
            s->status &= ~DO_BIGENDIAN_R;
      }
      s->open_mode &= ~(file->f_mode & (FMODE_READ|FMODE_WRITE));
      mutex_unlock(&s->open_mutex);
      wake_up(&s->open_wait);
      unlock_kernel();
      return 0;
}

static /*const*/ struct file_operations cm_audio_fops = {
      .owner       = THIS_MODULE,
      .llseek      = no_llseek,
      .read  = cm_read,
      .write       = cm_write,
      .poll  = cm_poll,
      .ioctl       = cm_ioctl,
      .mmap  = cm_mmap,
      .open  = cm_open,
      .release = cm_release,
};

/* --------------------------------------------------------------------- */

static struct initvol {
      int mixch;
      int vol;
} initvol[] __devinitdata = {
      { SOUND_MIXER_WRITE_CD, 0x4f4f },
      { SOUND_MIXER_WRITE_LINE, 0x4f4f },
      { SOUND_MIXER_WRITE_MIC, 0x4f4f },
      { SOUND_MIXER_WRITE_SYNTH, 0x4f4f },
      { SOUND_MIXER_WRITE_VOLUME, 0x4f4f },
      { SOUND_MIXER_WRITE_PCM, 0x4f4f }
};

/* check chip version and capability */
static int query_chip(struct cm_state *s)
{
      int ChipVersion = -1;
      unsigned char RegValue;

      // check reg 0Ch, bit 24-31
      RegValue = inb(s->iobase + CODEC_CMI_INT_HLDCLR + 3);
      if (RegValue == 0) {
          // check reg 08h, bit 24-28
          RegValue = inb(s->iobase + CODEC_CMI_CHFORMAT + 3);
          RegValue &= 0x1f;
          if (RegValue == 0) {
            ChipVersion = 33;
            s->max_channels = 4;
            s->capability |= CAN_AC3_SW;
            s->capability |= CAN_DUAL_DAC;
          } else {
            ChipVersion = 37;
            s->max_channels = 4;
            s->capability |= CAN_AC3_HW;
            s->capability |= CAN_DUAL_DAC;
          }
      } else {
          // check reg 0Ch, bit 26
          if (RegValue & (1 << (26-24))) {
            ChipVersion = 39;
            if (RegValue & (1 << (24-24)))
                s->max_channels = 6;
            else
                s->max_channels = 4;
            s->capability |= CAN_AC3_HW;
            s->capability |= CAN_DUAL_DAC;
            s->capability |= CAN_MULTI_CH_HW;
            s->capability |= CAN_LINE_AS_BASS;
            s->capability |= CAN_MIC_AS_BASS;
          } else {
            ChipVersion = 55; // 4 or 6 channels
            s->max_channels = 6;
            s->capability |= CAN_AC3_HW;
            s->capability |= CAN_DUAL_DAC;
            s->capability |= CAN_MULTI_CH_HW;
            s->capability |= CAN_LINE_AS_BASS;
            s->capability |= CAN_MIC_AS_BASS;
          }
      }
      s->capability |= CAN_LINE_AS_REAR;
      return ChipVersion;
}

#ifdef CONFIG_SOUND_CMPCI_JOYSTICK
static int __devinit cm_create_gameport(struct cm_state *s, int io_port)
{
      struct gameport *gp;

      if (!request_region(io_port, CM_EXTENT_GAME, "cmpci GAME")) {
            printk(KERN_ERR "cmpci: gameport io ports 0x%#x in use\n", io_port);
            return -EBUSY;
      }

      if (!(s->gameport = gp = gameport_allocate_port())) {
            printk(KERN_ERR "cmpci: can not allocate memory for gameport\n");
            release_region(io_port, CM_EXTENT_GAME);
            return -ENOMEM;
      }

      gameport_set_name(gp, "C-Media GP");
      gameport_set_phys(gp, "pci%s/gameport0", pci_name(s->dev));
      gp->dev.parent = &s->dev->dev;
      gp->io = io_port;

      /* enable joystick */
      maskb(s->iobase + CODEC_CMI_FUNCTRL1, ~0, 0x02);

      gameport_register_port(gp);

      return 0;
}

static void __devexit cm_free_gameport(struct cm_state *s)
{
      if (s->gameport) {
            int gpio = s->gameport->io;

            gameport_unregister_port(s->gameport);
            s->gameport = NULL;
            maskb(s->iobase + CODEC_CMI_FUNCTRL1, ~0x02, 0);
            release_region(gpio, CM_EXTENT_GAME);
      }
}
#else
static inline int cm_create_gameport(struct cm_state *s, int io_port) { return -ENOSYS; }
static inline void cm_free_gameport(struct cm_state *s) { }
#endif

#define     echo_option(x)\
if (x) strcat(options, "" #x " ")

static int __devinit cm_probe(struct pci_dev *pcidev, const struct pci_device_id *pciid)
{
      struct cm_state *s;
      mm_segment_t fs;
      int i, val, ret;
      unsigned char reg_mask;
      int timeout;
      struct resource *ports;
      struct {
            unsigned short    deviceid;
            char        *devicename;
      } devicetable[] = {
            { PCI_DEVICE_ID_CMEDIA_CM8338A, "CM8338A" },
            { PCI_DEVICE_ID_CMEDIA_CM8338B, "CM8338B" },
            { PCI_DEVICE_ID_CMEDIA_CM8738,  "CM8738" },
            { PCI_DEVICE_ID_CMEDIA_CM8738B, "CM8738B" },
      };
      char  *devicename = "unknown";
      char  options[256];

      if ((ret = pci_enable_device(pcidev)))
            return ret;
      if (!(pci_resource_flags(pcidev, 0) & IORESOURCE_IO))
            return -ENODEV;
      if (pcidev->irq == 0)
            return -ENODEV;
      i = pci_set_dma_mask(pcidev, DMA_32BIT_MASK);
      if (i) {
            printk(KERN_WARNING "cmpci: architecture does not support 32bit PCI busmaster DMA\n");
            return i;
      }
      s = kmalloc(sizeof(*s), GFP_KERNEL);
      if (!s) {
            printk(KERN_WARNING "cmpci: out of memory\n");
            return -ENOMEM;
      }
      /* search device name */
      for (i = 0; i < sizeof(devicetable) / sizeof(devicetable[0]); i++) {
            if (devicetable[i].deviceid == pcidev->device) {
                  devicename = devicetable[i].devicename;
                  break;
            }
      }
      memset(s, 0, sizeof(struct cm_state));
      init_waitqueue_head(&s->dma_adc.wait);
      init_waitqueue_head(&s->dma_dac.wait);
      init_waitqueue_head(&s->open_wait);
      mutex_init(&s->open_mutex);
      spin_lock_init(&s->lock);
      s->magic = CM_MAGIC;
      s->dev = pcidev;
      s->iobase = pci_resource_start(pcidev, 0);
      s->iosynth = fmio;
      s->iomidi = mpuio;
#ifdef CONFIG_SOUND_CMPCI_MIDI
      s->midi_devc = 0;
#endif
      s->status = 0;
      if (s->iobase == 0)
            return -ENODEV;
      s->irq = pcidev->irq;

      if (!request_region(s->iobase, CM_EXTENT_CODEC, "cmpci")) {
            printk(KERN_ERR "cmpci: io ports %#x-%#x in use\n", s->iobase, s->iobase+CM_EXTENT_CODEC-1);
            ret = -EBUSY;
            goto err_region5;
      }
      /* dump parameters */
      strcpy(options, "cmpci: ");
      echo_option(joystick);
      echo_option(spdif_inverse);
      echo_option(spdif_loop);
      echo_option(spdif_out);
      echo_option(use_line_as_rear);
      echo_option(use_line_as_bass);
      echo_option(use_mic_as_bass);
      echo_option(mic_boost);
      echo_option(hw_copy);
      printk(KERN_INFO "%s\n", options);

      /* initialize codec registers */
      outb(0, s->iobase + CODEC_CMI_INT_HLDCLR + 2);  /* disable ints */
      outb(0, s->iobase + CODEC_CMI_FUNCTRL0 + 2); /* disable channels */
      /* reset mixer */
      wrmixer(s, DSP_MIX_DATARESETIDX, 0);

      /* request irq */
      if ((ret = request_irq(s->irq, cm_interrupt, IRQF_SHARED, "cmpci", s))) {
            printk(KERN_ERR "cmpci: irq %u in use\n", s->irq);
            goto err_irq;
      }
      printk(KERN_INFO "cmpci: found %s adapter at io %#x irq %u\n",
             devicename, s->iobase, s->irq);
      /* register devices */
      if ((s->dev_audio = register_sound_dsp(&cm_audio_fops, -1)) < 0) {
            ret = s->dev_audio;
            goto err_dev1;
      }
      if ((s->dev_mixer = register_sound_mixer(&cm_mixer_fops, -1)) < 0) {
            ret = s->dev_mixer;
            goto err_dev2;
      }
      pci_set_master(pcidev); /* enable bus mastering */
      /* initialize the chips */
      fs = get_fs();
      set_fs(KERNEL_DS);
      /* set mixer output */
      frobindir(s, DSP_MIX_OUTMIXIDX, 0x1f, 0x1f);
      /* set mixer input */
      val = SOUND_MASK_LINE|SOUND_MASK_SYNTH|SOUND_MASK_CD|SOUND_MASK_MIC;
      mixer_ioctl(s, SOUND_MIXER_WRITE_RECSRC, (unsigned long)&val);
      for (i = 0; i < sizeof(initvol)/sizeof(initvol[0]); i++) {
            val = initvol[i].vol;
            mixer_ioctl(s, initvol[i].mixch, (unsigned long)&val);
      }
      set_fs(fs);
      /* use channel 1 for playback, channel 0 for record */
      maskb(s->iobase + CODEC_CMI_FUNCTRL0, ~CHADC1, CHADC0);
      /* turn off VMIC3 - mic boost */
      if (mic_boost)
            maskb(s->iobase + CODEC_CMI_MIXER2, ~1, 0);
      else
            maskb(s->iobase + CODEC_CMI_MIXER2, ~0, 1);
      s->deviceid = pcidev->device;

      if (pcidev->device == PCI_DEVICE_ID_CMEDIA_CM8738
       || pcidev->device == PCI_DEVICE_ID_CMEDIA_CM8738B) {

            /* chip version and hw capability check */
            s->chip_version = query_chip(s);
            printk(KERN_INFO "cmpci: chip version = 0%d\n", s->chip_version);

            /* set SPDIF-in inverse before enable SPDIF loop */
            set_spdifin_inverse(s, spdif_inverse);

            /* use SPDIF in #1 */
            set_spdifin_channel2(s, 0);
      } else {
            s->chip_version = 0;
            /* 8338 will fall here */
            s->max_channels = 4;
            s->capability |= CAN_DUAL_DAC;
            s->capability |= CAN_LINE_AS_REAR;
      }
      /* enable SPDIF loop */
      set_spdif_loop(s, spdif_loop);

      // enable 4 speaker mode (analog duplicate)
      set_hw_copy(s, hw_copy);

      reg_mask = 0;
#ifdef CONFIG_SOUND_CMPCI_FM
      /* disable FM */
      maskb(s->iobase + CODEC_CMI_MISC_CTRL + 2, ~8, 0);
      if (s->iosynth) {
          /* don't enable OPL3 if there is one */
          if (opl3_detect(s->iosynth, NULL)) {
            s->iosynth = 0;
          } else {
            /* set IO based at 0x388 */
            switch (s->iosynth) {
                case 0x388:
                  reg_mask = 0;
                  break;
                case 0x3C8:
                  reg_mask = 0x01;
                  break;
                case 0x3E0:
                  reg_mask = 0x02;
                  break;
                case 0x3E8:
                  reg_mask = 0x03;
                  break;
                default:
                  s->iosynth = 0;
                  break;
            }
            maskb(s->iobase + CODEC_CMI_LEGACY_CTRL + 3, ~0x03, reg_mask);
            /* enable FM */
            if (s->iosynth) {
                  maskb(s->iobase + CODEC_CMI_MISC_CTRL + 2, ~0, 8);
                  if (opl3_detect(s->iosynth, NULL))
                        ret = opl3_init(s->iosynth, NULL, THIS_MODULE);
                  else {
                        maskb(s->iobase + CODEC_CMI_MISC_CTRL + 2, ~8, 0);
                        s->iosynth = 0;
                  }
            }
          }
      }
#endif
#ifdef CONFIG_SOUND_CMPCI_MIDI
      switch (s->iomidi) {
          case 0x330:
            reg_mask = 0;
            break;
          case 0x320:
            reg_mask = 0x20;
            break;
          case 0x310:
            reg_mask = 0x40;
            break;
          case 0x300:
            reg_mask = 0x60;
            break;
          default:
            s->iomidi = 0;
            goto skip_mpu;
      }
      ports = request_region(s->iomidi, 2, "mpu401");
      if (!ports)
            goto skip_mpu;
      /* disable MPU-401 */
      maskb(s->iobase + CODEC_CMI_FUNCTRL1, ~0x04, 0);
      s->mpu_data.name = "cmpci mpu";
      s->mpu_data.io_base = s->iomidi;
      s->mpu_data.irq = -s->irq;    // tell mpu401 to share irq
      if (probe_mpu401(&s->mpu_data, ports)) {
            release_region(s->iomidi, 2);
            s->iomidi = 0;
            goto skip_mpu;
      }
      maskb(s->iobase + CODEC_CMI_LEGACY_CTRL + 3, ~0x60, reg_mask);
      /* enable MPU-401 */
      maskb(s->iobase + CODEC_CMI_FUNCTRL1, ~0, 0x04);
      /* clear all previously received interrupt */
      for (timeout = 900000; timeout > 0; timeout--) {
            if ((inb(s->iomidi + 1) && 0x80) == 0)
                  inb(s->iomidi);
            else
                  break;
      }
      if (!probe_mpu401(&s->mpu_data, ports)) {
            release_region(s->iomidi, 2);
            s->iomidi = 0;
            maskb(s->iobase + CODEC_CMI_FUNCTRL1, ~0, 0x04);
      } else {
            attach_mpu401(&s->mpu_data, THIS_MODULE);
            s->midi_devc = s->mpu_data.slots[1];
      }
skip_mpu:
#endif
      /* disable joystick port */
      maskb(s->iobase + CODEC_CMI_FUNCTRL1, ~0x02, 0);
      if (joystick)
            cm_create_gameport(s, 0x200);

      /* store it in the driver field */
      pci_set_drvdata(pcidev, s);
      /* put it into driver list */
      list_add_tail(&s->devs, &devs);
      /* increment devindex */
      if (devindex < NR_DEVICE-1)
            devindex++;
      return 0;

err_dev2:
      unregister_sound_dsp(s->dev_audio);
err_dev1:
      printk(KERN_ERR "cmpci: cannot register misc device\n");
      free_irq(s->irq, s);
err_irq:
      release_region(s->iobase, CM_EXTENT_CODEC);
err_region5:
      kfree(s);
      return ret;
}

/* --------------------------------------------------------------------- */

MODULE_AUTHOR("ChenLi Tien, cltien@cmedia.com.tw");
MODULE_DESCRIPTION("CM8x38 Audio Driver");
MODULE_LICENSE("GPL");

static void __devexit cm_remove(struct pci_dev *dev)
{
      struct cm_state *s = pci_get_drvdata(dev);

      if (!s)
            return;

      cm_free_gameport(s);

#ifdef CONFIG_SOUND_CMPCI_FM
      if (s->iosynth) {
            /* disable FM */
            maskb(s->iobase + CODEC_CMI_MISC_CTRL + 2, ~8, 0);
      }
#endif
#ifdef CONFIG_SOUND_CMPCI_MIDI
      if (s->iomidi) {
            unload_mpu401(&s->mpu_data);
            /* disable MPU-401 */
            maskb(s->iobase + CODEC_CMI_FUNCTRL1, ~0x04, 0);
      }
#endif
      set_spdif_loop(s, 0);
      list_del(&s->devs);
      outb(0, s->iobase + CODEC_CMI_INT_HLDCLR + 2);  /* disable ints */
      synchronize_irq(s->irq);
      outb(0, s->iobase + CODEC_CMI_FUNCTRL0 + 2); /* disable channels */
      free_irq(s->irq, s);

      /* reset mixer */
      wrmixer(s, DSP_MIX_DATARESETIDX, 0);

      release_region(s->iobase, CM_EXTENT_CODEC);
      unregister_sound_dsp(s->dev_audio);
      unregister_sound_mixer(s->dev_mixer);
      kfree(s);
      pci_set_drvdata(dev, NULL);
}

static struct pci_device_id id_table[] __devinitdata = {
      { PCI_VENDOR_ID_CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738B, PCI_ANY_ID, PCI_ANY_ID, 0, 0 },
      { PCI_VENDOR_ID_CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738, PCI_ANY_ID, PCI_ANY_ID, 0, 0 },
      { PCI_VENDOR_ID_CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338A, PCI_ANY_ID, PCI_ANY_ID, 0, 0 },
      { PCI_VENDOR_ID_CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338B, PCI_ANY_ID, PCI_ANY_ID, 0, 0 },
      { 0, }
};

MODULE_DEVICE_TABLE(pci, id_table);

static struct pci_driver cm_driver = {
       .name       = "cmpci",
       .id_table = id_table,
       .probe      = cm_probe,
       .remove     = __devexit_p(cm_remove)
};

static int __init init_cmpci(void)
{
      printk(KERN_INFO "cmpci: version $Revision: 6.82 $ time " __TIME__ " " __DATE__ "\n");
      return pci_register_driver(&cm_driver);
}

static void __exit cleanup_cmpci(void)
{
      printk(KERN_INFO "cmpci: unloading\n");
      pci_unregister_driver(&cm_driver);
}

module_init(init_cmpci);
module_exit(cleanup_cmpci);

Generated by  Doxygen 1.6.0   Back to index