Logo Search packages:      
Sourcecode: linux-2.6 version File versions  Download package

e1000_main.c

/*******************************************************************************

  
  Copyright(c) 1999 - 2006 Intel Corporation. All rights reserved.
  
  This program is free software; you can redistribute it and/or modify it 
  under the terms of the GNU General Public License as published by the Free 
  Software Foundation; either version 2 of the License, or (at your option) 
  any later version.
  
  This program is distributed in the hope that it will be useful, but WITHOUT 
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for 
  more details.
  
  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc., 59 
  Temple Place - Suite 330, Boston, MA  02111-1307, USA.
  
  The full GNU General Public License is included in this distribution in the
  file called LICENSE.
  
  Contact Information:
  Linux NICS <linux.nics@intel.com>
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

#include "e1000.h"

char e1000_driver_name[] = "e1000";
static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
#ifndef CONFIG_E1000_NAPI
#define DRIVERNAPI
#else
#define DRIVERNAPI "-NAPI"
#endif
#define DRV_VERSION "7.1.9-k4"DRIVERNAPI
char e1000_driver_version[] = DRV_VERSION;
static char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";

/* e1000_pci_tbl - PCI Device ID Table
 *
 * Last entry must be all 0s
 *
 * Macro expands to...
 *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
 */
static struct pci_device_id e1000_pci_tbl[] = {
      INTEL_E1000_ETHERNET_DEVICE(0x1000),
      INTEL_E1000_ETHERNET_DEVICE(0x1001),
      INTEL_E1000_ETHERNET_DEVICE(0x1004),
      INTEL_E1000_ETHERNET_DEVICE(0x1008),
      INTEL_E1000_ETHERNET_DEVICE(0x1009),
      INTEL_E1000_ETHERNET_DEVICE(0x100C),
      INTEL_E1000_ETHERNET_DEVICE(0x100D),
      INTEL_E1000_ETHERNET_DEVICE(0x100E),
      INTEL_E1000_ETHERNET_DEVICE(0x100F),
      INTEL_E1000_ETHERNET_DEVICE(0x1010),
      INTEL_E1000_ETHERNET_DEVICE(0x1011),
      INTEL_E1000_ETHERNET_DEVICE(0x1012),
      INTEL_E1000_ETHERNET_DEVICE(0x1013),
      INTEL_E1000_ETHERNET_DEVICE(0x1014),
      INTEL_E1000_ETHERNET_DEVICE(0x1015),
      INTEL_E1000_ETHERNET_DEVICE(0x1016),
      INTEL_E1000_ETHERNET_DEVICE(0x1017),
      INTEL_E1000_ETHERNET_DEVICE(0x1018),
      INTEL_E1000_ETHERNET_DEVICE(0x1019),
      INTEL_E1000_ETHERNET_DEVICE(0x101A),
      INTEL_E1000_ETHERNET_DEVICE(0x101D),
      INTEL_E1000_ETHERNET_DEVICE(0x101E),
      INTEL_E1000_ETHERNET_DEVICE(0x1026),
      INTEL_E1000_ETHERNET_DEVICE(0x1027),
      INTEL_E1000_ETHERNET_DEVICE(0x1028),
      INTEL_E1000_ETHERNET_DEVICE(0x1049),
      INTEL_E1000_ETHERNET_DEVICE(0x104A),
      INTEL_E1000_ETHERNET_DEVICE(0x104B),
      INTEL_E1000_ETHERNET_DEVICE(0x104C),
      INTEL_E1000_ETHERNET_DEVICE(0x104D),
      INTEL_E1000_ETHERNET_DEVICE(0x105E),
      INTEL_E1000_ETHERNET_DEVICE(0x105F),
      INTEL_E1000_ETHERNET_DEVICE(0x1060),
      INTEL_E1000_ETHERNET_DEVICE(0x1075),
      INTEL_E1000_ETHERNET_DEVICE(0x1076),
      INTEL_E1000_ETHERNET_DEVICE(0x1077),
      INTEL_E1000_ETHERNET_DEVICE(0x1078),
      INTEL_E1000_ETHERNET_DEVICE(0x1079),
      INTEL_E1000_ETHERNET_DEVICE(0x107A),
      INTEL_E1000_ETHERNET_DEVICE(0x107B),
      INTEL_E1000_ETHERNET_DEVICE(0x107C),
      INTEL_E1000_ETHERNET_DEVICE(0x107D),
      INTEL_E1000_ETHERNET_DEVICE(0x107E),
      INTEL_E1000_ETHERNET_DEVICE(0x107F),
      INTEL_E1000_ETHERNET_DEVICE(0x108A),
      INTEL_E1000_ETHERNET_DEVICE(0x108B),
      INTEL_E1000_ETHERNET_DEVICE(0x108C),
      INTEL_E1000_ETHERNET_DEVICE(0x1096),
      INTEL_E1000_ETHERNET_DEVICE(0x1098),
      INTEL_E1000_ETHERNET_DEVICE(0x1099),
      INTEL_E1000_ETHERNET_DEVICE(0x109A),
      INTEL_E1000_ETHERNET_DEVICE(0x10B5),
      INTEL_E1000_ETHERNET_DEVICE(0x10B9),
      INTEL_E1000_ETHERNET_DEVICE(0x10BA),
      INTEL_E1000_ETHERNET_DEVICE(0x10BB),
      /* required last entry */
      {0,}
};

MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);

static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
                                    struct e1000_tx_ring *txdr);
static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
                                    struct e1000_rx_ring *rxdr);
static void e1000_free_tx_resources(struct e1000_adapter *adapter,
                                    struct e1000_tx_ring *tx_ring);
static void e1000_free_rx_resources(struct e1000_adapter *adapter,
                                    struct e1000_rx_ring *rx_ring);

/* Local Function Prototypes */

static int e1000_init_module(void);
static void e1000_exit_module(void);
static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
static void __devexit e1000_remove(struct pci_dev *pdev);
static int e1000_alloc_queues(struct e1000_adapter *adapter);
static int e1000_sw_init(struct e1000_adapter *adapter);
static int e1000_open(struct net_device *netdev);
static int e1000_close(struct net_device *netdev);
static void e1000_configure_tx(struct e1000_adapter *adapter);
static void e1000_configure_rx(struct e1000_adapter *adapter);
static void e1000_setup_rctl(struct e1000_adapter *adapter);
static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
                                struct e1000_tx_ring *tx_ring);
static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
                                struct e1000_rx_ring *rx_ring);
static void e1000_set_multi(struct net_device *netdev);
static void e1000_update_phy_info(unsigned long data);
static void e1000_watchdog(unsigned long data);
static void e1000_82547_tx_fifo_stall(unsigned long data);
static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
static int e1000_set_mac(struct net_device *netdev, void *p);
static irqreturn_t e1000_intr(int irq, void *data, struct pt_regs *regs);
static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter,
                                    struct e1000_tx_ring *tx_ring);
#ifdef CONFIG_E1000_NAPI
static int e1000_clean(struct net_device *poll_dev, int *budget);
static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
                                    struct e1000_rx_ring *rx_ring,
                                    int *work_done, int work_to_do);
static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
                                       struct e1000_rx_ring *rx_ring,
                                       int *work_done, int work_to_do);
#else
static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
                                    struct e1000_rx_ring *rx_ring);
static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
                                       struct e1000_rx_ring *rx_ring);
#endif
static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
                                   struct e1000_rx_ring *rx_ring,
                           int cleaned_count);
static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
                                      struct e1000_rx_ring *rx_ring,
                              int cleaned_count);
static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
                     int cmd);
static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
static void e1000_tx_timeout(struct net_device *dev);
static void e1000_reset_task(struct net_device *dev);
static void e1000_smartspeed(struct e1000_adapter *adapter);
static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
                                       struct sk_buff *skb);

static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
static void e1000_restore_vlan(struct e1000_adapter *adapter);

static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
#ifdef CONFIG_PM
static int e1000_resume(struct pci_dev *pdev);
#endif
static void e1000_shutdown(struct pci_dev *pdev);

#ifdef CONFIG_NET_POLL_CONTROLLER
/* for netdump / net console */
static void e1000_netpoll (struct net_device *netdev);
#endif

static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
                     pci_channel_state_t state);
static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
static void e1000_io_resume(struct pci_dev *pdev);

static struct pci_error_handlers e1000_err_handler = {
      .error_detected = e1000_io_error_detected,
      .slot_reset = e1000_io_slot_reset,
      .resume = e1000_io_resume,
};

static struct pci_driver e1000_driver = {
      .name     = e1000_driver_name,
      .id_table = e1000_pci_tbl,
      .probe    = e1000_probe,
      .remove   = __devexit_p(e1000_remove),
      /* Power Managment Hooks */
      .suspend  = e1000_suspend,
#ifdef CONFIG_PM
      .resume   = e1000_resume,
#endif
      .shutdown = e1000_shutdown,
      .err_handler = &e1000_err_handler
};

MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);

static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
module_param(debug, int, 0);
MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");

/**
 * e1000_init_module - Driver Registration Routine
 *
 * e1000_init_module is the first routine called when the driver is
 * loaded. All it does is register with the PCI subsystem.
 **/

static int __init
e1000_init_module(void)
{
      int ret;
      printk(KERN_INFO "%s - version %s\n",
             e1000_driver_string, e1000_driver_version);

      printk(KERN_INFO "%s\n", e1000_copyright);

      ret = pci_module_init(&e1000_driver);

      return ret;
}

module_init(e1000_init_module);

/**
 * e1000_exit_module - Driver Exit Cleanup Routine
 *
 * e1000_exit_module is called just before the driver is removed
 * from memory.
 **/

static void __exit
e1000_exit_module(void)
{
      pci_unregister_driver(&e1000_driver);
}

module_exit(e1000_exit_module);

static int e1000_request_irq(struct e1000_adapter *adapter)
{
      struct net_device *netdev = adapter->netdev;
      int flags, err = 0;

      flags = IRQF_SHARED;
#ifdef CONFIG_PCI_MSI
      if (adapter->hw.mac_type > e1000_82547_rev_2) {
            adapter->have_msi = TRUE;
            if ((err = pci_enable_msi(adapter->pdev))) {
                  DPRINTK(PROBE, ERR,
                   "Unable to allocate MSI interrupt Error: %d\n", err);
                  adapter->have_msi = FALSE;
            }
      }
      if (adapter->have_msi)
            flags &= ~IRQF_SHARED;
#endif
      if ((err = request_irq(adapter->pdev->irq, &e1000_intr, flags,
                             netdev->name, netdev)))
            DPRINTK(PROBE, ERR,
                    "Unable to allocate interrupt Error: %d\n", err);

      return err;
}

static void e1000_free_irq(struct e1000_adapter *adapter)
{
      struct net_device *netdev = adapter->netdev;

      free_irq(adapter->pdev->irq, netdev);

#ifdef CONFIG_PCI_MSI
      if (adapter->have_msi)
            pci_disable_msi(adapter->pdev);
#endif
}

/**
 * e1000_irq_disable - Mask off interrupt generation on the NIC
 * @adapter: board private structure
 **/

static void
e1000_irq_disable(struct e1000_adapter *adapter)
{
      atomic_inc(&adapter->irq_sem);
      E1000_WRITE_REG(&adapter->hw, IMC, ~0);
      E1000_WRITE_FLUSH(&adapter->hw);
      synchronize_irq(adapter->pdev->irq);
}

/**
 * e1000_irq_enable - Enable default interrupt generation settings
 * @adapter: board private structure
 **/

static void
e1000_irq_enable(struct e1000_adapter *adapter)
{
      if (likely(atomic_dec_and_test(&adapter->irq_sem))) {
            E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
            E1000_WRITE_FLUSH(&adapter->hw);
      }
}

static void
e1000_update_mng_vlan(struct e1000_adapter *adapter)
{
      struct net_device *netdev = adapter->netdev;
      uint16_t vid = adapter->hw.mng_cookie.vlan_id;
      uint16_t old_vid = adapter->mng_vlan_id;
      if (adapter->vlgrp) {
            if (!adapter->vlgrp->vlan_devices[vid]) {
                  if (adapter->hw.mng_cookie.status &
                        E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
                        e1000_vlan_rx_add_vid(netdev, vid);
                        adapter->mng_vlan_id = vid;
                  } else
                        adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;

                  if ((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
                              (vid != old_vid) &&
                              !adapter->vlgrp->vlan_devices[old_vid])
                        e1000_vlan_rx_kill_vid(netdev, old_vid);
            } else
                  adapter->mng_vlan_id = vid;
      }
}

/**
 * e1000_release_hw_control - release control of the h/w to f/w
 * @adapter: address of board private structure
 *
 * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
 * For ASF and Pass Through versions of f/w this means that the
 * driver is no longer loaded. For AMT version (only with 82573) i
 * of the f/w this means that the netowrk i/f is closed.
 *
 **/

static void
e1000_release_hw_control(struct e1000_adapter *adapter)
{
      uint32_t ctrl_ext;
      uint32_t swsm;
      uint32_t extcnf;

      /* Let firmware taken over control of h/w */
      switch (adapter->hw.mac_type) {
      case e1000_82571:
      case e1000_82572:
      case e1000_80003es2lan:
            ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
            E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
                        ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
            break;
      case e1000_82573:
            swsm = E1000_READ_REG(&adapter->hw, SWSM);
            E1000_WRITE_REG(&adapter->hw, SWSM,
                        swsm & ~E1000_SWSM_DRV_LOAD);
      case e1000_ich8lan:
            extcnf = E1000_READ_REG(&adapter->hw, CTRL_EXT);
            E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
                        extcnf & ~E1000_CTRL_EXT_DRV_LOAD);
            break;
      default:
            break;
      }
}

/**
 * e1000_get_hw_control - get control of the h/w from f/w
 * @adapter: address of board private structure
 *
 * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
 * For ASF and Pass Through versions of f/w this means that
 * the driver is loaded. For AMT version (only with 82573)
 * of the f/w this means that the netowrk i/f is open.
 *
 **/

static void
e1000_get_hw_control(struct e1000_adapter *adapter)
{
      uint32_t ctrl_ext;
      uint32_t swsm;
      uint32_t extcnf;
      /* Let firmware know the driver has taken over */
      switch (adapter->hw.mac_type) {
      case e1000_82571:
      case e1000_82572:
      case e1000_80003es2lan:
            ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
            E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
                        ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
            break;
      case e1000_82573:
            swsm = E1000_READ_REG(&adapter->hw, SWSM);
            E1000_WRITE_REG(&adapter->hw, SWSM,
                        swsm | E1000_SWSM_DRV_LOAD);
            break;
      case e1000_ich8lan:
            extcnf = E1000_READ_REG(&adapter->hw, EXTCNF_CTRL);
            E1000_WRITE_REG(&adapter->hw, EXTCNF_CTRL,
                        extcnf | E1000_EXTCNF_CTRL_SWFLAG);
            break;
      default:
            break;
      }
}

int
e1000_up(struct e1000_adapter *adapter)
{
      struct net_device *netdev = adapter->netdev;
      int i;

      /* hardware has been reset, we need to reload some things */

      e1000_set_multi(netdev);

      e1000_restore_vlan(adapter);

      e1000_configure_tx(adapter);
      e1000_setup_rctl(adapter);
      e1000_configure_rx(adapter);
      /* call E1000_DESC_UNUSED which always leaves
       * at least 1 descriptor unused to make sure
       * next_to_use != next_to_clean */
      for (i = 0; i < adapter->num_rx_queues; i++) {
            struct e1000_rx_ring *ring = &adapter->rx_ring[i];
            adapter->alloc_rx_buf(adapter, ring,
                                  E1000_DESC_UNUSED(ring));
      }

      adapter->tx_queue_len = netdev->tx_queue_len;

      mod_timer(&adapter->watchdog_timer, jiffies);

#ifdef CONFIG_E1000_NAPI
      netif_poll_enable(netdev);
#endif
      e1000_irq_enable(adapter);

      return 0;
}

/**
 * e1000_power_up_phy - restore link in case the phy was powered down
 * @adapter: address of board private structure
 *
 * The phy may be powered down to save power and turn off link when the
 * driver is unloaded and wake on lan is not enabled (among others)
 * *** this routine MUST be followed by a call to e1000_reset ***
 *
 **/

static void e1000_power_up_phy(struct e1000_adapter *adapter)
{
      uint16_t mii_reg = 0;

      /* Just clear the power down bit to wake the phy back up */
      if (adapter->hw.media_type == e1000_media_type_copper) {
            /* according to the manual, the phy will retain its
             * settings across a power-down/up cycle */
            e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
            mii_reg &= ~MII_CR_POWER_DOWN;
            e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
      }
}

static void e1000_power_down_phy(struct e1000_adapter *adapter)
{
      boolean_t mng_mode_enabled = (adapter->hw.mac_type >= e1000_82571) &&
                                    e1000_check_mng_mode(&adapter->hw);
      /* Power down the PHY so no link is implied when interface is down
       * The PHY cannot be powered down if any of the following is TRUE
       * (a) WoL is enabled
       * (b) AMT is active
       * (c) SoL/IDER session is active */
      if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
          adapter->hw.mac_type != e1000_ich8lan &&
          adapter->hw.media_type == e1000_media_type_copper &&
          !(E1000_READ_REG(&adapter->hw, MANC) & E1000_MANC_SMBUS_EN) &&
          !mng_mode_enabled &&
          !e1000_check_phy_reset_block(&adapter->hw)) {
            uint16_t mii_reg = 0;
            e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
            mii_reg |= MII_CR_POWER_DOWN;
            e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
            mdelay(1);
      }
}

void
e1000_down(struct e1000_adapter *adapter)
{
      struct net_device *netdev = adapter->netdev;

      e1000_irq_disable(adapter);

      del_timer_sync(&adapter->tx_fifo_stall_timer);
      del_timer_sync(&adapter->watchdog_timer);
      del_timer_sync(&adapter->phy_info_timer);

#ifdef CONFIG_E1000_NAPI
      netif_poll_disable(netdev);
#endif
      netdev->tx_queue_len = adapter->tx_queue_len;
      adapter->link_speed = 0;
      adapter->link_duplex = 0;
      netif_carrier_off(netdev);
      netif_stop_queue(netdev);

      e1000_reset(adapter);
      e1000_clean_all_tx_rings(adapter);
      e1000_clean_all_rx_rings(adapter);
}

void
e1000_reinit_locked(struct e1000_adapter *adapter)
{
      WARN_ON(in_interrupt());
      while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
            msleep(1);
      e1000_down(adapter);
      e1000_up(adapter);
      clear_bit(__E1000_RESETTING, &adapter->flags);
}

void
e1000_reset(struct e1000_adapter *adapter)
{
      uint32_t pba, manc;
      uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;

      /* Repartition Pba for greater than 9k mtu
       * To take effect CTRL.RST is required.
       */

      switch (adapter->hw.mac_type) {
      case e1000_82547:
      case e1000_82547_rev_2:
            pba = E1000_PBA_30K;
            break;
      case e1000_82571:
      case e1000_82572:
      case e1000_80003es2lan:
            pba = E1000_PBA_38K;
            break;
      case e1000_82573:
            pba = E1000_PBA_12K;
            break;
      case e1000_ich8lan:
            pba = E1000_PBA_8K;
            break;
      default:
            pba = E1000_PBA_48K;
            break;
      }

      if ((adapter->hw.mac_type != e1000_82573) &&
         (adapter->netdev->mtu > E1000_RXBUFFER_8192))
            pba -= 8; /* allocate more FIFO for Tx */


      if (adapter->hw.mac_type == e1000_82547) {
            adapter->tx_fifo_head = 0;
            adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
            adapter->tx_fifo_size =
                  (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
            atomic_set(&adapter->tx_fifo_stall, 0);
      }

      E1000_WRITE_REG(&adapter->hw, PBA, pba);

      /* flow control settings */
      /* Set the FC high water mark to 90% of the FIFO size.
       * Required to clear last 3 LSB */
      fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
      /* We can't use 90% on small FIFOs because the remainder
       * would be less than 1 full frame.  In this case, we size
       * it to allow at least a full frame above the high water
       *  mark. */
      if (pba < E1000_PBA_16K)
            fc_high_water_mark = (pba * 1024) - 1600;

      adapter->hw.fc_high_water = fc_high_water_mark;
      adapter->hw.fc_low_water = fc_high_water_mark - 8;
      if (adapter->hw.mac_type == e1000_80003es2lan)
            adapter->hw.fc_pause_time = 0xFFFF;
      else
            adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
      adapter->hw.fc_send_xon = 1;
      adapter->hw.fc = adapter->hw.original_fc;

      /* Allow time for pending master requests to run */
      e1000_reset_hw(&adapter->hw);
      if (adapter->hw.mac_type >= e1000_82544)
            E1000_WRITE_REG(&adapter->hw, WUC, 0);
      if (e1000_init_hw(&adapter->hw))
            DPRINTK(PROBE, ERR, "Hardware Error\n");
      e1000_update_mng_vlan(adapter);
      /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
      E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);

      e1000_reset_adaptive(&adapter->hw);
      e1000_phy_get_info(&adapter->hw, &adapter->phy_info);

      if (!adapter->smart_power_down &&
          (adapter->hw.mac_type == e1000_82571 ||
           adapter->hw.mac_type == e1000_82572)) {
            uint16_t phy_data = 0;
            /* speed up time to link by disabling smart power down, ignore
             * the return value of this function because there is nothing
             * different we would do if it failed */
            e1000_read_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
                               &phy_data);
            phy_data &= ~IGP02E1000_PM_SPD;
            e1000_write_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
                                phy_data);
      }

      if (adapter->hw.mac_type < e1000_ich8lan)
      /* FIXME: this code is duplicate and wrong for PCI Express */
      if (adapter->en_mng_pt) {
            manc = E1000_READ_REG(&adapter->hw, MANC);
            manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST);
            E1000_WRITE_REG(&adapter->hw, MANC, manc);
      }
}

/**
 * e1000_probe - Device Initialization Routine
 * @pdev: PCI device information struct
 * @ent: entry in e1000_pci_tbl
 *
 * Returns 0 on success, negative on failure
 *
 * e1000_probe initializes an adapter identified by a pci_dev structure.
 * The OS initialization, configuring of the adapter private structure,
 * and a hardware reset occur.
 **/

static int __devinit
e1000_probe(struct pci_dev *pdev,
            const struct pci_device_id *ent)
{
      struct net_device *netdev;
      struct e1000_adapter *adapter;
      unsigned long mmio_start, mmio_len;
      unsigned long flash_start, flash_len;

      static int cards_found = 0;
      static int e1000_ksp3_port_a = 0; /* global ksp3 port a indication */
      int i, err, pci_using_dac;
      uint16_t eeprom_data;
      uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
      if ((err = pci_enable_device(pdev)))
            return err;

      if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)) &&
          !(err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK))) {
            pci_using_dac = 1;
      } else {
            if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) &&
                (err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK))) {
                  E1000_ERR("No usable DMA configuration, aborting\n");
                  return err;
            }
            pci_using_dac = 0;
      }

      if ((err = pci_request_regions(pdev, e1000_driver_name)))
            return err;

      pci_set_master(pdev);

      netdev = alloc_etherdev(sizeof(struct e1000_adapter));
      if (!netdev) {
            err = -ENOMEM;
            goto err_alloc_etherdev;
      }

      SET_MODULE_OWNER(netdev);
      SET_NETDEV_DEV(netdev, &pdev->dev);

      pci_set_drvdata(pdev, netdev);
      adapter = netdev_priv(netdev);
      adapter->netdev = netdev;
      adapter->pdev = pdev;
      adapter->hw.back = adapter;
      adapter->msg_enable = (1 << debug) - 1;

      mmio_start = pci_resource_start(pdev, BAR_0);
      mmio_len = pci_resource_len(pdev, BAR_0);

      adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
      if (!adapter->hw.hw_addr) {
            err = -EIO;
            goto err_ioremap;
      }

      for (i = BAR_1; i <= BAR_5; i++) {
            if (pci_resource_len(pdev, i) == 0)
                  continue;
            if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
                  adapter->hw.io_base = pci_resource_start(pdev, i);
                  break;
            }
      }

      netdev->open = &e1000_open;
      netdev->stop = &e1000_close;
      netdev->hard_start_xmit = &e1000_xmit_frame;
      netdev->get_stats = &e1000_get_stats;
      netdev->set_multicast_list = &e1000_set_multi;
      netdev->set_mac_address = &e1000_set_mac;
      netdev->change_mtu = &e1000_change_mtu;
      netdev->do_ioctl = &e1000_ioctl;
      e1000_set_ethtool_ops(netdev);
      netdev->tx_timeout = &e1000_tx_timeout;
      netdev->watchdog_timeo = 5 * HZ;
#ifdef CONFIG_E1000_NAPI
      netdev->poll = &e1000_clean;
      netdev->weight = 64;
#endif
      netdev->vlan_rx_register = e1000_vlan_rx_register;
      netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
      netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
#ifdef CONFIG_NET_POLL_CONTROLLER
      netdev->poll_controller = e1000_netpoll;
#endif
      strcpy(netdev->name, pci_name(pdev));

      netdev->mem_start = mmio_start;
      netdev->mem_end = mmio_start + mmio_len;
      netdev->base_addr = adapter->hw.io_base;

      adapter->bd_number = cards_found;

      /* setup the private structure */

      if ((err = e1000_sw_init(adapter)))
            goto err_sw_init;

      /* Flash BAR mapping must happen after e1000_sw_init
       * because it depends on mac_type */
      if ((adapter->hw.mac_type == e1000_ich8lan) &&
         (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
            flash_start = pci_resource_start(pdev, 1);
            flash_len = pci_resource_len(pdev, 1);
            adapter->hw.flash_address = ioremap(flash_start, flash_len);
            if (!adapter->hw.flash_address) {
                  err = -EIO;
                  goto err_flashmap;
            }
      }

      if ((err = e1000_check_phy_reset_block(&adapter->hw)))
            DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");

      /* if ksp3, indicate if it's port a being setup */
      if (pdev->device == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3 &&
                  e1000_ksp3_port_a == 0)
            adapter->ksp3_port_a = 1;
      e1000_ksp3_port_a++;
      /* Reset for multiple KP3 adapters */
      if (e1000_ksp3_port_a == 4)
            e1000_ksp3_port_a = 0;

      if (adapter->hw.mac_type >= e1000_82543) {
            netdev->features = NETIF_F_SG |
                           NETIF_F_HW_CSUM |
                           NETIF_F_HW_VLAN_TX |
                           NETIF_F_HW_VLAN_RX |
                           NETIF_F_HW_VLAN_FILTER;
            if (adapter->hw.mac_type == e1000_ich8lan)
                  netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
      }

#ifdef NETIF_F_TSO
      if ((adapter->hw.mac_type >= e1000_82544) &&
         (adapter->hw.mac_type != e1000_82547))
            netdev->features |= NETIF_F_TSO;

#ifdef NETIF_F_TSO_IPV6
      if (adapter->hw.mac_type > e1000_82547_rev_2)
            netdev->features |= NETIF_F_TSO_IPV6;
#endif
#endif
      if (pci_using_dac)
            netdev->features |= NETIF_F_HIGHDMA;

      netdev->features |= NETIF_F_LLTX;

      adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);

      /* initialize eeprom parameters */

      if (e1000_init_eeprom_params(&adapter->hw)) {
            E1000_ERR("EEPROM initialization failed\n");
            return -EIO;
      }

      /* before reading the EEPROM, reset the controller to
       * put the device in a known good starting state */

      e1000_reset_hw(&adapter->hw);

      /* make sure the EEPROM is good */

      if (e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
            DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
            err = -EIO;
            goto err_eeprom;
      }

      /* copy the MAC address out of the EEPROM */

      if (e1000_read_mac_addr(&adapter->hw))
            DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
      memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
      memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);

      if (!is_valid_ether_addr(netdev->perm_addr)) {
            DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
            err = -EIO;
            goto err_eeprom;
      }

      e1000_read_part_num(&adapter->hw, &(adapter->part_num));

      e1000_get_bus_info(&adapter->hw);

      init_timer(&adapter->tx_fifo_stall_timer);
      adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
      adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;

      init_timer(&adapter->watchdog_timer);
      adapter->watchdog_timer.function = &e1000_watchdog;
      adapter->watchdog_timer.data = (unsigned long) adapter;

      init_timer(&adapter->phy_info_timer);
      adapter->phy_info_timer.function = &e1000_update_phy_info;
      adapter->phy_info_timer.data = (unsigned long) adapter;

      INIT_WORK(&adapter->reset_task,
            (void (*)(void *))e1000_reset_task, netdev);

      /* we're going to reset, so assume we have no link for now */

      netif_carrier_off(netdev);
      netif_stop_queue(netdev);

      e1000_check_options(adapter);

      /* Initial Wake on LAN setting
       * If APM wake is enabled in the EEPROM,
       * enable the ACPI Magic Packet filter
       */

      switch (adapter->hw.mac_type) {
      case e1000_82542_rev2_0:
      case e1000_82542_rev2_1:
      case e1000_82543:
            break;
      case e1000_82544:
            e1000_read_eeprom(&adapter->hw,
                  EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
            eeprom_apme_mask = E1000_EEPROM_82544_APM;
            break;
      case e1000_ich8lan:
            e1000_read_eeprom(&adapter->hw,
                  EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
            eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
            break;
      case e1000_82546:
      case e1000_82546_rev_3:
      case e1000_82571:
      case e1000_80003es2lan:
            if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1){
                  e1000_read_eeprom(&adapter->hw,
                        EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
                  break;
            }
            /* Fall Through */
      default:
            e1000_read_eeprom(&adapter->hw,
                  EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
            break;
      }
      if (eeprom_data & eeprom_apme_mask)
            adapter->wol |= E1000_WUFC_MAG;

      /* print bus type/speed/width info */
      {
      struct e1000_hw *hw = &adapter->hw;
      DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
            ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
             (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
            ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
             (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
             (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
             (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
             (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
            ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
             (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
             (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
             "32-bit"));
      }

      for (i = 0; i < 6; i++)
            printk("%2.2x%c", netdev->dev_addr[i], i == 5 ? '\n' : ':');

      /* reset the hardware with the new settings */
      e1000_reset(adapter);

      /* If the controller is 82573 and f/w is AMT, do not set
       * DRV_LOAD until the interface is up.  For all other cases,
       * let the f/w know that the h/w is now under the control
       * of the driver. */
      if (adapter->hw.mac_type != e1000_82573 ||
          !e1000_check_mng_mode(&adapter->hw))
            e1000_get_hw_control(adapter);

      strcpy(netdev->name, "eth%d");
      if ((err = register_netdev(netdev)))
            goto err_register;

      DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");

      cards_found++;
      return 0;

err_register:
      if (adapter->hw.flash_address)
            iounmap(adapter->hw.flash_address);
err_flashmap:
err_sw_init:
err_eeprom:
      iounmap(adapter->hw.hw_addr);
err_ioremap:
      free_netdev(netdev);
err_alloc_etherdev:
      pci_release_regions(pdev);
      return err;
}

/**
 * e1000_remove - Device Removal Routine
 * @pdev: PCI device information struct
 *
 * e1000_remove is called by the PCI subsystem to alert the driver
 * that it should release a PCI device.  The could be caused by a
 * Hot-Plug event, or because the driver is going to be removed from
 * memory.
 **/

static void __devexit
e1000_remove(struct pci_dev *pdev)
{
      struct net_device *netdev = pci_get_drvdata(pdev);
      struct e1000_adapter *adapter = netdev_priv(netdev);
      uint32_t manc;
#ifdef CONFIG_E1000_NAPI
      int i;
#endif

      flush_scheduled_work();

      if (adapter->hw.mac_type >= e1000_82540 &&
         adapter->hw.mac_type != e1000_ich8lan &&
         adapter->hw.media_type == e1000_media_type_copper) {
            manc = E1000_READ_REG(&adapter->hw, MANC);
            if (manc & E1000_MANC_SMBUS_EN) {
                  manc |= E1000_MANC_ARP_EN;
                  E1000_WRITE_REG(&adapter->hw, MANC, manc);
            }
      }

      /* Release control of h/w to f/w.  If f/w is AMT enabled, this
       * would have already happened in close and is redundant. */
      e1000_release_hw_control(adapter);

      unregister_netdev(netdev);
#ifdef CONFIG_E1000_NAPI
      for (i = 0; i < adapter->num_rx_queues; i++)
            dev_put(&adapter->polling_netdev[i]);
#endif

      if (!e1000_check_phy_reset_block(&adapter->hw))
            e1000_phy_hw_reset(&adapter->hw);

      kfree(adapter->tx_ring);
      kfree(adapter->rx_ring);
#ifdef CONFIG_E1000_NAPI
      kfree(adapter->polling_netdev);
#endif

      iounmap(adapter->hw.hw_addr);
      if (adapter->hw.flash_address)
            iounmap(adapter->hw.flash_address);
      pci_release_regions(pdev);

      free_netdev(netdev);

      pci_disable_device(pdev);
}

/**
 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
 * @adapter: board private structure to initialize
 *
 * e1000_sw_init initializes the Adapter private data structure.
 * Fields are initialized based on PCI device information and
 * OS network device settings (MTU size).
 **/

static int __devinit
e1000_sw_init(struct e1000_adapter *adapter)
{
      struct e1000_hw *hw = &adapter->hw;
      struct net_device *netdev = adapter->netdev;
      struct pci_dev *pdev = adapter->pdev;
#ifdef CONFIG_E1000_NAPI
      int i;
#endif

      /* PCI config space info */

      hw->vendor_id = pdev->vendor;
      hw->device_id = pdev->device;
      hw->subsystem_vendor_id = pdev->subsystem_vendor;
      hw->subsystem_id = pdev->subsystem_device;

      pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);

      pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);

      adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
      adapter->rx_ps_bsize0 = E1000_RXBUFFER_128;
      hw->max_frame_size = netdev->mtu +
                       ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
      hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;

      /* identify the MAC */

      if (e1000_set_mac_type(hw)) {
            DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
            return -EIO;
      }

      switch (hw->mac_type) {
      default:
            break;
      case e1000_82541:
      case e1000_82547:
      case e1000_82541_rev_2:
      case e1000_82547_rev_2:
            hw->phy_init_script = 1;
            break;
      }

      e1000_set_media_type(hw);

      hw->wait_autoneg_complete = FALSE;
      hw->tbi_compatibility_en = TRUE;
      hw->adaptive_ifs = TRUE;

      /* Copper options */

      if (hw->media_type == e1000_media_type_copper) {
            hw->mdix = AUTO_ALL_MODES;
            hw->disable_polarity_correction = FALSE;
            hw->master_slave = E1000_MASTER_SLAVE;
      }

      adapter->num_tx_queues = 1;
      adapter->num_rx_queues = 1;

      if (e1000_alloc_queues(adapter)) {
            DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
            return -ENOMEM;
      }

#ifdef CONFIG_E1000_NAPI
      for (i = 0; i < adapter->num_rx_queues; i++) {
            adapter->polling_netdev[i].priv = adapter;
            adapter->polling_netdev[i].poll = &e1000_clean;
            adapter->polling_netdev[i].weight = 64;
            dev_hold(&adapter->polling_netdev[i]);
            set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
      }
      spin_lock_init(&adapter->tx_queue_lock);
#endif

      atomic_set(&adapter->irq_sem, 1);
      spin_lock_init(&adapter->stats_lock);

      return 0;
}

/**
 * e1000_alloc_queues - Allocate memory for all rings
 * @adapter: board private structure to initialize
 *
 * We allocate one ring per queue at run-time since we don't know the
 * number of queues at compile-time.  The polling_netdev array is
 * intended for Multiqueue, but should work fine with a single queue.
 **/

static int __devinit
e1000_alloc_queues(struct e1000_adapter *adapter)
{
      int size;

      size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
      adapter->tx_ring = kmalloc(size, GFP_KERNEL);
      if (!adapter->tx_ring)
            return -ENOMEM;
      memset(adapter->tx_ring, 0, size);

      size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
      adapter->rx_ring = kmalloc(size, GFP_KERNEL);
      if (!adapter->rx_ring) {
            kfree(adapter->tx_ring);
            return -ENOMEM;
      }
      memset(adapter->rx_ring, 0, size);

#ifdef CONFIG_E1000_NAPI
      size = sizeof(struct net_device) * adapter->num_rx_queues;
      adapter->polling_netdev = kmalloc(size, GFP_KERNEL);
      if (!adapter->polling_netdev) {
            kfree(adapter->tx_ring);
            kfree(adapter->rx_ring);
            return -ENOMEM;
      }
      memset(adapter->polling_netdev, 0, size);
#endif

      return E1000_SUCCESS;
}

/**
 * e1000_open - Called when a network interface is made active
 * @netdev: network interface device structure
 *
 * Returns 0 on success, negative value on failure
 *
 * The open entry point is called when a network interface is made
 * active by the system (IFF_UP).  At this point all resources needed
 * for transmit and receive operations are allocated, the interrupt
 * handler is registered with the OS, the watchdog timer is started,
 * and the stack is notified that the interface is ready.
 **/

static int
e1000_open(struct net_device *netdev)
{
      struct e1000_adapter *adapter = netdev_priv(netdev);
      int err;

      /* disallow open during test */
      if (test_bit(__E1000_DRIVER_TESTING, &adapter->flags))
            return -EBUSY;

      /* allocate transmit descriptors */

      if ((err = e1000_setup_all_tx_resources(adapter)))
            goto err_setup_tx;

      /* allocate receive descriptors */

      if ((err = e1000_setup_all_rx_resources(adapter)))
            goto err_setup_rx;

      err = e1000_request_irq(adapter);
      if (err)
            goto err_up;

      e1000_power_up_phy(adapter);

      if ((err = e1000_up(adapter)))
            goto err_up;
      adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
      if ((adapter->hw.mng_cookie.status &
                    E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
            e1000_update_mng_vlan(adapter);
      }

      /* If AMT is enabled, let the firmware know that the network
       * interface is now open */
      if (adapter->hw.mac_type == e1000_82573 &&
          e1000_check_mng_mode(&adapter->hw))
            e1000_get_hw_control(adapter);

      return E1000_SUCCESS;

err_up:
      e1000_free_all_rx_resources(adapter);
err_setup_rx:
      e1000_free_all_tx_resources(adapter);
err_setup_tx:
      e1000_reset(adapter);

      return err;
}

/**
 * e1000_close - Disables a network interface
 * @netdev: network interface device structure
 *
 * Returns 0, this is not allowed to fail
 *
 * The close entry point is called when an interface is de-activated
 * by the OS.  The hardware is still under the drivers control, but
 * needs to be disabled.  A global MAC reset is issued to stop the
 * hardware, and all transmit and receive resources are freed.
 **/

static int
e1000_close(struct net_device *netdev)
{
      struct e1000_adapter *adapter = netdev_priv(netdev);

      WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
      e1000_down(adapter);
      e1000_power_down_phy(adapter);
      e1000_free_irq(adapter);

      e1000_free_all_tx_resources(adapter);
      e1000_free_all_rx_resources(adapter);

      if ((adapter->hw.mng_cookie.status &
                    E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
            e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
      }

      /* If AMT is enabled, let the firmware know that the network
       * interface is now closed */
      if (adapter->hw.mac_type == e1000_82573 &&
          e1000_check_mng_mode(&adapter->hw))
            e1000_release_hw_control(adapter);

      return 0;
}

/**
 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
 * @adapter: address of board private structure
 * @start: address of beginning of memory
 * @len: length of memory
 **/
static boolean_t
e1000_check_64k_bound(struct e1000_adapter *adapter,
                  void *start, unsigned long len)
{
      unsigned long begin = (unsigned long) start;
      unsigned long end = begin + len;

      /* First rev 82545 and 82546 need to not allow any memory
       * write location to cross 64k boundary due to errata 23 */
      if (adapter->hw.mac_type == e1000_82545 ||
          adapter->hw.mac_type == e1000_82546) {
            return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
      }

      return TRUE;
}

/**
 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
 * @adapter: board private structure
 * @txdr:    tx descriptor ring (for a specific queue) to setup
 *
 * Return 0 on success, negative on failure
 **/

static int
e1000_setup_tx_resources(struct e1000_adapter *adapter,
                         struct e1000_tx_ring *txdr)
{
      struct pci_dev *pdev = adapter->pdev;
      int size;

      size = sizeof(struct e1000_buffer) * txdr->count;
      txdr->buffer_info = vmalloc(size);
      if (!txdr->buffer_info) {
            DPRINTK(PROBE, ERR,
            "Unable to allocate memory for the transmit descriptor ring\n");
            return -ENOMEM;
      }
      memset(txdr->buffer_info, 0, size);

      /* round up to nearest 4K */

      txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
      E1000_ROUNDUP(txdr->size, 4096);

      txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
      if (!txdr->desc) {
setup_tx_desc_die:
            vfree(txdr->buffer_info);
            DPRINTK(PROBE, ERR,
            "Unable to allocate memory for the transmit descriptor ring\n");
            return -ENOMEM;
      }

      /* Fix for errata 23, can't cross 64kB boundary */
      if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
            void *olddesc = txdr->desc;
            dma_addr_t olddma = txdr->dma;
            DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
                             "at %p\n", txdr->size, txdr->desc);
            /* Try again, without freeing the previous */
            txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
            /* Failed allocation, critical failure */
            if (!txdr->desc) {
                  pci_free_consistent(pdev, txdr->size, olddesc, olddma);
                  goto setup_tx_desc_die;
            }

            if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
                  /* give up */
                  pci_free_consistent(pdev, txdr->size, txdr->desc,
                                  txdr->dma);
                  pci_free_consistent(pdev, txdr->size, olddesc, olddma);
                  DPRINTK(PROBE, ERR,
                        "Unable to allocate aligned memory "
                        "for the transmit descriptor ring\n");
                  vfree(txdr->buffer_info);
                  return -ENOMEM;
            } else {
                  /* Free old allocation, new allocation was successful */
                  pci_free_consistent(pdev, txdr->size, olddesc, olddma);
            }
      }
      memset(txdr->desc, 0, txdr->size);

      txdr->next_to_use = 0;
      txdr->next_to_clean = 0;
      spin_lock_init(&txdr->tx_lock);

      return 0;
}

/**
 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
 *                        (Descriptors) for all queues
 * @adapter: board private structure
 *
 * If this function returns with an error, then it's possible one or
 * more of the rings is populated (while the rest are not).  It is the
 * callers duty to clean those orphaned rings.
 *
 * Return 0 on success, negative on failure
 **/

int
e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
{
      int i, err = 0;

      for (i = 0; i < adapter->num_tx_queues; i++) {
            err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
            if (err) {
                  DPRINTK(PROBE, ERR,
                        "Allocation for Tx Queue %u failed\n", i);
                  break;
            }
      }

      return err;
}

/**
 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
 * @adapter: board private structure
 *
 * Configure the Tx unit of the MAC after a reset.
 **/

static void
e1000_configure_tx(struct e1000_adapter *adapter)
{
      uint64_t tdba;
      struct e1000_hw *hw = &adapter->hw;
      uint32_t tdlen, tctl, tipg, tarc;
      uint32_t ipgr1, ipgr2;

      /* Setup the HW Tx Head and Tail descriptor pointers */

      switch (adapter->num_tx_queues) {
      case 1:
      default:
            tdba = adapter->tx_ring[0].dma;
            tdlen = adapter->tx_ring[0].count *
                  sizeof(struct e1000_tx_desc);
            E1000_WRITE_REG(hw, TDLEN, tdlen);
            E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
            E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
            E1000_WRITE_REG(hw, TDT, 0);
            E1000_WRITE_REG(hw, TDH, 0);
            adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
            adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
            break;
      }

      /* Set the default values for the Tx Inter Packet Gap timer */

      if (hw->media_type == e1000_media_type_fiber ||
          hw->media_type == e1000_media_type_internal_serdes)
            tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
      else
            tipg = DEFAULT_82543_TIPG_IPGT_COPPER;

      switch (hw->mac_type) {
      case e1000_82542_rev2_0:
      case e1000_82542_rev2_1:
            tipg = DEFAULT_82542_TIPG_IPGT;
            ipgr1 = DEFAULT_82542_TIPG_IPGR1;
            ipgr2 = DEFAULT_82542_TIPG_IPGR2;
            break;
      case e1000_80003es2lan:
            ipgr1 = DEFAULT_82543_TIPG_IPGR1;
            ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
            break;
      default:
            ipgr1 = DEFAULT_82543_TIPG_IPGR1;
            ipgr2 = DEFAULT_82543_TIPG_IPGR2;
            break;
      }
      tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
      tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
      E1000_WRITE_REG(hw, TIPG, tipg);

      /* Set the Tx Interrupt Delay register */

      E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
      if (hw->mac_type >= e1000_82540)
            E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);

      /* Program the Transmit Control Register */

      tctl = E1000_READ_REG(hw, TCTL);

      tctl &= ~E1000_TCTL_CT;
      tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
            (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);

#ifdef DISABLE_MULR
      /* disable Multiple Reads for debugging */
      tctl &= ~E1000_TCTL_MULR;
#endif

      if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
            tarc = E1000_READ_REG(hw, TARC0);
            tarc |= ((1 << 25) | (1 << 21));
            E1000_WRITE_REG(hw, TARC0, tarc);
            tarc = E1000_READ_REG(hw, TARC1);
            tarc |= (1 << 25);
            if (tctl & E1000_TCTL_MULR)
                  tarc &= ~(1 << 28);
            else
                  tarc |= (1 << 28);
            E1000_WRITE_REG(hw, TARC1, tarc);
      } else if (hw->mac_type == e1000_80003es2lan) {
            tarc = E1000_READ_REG(hw, TARC0);
            tarc |= 1;
            if (hw->media_type == e1000_media_type_internal_serdes)
                  tarc |= (1 << 20);
            E1000_WRITE_REG(hw, TARC0, tarc);
            tarc = E1000_READ_REG(hw, TARC1);
            tarc |= 1;
            E1000_WRITE_REG(hw, TARC1, tarc);
      }

      e1000_config_collision_dist(hw);

      /* Setup Transmit Descriptor Settings for eop descriptor */
      adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP |
            E1000_TXD_CMD_IFCS;

      if (hw->mac_type < e1000_82543)
            adapter->txd_cmd |= E1000_TXD_CMD_RPS;
      else
            adapter->txd_cmd |= E1000_TXD_CMD_RS;

      /* Cache if we're 82544 running in PCI-X because we'll
       * need this to apply a workaround later in the send path. */
      if (hw->mac_type == e1000_82544 &&
          hw->bus_type == e1000_bus_type_pcix)
            adapter->pcix_82544 = 1;

      E1000_WRITE_REG(hw, TCTL, tctl);

}

/**
 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
 * @adapter: board private structure
 * @rxdr:    rx descriptor ring (for a specific queue) to setup
 *
 * Returns 0 on success, negative on failure
 **/

static int
e1000_setup_rx_resources(struct e1000_adapter *adapter,
                         struct e1000_rx_ring *rxdr)
{
      struct pci_dev *pdev = adapter->pdev;
      int size, desc_len;

      size = sizeof(struct e1000_buffer) * rxdr->count;
      rxdr->buffer_info = vmalloc(size);
      if (!rxdr->buffer_info) {
            DPRINTK(PROBE, ERR,
            "Unable to allocate memory for the receive descriptor ring\n");
            return -ENOMEM;
      }
      memset(rxdr->buffer_info, 0, size);

      size = sizeof(struct e1000_ps_page) * rxdr->count;
      rxdr->ps_page = kmalloc(size, GFP_KERNEL);
      if (!rxdr->ps_page) {
            vfree(rxdr->buffer_info);
            DPRINTK(PROBE, ERR,
            "Unable to allocate memory for the receive descriptor ring\n");
            return -ENOMEM;
      }
      memset(rxdr->ps_page, 0, size);

      size = sizeof(struct e1000_ps_page_dma) * rxdr->count;
      rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL);
      if (!rxdr->ps_page_dma) {
            vfree(rxdr->buffer_info);
            kfree(rxdr->ps_page);
            DPRINTK(PROBE, ERR,
            "Unable to allocate memory for the receive descriptor ring\n");
            return -ENOMEM;
      }
      memset(rxdr->ps_page_dma, 0, size);

      if (adapter->hw.mac_type <= e1000_82547_rev_2)
            desc_len = sizeof(struct e1000_rx_desc);
      else
            desc_len = sizeof(union e1000_rx_desc_packet_split);

      /* Round up to nearest 4K */

      rxdr->size = rxdr->count * desc_len;
      E1000_ROUNDUP(rxdr->size, 4096);

      rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);

      if (!rxdr->desc) {
            DPRINTK(PROBE, ERR,
            "Unable to allocate memory for the receive descriptor ring\n");
setup_rx_desc_die:
            vfree(rxdr->buffer_info);
            kfree(rxdr->ps_page);
            kfree(rxdr->ps_page_dma);
            return -ENOMEM;
      }

      /* Fix for errata 23, can't cross 64kB boundary */
      if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
            void *olddesc = rxdr->desc;
            dma_addr_t olddma = rxdr->dma;
            DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
                             "at %p\n", rxdr->size, rxdr->desc);
            /* Try again, without freeing the previous */
            rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
            /* Failed allocation, critical failure */
            if (!rxdr->desc) {
                  pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
                  DPRINTK(PROBE, ERR,
                        "Unable to allocate memory "
                        "for the receive descriptor ring\n");
                  goto setup_rx_desc_die;
            }

            if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
                  /* give up */
                  pci_free_consistent(pdev, rxdr->size, rxdr->desc,
                                  rxdr->dma);
                  pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
                  DPRINTK(PROBE, ERR,
                        "Unable to allocate aligned memory "
                        "for the receive descriptor ring\n");
                  goto setup_rx_desc_die;
            } else {
                  /* Free old allocation, new allocation was successful */
                  pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
            }
      }
      memset(rxdr->desc, 0, rxdr->size);

      rxdr->next_to_clean = 0;
      rxdr->next_to_use = 0;

      return 0;
}

/**
 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
 *                        (Descriptors) for all queues
 * @adapter: board private structure
 *
 * If this function returns with an error, then it's possible one or
 * more of the rings is populated (while the rest are not).  It is the
 * callers duty to clean those orphaned rings.
 *
 * Return 0 on success, negative on failure
 **/

int
e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
{
      int i, err = 0;

      for (i = 0; i < adapter->num_rx_queues; i++) {
            err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
            if (err) {
                  DPRINTK(PROBE, ERR,
                        "Allocation for Rx Queue %u failed\n", i);
                  break;
            }
      }

      return err;
}

/**
 * e1000_setup_rctl - configure the receive control registers
 * @adapter: Board private structure
 **/
#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
                  (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
static void
e1000_setup_rctl(struct e1000_adapter *adapter)
{
      uint32_t rctl, rfctl;
      uint32_t psrctl = 0;
#ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
      uint32_t pages = 0;
#endif

      rctl = E1000_READ_REG(&adapter->hw, RCTL);

      rctl &= ~(3 << E1000_RCTL_MO_SHIFT);

      rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
            E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
            (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);

      if (adapter->hw.tbi_compatibility_on == 1)
            rctl |= E1000_RCTL_SBP;
      else
            rctl &= ~E1000_RCTL_SBP;

      if (adapter->netdev->mtu <= ETH_DATA_LEN)
            rctl &= ~E1000_RCTL_LPE;
      else
            rctl |= E1000_RCTL_LPE;

      /* Setup buffer sizes */
      rctl &= ~E1000_RCTL_SZ_4096;
      rctl |= E1000_RCTL_BSEX;
      switch (adapter->rx_buffer_len) {
            case E1000_RXBUFFER_256:
                  rctl |= E1000_RCTL_SZ_256;
                  rctl &= ~E1000_RCTL_BSEX;
                  break;
            case E1000_RXBUFFER_512:
                  rctl |= E1000_RCTL_SZ_512;
                  rctl &= ~E1000_RCTL_BSEX;
                  break;
            case E1000_RXBUFFER_1024:
                  rctl |= E1000_RCTL_SZ_1024;
                  rctl &= ~E1000_RCTL_BSEX;
                  break;
            case E1000_RXBUFFER_2048:
            default:
                  rctl |= E1000_RCTL_SZ_2048;
                  rctl &= ~E1000_RCTL_BSEX;
                  break;
            case E1000_RXBUFFER_4096:
                  rctl |= E1000_RCTL_SZ_4096;
                  break;
            case E1000_RXBUFFER_8192:
                  rctl |= E1000_RCTL_SZ_8192;
                  break;
            case E1000_RXBUFFER_16384:
                  rctl |= E1000_RCTL_SZ_16384;
                  break;
      }

#ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
      /* 82571 and greater support packet-split where the protocol
       * header is placed in skb->data and the packet data is
       * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
       * In the case of a non-split, skb->data is linearly filled,
       * followed by the page buffers.  Therefore, skb->data is
       * sized to hold the largest protocol header.
       */
      pages = PAGE_USE_COUNT(adapter->netdev->mtu);
      if ((adapter->hw.mac_type > e1000_82547_rev_2) && (pages <= 3) &&
          PAGE_SIZE <= 16384)
            adapter->rx_ps_pages = pages;
      else
            adapter->rx_ps_pages = 0;
#endif
      if (adapter->rx_ps_pages) {
            /* Configure extra packet-split registers */
            rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
            rfctl |= E1000_RFCTL_EXTEN;
            /* disable IPv6 packet split support */
            rfctl |= E1000_RFCTL_IPV6_DIS;
            E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);

            rctl |= E1000_RCTL_DTYP_PS;

            psrctl |= adapter->rx_ps_bsize0 >>
                  E1000_PSRCTL_BSIZE0_SHIFT;

            switch (adapter->rx_ps_pages) {
            case 3:
                  psrctl |= PAGE_SIZE <<
                        E1000_PSRCTL_BSIZE3_SHIFT;
            case 2:
                  psrctl |= PAGE_SIZE <<
                        E1000_PSRCTL_BSIZE2_SHIFT;
            case 1:
                  psrctl |= PAGE_SIZE >>
                        E1000_PSRCTL_BSIZE1_SHIFT;
                  break;
            }

            E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
      }

      E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
}

/**
 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
 * @adapter: board private structure
 *
 * Configure the Rx unit of the MAC after a reset.
 **/

static void
e1000_configure_rx(struct e1000_adapter *adapter)
{
      uint64_t rdba;
      struct e1000_hw *hw = &adapter->hw;
      uint32_t rdlen, rctl, rxcsum, ctrl_ext;

      if (adapter->rx_ps_pages) {
            /* this is a 32 byte descriptor */
            rdlen = adapter->rx_ring[0].count *
                  sizeof(union e1000_rx_desc_packet_split);
            adapter->clean_rx = e1000_clean_rx_irq_ps;
            adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
      } else {
            rdlen = adapter->rx_ring[0].count *
                  sizeof(struct e1000_rx_desc);
            adapter->clean_rx = e1000_clean_rx_irq;
            adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
      }

      /* disable receives while setting up the descriptors */
      rctl = E1000_READ_REG(hw, RCTL);
      E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);

      /* set the Receive Delay Timer Register */
      E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);

      if (hw->mac_type >= e1000_82540) {
            E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
            if (adapter->itr > 1)
                  E1000_WRITE_REG(hw, ITR,
                        1000000000 / (adapter->itr * 256));
      }

      if (hw->mac_type >= e1000_82571) {
            ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
            /* Reset delay timers after every interrupt */
            ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
#ifdef CONFIG_E1000_NAPI
            /* Auto-Mask interrupts upon ICR read. */
            ctrl_ext |= E1000_CTRL_EXT_IAME;
#endif
            E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
            E1000_WRITE_REG(hw, IAM, ~0);
            E1000_WRITE_FLUSH(hw);
      }

      /* Setup the HW Rx Head and Tail Descriptor Pointers and
       * the Base and Length of the Rx Descriptor Ring */
      switch (adapter->num_rx_queues) {
      case 1:
      default:
            rdba = adapter->rx_ring[0].dma;
            E1000_WRITE_REG(hw, RDLEN, rdlen);
            E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
            E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
            E1000_WRITE_REG(hw, RDT, 0);
            E1000_WRITE_REG(hw, RDH, 0);
            adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
            adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
            break;
      }

      /* Enable 82543 Receive Checksum Offload for TCP and UDP */
      if (hw->mac_type >= e1000_82543) {
            rxcsum = E1000_READ_REG(hw, RXCSUM);
            if (adapter->rx_csum == TRUE) {
                  rxcsum |= E1000_RXCSUM_TUOFL;

                  /* Enable 82571 IPv4 payload checksum for UDP fragments
                   * Must be used in conjunction with packet-split. */
                  if ((hw->mac_type >= e1000_82571) &&
                      (adapter->rx_ps_pages)) {
                        rxcsum |= E1000_RXCSUM_IPPCSE;
                  }
            } else {
                  rxcsum &= ~E1000_RXCSUM_TUOFL;
                  /* don't need to clear IPPCSE as it defaults to 0 */
            }
            E1000_WRITE_REG(hw, RXCSUM, rxcsum);
      }

      /* Enable Receives */
      E1000_WRITE_REG(hw, RCTL, rctl);
}

/**
 * e1000_free_tx_resources - Free Tx Resources per Queue
 * @adapter: board private structure
 * @tx_ring: Tx descriptor ring for a specific queue
 *
 * Free all transmit software resources
 **/

static void
e1000_free_tx_resources(struct e1000_adapter *adapter,
                        struct e1000_tx_ring *tx_ring)
{
      struct pci_dev *pdev = adapter->pdev;

      e1000_clean_tx_ring(adapter, tx_ring);

      vfree(tx_ring->buffer_info);
      tx_ring->buffer_info = NULL;

      pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);

      tx_ring->desc = NULL;
}

/**
 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
 * @adapter: board private structure
 *
 * Free all transmit software resources
 **/

void
e1000_free_all_tx_resources(struct e1000_adapter *adapter)
{
      int i;

      for (i = 0; i < adapter->num_tx_queues; i++)
            e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
}

static void
e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
                  struct e1000_buffer *buffer_info)
{
      if (buffer_info->dma) {
            pci_unmap_page(adapter->pdev,
                        buffer_info->dma,
                        buffer_info->length,
                        PCI_DMA_TODEVICE);
      }
      if (buffer_info->skb)
            dev_kfree_skb_any(buffer_info->skb);
      memset(buffer_info, 0, sizeof(struct e1000_buffer));
}

/**
 * e1000_clean_tx_ring - Free Tx Buffers
 * @adapter: board private structure
 * @tx_ring: ring to be cleaned
 **/

static void
e1000_clean_tx_ring(struct e1000_adapter *adapter,
                    struct e1000_tx_ring *tx_ring)
{
      struct e1000_buffer *buffer_info;
      unsigned long size;
      unsigned int i;

      /* Free all the Tx ring sk_buffs */

      for (i = 0; i < tx_ring->count; i++) {
            buffer_info = &tx_ring->buffer_info[i];
            e1000_unmap_and_free_tx_resource(adapter, buffer_info);
      }

      size = sizeof(struct e1000_buffer) * tx_ring->count;
      memset(tx_ring->buffer_info, 0, size);

      /* Zero out the descriptor ring */

      memset(tx_ring->desc, 0, tx_ring->size);

      tx_ring->next_to_use = 0;
      tx_ring->next_to_clean = 0;
      tx_ring->last_tx_tso = 0;

      writel(0, adapter->hw.hw_addr + tx_ring->tdh);
      writel(0, adapter->hw.hw_addr + tx_ring->tdt);
}

/**
 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
 * @adapter: board private structure
 **/

static void
e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
{
      int i;

      for (i = 0; i < adapter->num_tx_queues; i++)
            e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
}

/**
 * e1000_free_rx_resources - Free Rx Resources
 * @adapter: board private structure
 * @rx_ring: ring to clean the resources from
 *
 * Free all receive software resources
 **/

static void
e1000_free_rx_resources(struct e1000_adapter *adapter,
                        struct e1000_rx_ring *rx_ring)
{
      struct pci_dev *pdev = adapter->pdev;

      e1000_clean_rx_ring(adapter, rx_ring);

      vfree(rx_ring->buffer_info);
      rx_ring->buffer_info = NULL;
      kfree(rx_ring->ps_page);
      rx_ring->ps_page = NULL;
      kfree(rx_ring->ps_page_dma);
      rx_ring->ps_page_dma = NULL;

      pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);

      rx_ring->desc = NULL;
}

/**
 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
 * @adapter: board private structure
 *
 * Free all receive software resources
 **/

void
e1000_free_all_rx_resources(struct e1000_adapter *adapter)
{
      int i;

      for (i = 0; i < adapter->num_rx_queues; i++)
            e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
}

/**
 * e1000_clean_rx_ring - Free Rx Buffers per Queue
 * @adapter: board private structure
 * @rx_ring: ring to free buffers from
 **/

static void
e1000_clean_rx_ring(struct e1000_adapter *adapter,
                    struct e1000_rx_ring *rx_ring)
{
      struct e1000_buffer *buffer_info;
      struct e1000_ps_page *ps_page;
      struct e1000_ps_page_dma *ps_page_dma;
      struct pci_dev *pdev = adapter->pdev;
      unsigned long size;
      unsigned int i, j;

      /* Free all the Rx ring sk_buffs */
      for (i = 0; i < rx_ring->count; i++) {
            buffer_info = &rx_ring->buffer_info[i];
            if (buffer_info->skb) {
                  pci_unmap_single(pdev,
                               buffer_info->dma,
                               buffer_info->length,
                               PCI_DMA_FROMDEVICE);

                  dev_kfree_skb(buffer_info->skb);
                  buffer_info->skb = NULL;
            }
            ps_page = &rx_ring->ps_page[i];
            ps_page_dma = &rx_ring->ps_page_dma[i];
            for (j = 0; j < adapter->rx_ps_pages; j++) {
                  if (!ps_page->ps_page[j]) break;
                  pci_unmap_page(pdev,
                               ps_page_dma->ps_page_dma[j],
                               PAGE_SIZE, PCI_DMA_FROMDEVICE);
                  ps_page_dma->ps_page_dma[j] = 0;
                  put_page(ps_page->ps_page[j]);
                  ps_page->ps_page[j] = NULL;
            }
      }

      size = sizeof(struct e1000_buffer) * rx_ring->count;
      memset(rx_ring->buffer_info, 0, size);
      size = sizeof(struct e1000_ps_page) * rx_ring->count;
      memset(rx_ring->ps_page, 0, size);
      size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
      memset(rx_ring->ps_page_dma, 0, size);

      /* Zero out the descriptor ring */

      memset(rx_ring->desc, 0, rx_ring->size);

      rx_ring->next_to_clean = 0;
      rx_ring->next_to_use = 0;

      writel(0, adapter->hw.hw_addr + rx_ring->rdh);
      writel(0, adapter->hw.hw_addr + rx_ring->rdt);
}

/**
 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
 * @adapter: board private structure
 **/

static void
e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
{
      int i;

      for (i = 0; i < adapter->num_rx_queues; i++)
            e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
}

/* The 82542 2.0 (revision 2) needs to have the receive unit in reset
 * and memory write and invalidate disabled for certain operations
 */
static void
e1000_enter_82542_rst(struct e1000_adapter *adapter)
{
      struct net_device *netdev = adapter->netdev;
      uint32_t rctl;

      e1000_pci_clear_mwi(&adapter->hw);

      rctl = E1000_READ_REG(&adapter->hw, RCTL);
      rctl |= E1000_RCTL_RST;
      E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
      E1000_WRITE_FLUSH(&adapter->hw);
      mdelay(5);

      if (netif_running(netdev))
            e1000_clean_all_rx_rings(adapter);
}

static void
e1000_leave_82542_rst(struct e1000_adapter *adapter)
{
      struct net_device *netdev = adapter->netdev;
      uint32_t rctl;

      rctl = E1000_READ_REG(&adapter->hw, RCTL);
      rctl &= ~E1000_RCTL_RST;
      E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
      E1000_WRITE_FLUSH(&adapter->hw);
      mdelay(5);

      if (adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
            e1000_pci_set_mwi(&adapter->hw);

      if (netif_running(netdev)) {
            /* No need to loop, because 82542 supports only 1 queue */
            struct e1000_rx_ring *ring = &adapter->rx_ring[0];
            e1000_configure_rx(adapter);
            adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
      }
}

/**
 * e1000_set_mac - Change the Ethernet Address of the NIC
 * @netdev: network interface device structure
 * @p: pointer to an address structure
 *
 * Returns 0 on success, negative on failure
 **/

static int
e1000_set_mac(struct net_device *netdev, void *p)
{
      struct e1000_adapter *adapter = netdev_priv(netdev);
      struct sockaddr *addr = p;

      if (!is_valid_ether_addr(addr->sa_data))
            return -EADDRNOTAVAIL;

      /* 82542 2.0 needs to be in reset to write receive address registers */

      if (adapter->hw.mac_type == e1000_82542_rev2_0)
            e1000_enter_82542_rst(adapter);

      memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
      memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);

      e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);

      /* With 82571 controllers, LAA may be overwritten (with the default)
       * due to controller reset from the other port. */
      if (adapter->hw.mac_type == e1000_82571) {
            /* activate the work around */
            adapter->hw.laa_is_present = 1;

            /* Hold a copy of the LAA in RAR[14] This is done so that
             * between the time RAR[0] gets clobbered  and the time it
             * gets fixed (in e1000_watchdog), the actual LAA is in one
             * of the RARs and no incoming packets directed to this port
             * are dropped. Eventaully the LAA will be in RAR[0] and
             * RAR[14] */
            e1000_rar_set(&adapter->hw, adapter->hw.mac_addr,
                              E1000_RAR_ENTRIES - 1);
      }

      if (adapter->hw.mac_type == e1000_82542_rev2_0)
            e1000_leave_82542_rst(adapter);

      return 0;
}

/**
 * e1000_set_multi - Multicast and Promiscuous mode set
 * @netdev: network interface device structure
 *
 * The set_multi entry point is called whenever the multicast address
 * list or the network interface flags are updated.  This routine is
 * responsible for configuring the hardware for proper multicast,
 * promiscuous mode, and all-multi behavior.
 **/

static void
e1000_set_multi(struct net_device *netdev)
{
      struct e1000_adapter *adapter = netdev_priv(netdev);
      struct e1000_hw *hw = &adapter->hw;
      struct dev_mc_list *mc_ptr;
      uint32_t rctl;
      uint32_t hash_value;
      int i, rar_entries = E1000_RAR_ENTRIES;
      int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
                        E1000_NUM_MTA_REGISTERS_ICH8LAN :
                        E1000_NUM_MTA_REGISTERS;

      if (adapter->hw.mac_type == e1000_ich8lan)
            rar_entries = E1000_RAR_ENTRIES_ICH8LAN;

      /* reserve RAR[14] for LAA over-write work-around */
      if (adapter->hw.mac_type == e1000_82571)
            rar_entries--;

      /* Check for Promiscuous and All Multicast modes */

      rctl = E1000_READ_REG(hw, RCTL);

      if (netdev->flags & IFF_PROMISC) {
            rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
      } else if (netdev->flags & IFF_ALLMULTI) {
            rctl |= E1000_RCTL_MPE;
            rctl &= ~E1000_RCTL_UPE;
      } else {
            rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
      }

      E1000_WRITE_REG(hw, RCTL, rctl);

      /* 82542 2.0 needs to be in reset to write receive address registers */

      if (hw->mac_type == e1000_82542_rev2_0)
            e1000_enter_82542_rst(adapter);

      /* load the first 14 multicast address into the exact filters 1-14
       * RAR 0 is used for the station MAC adddress
       * if there are not 14 addresses, go ahead and clear the filters
       * -- with 82571 controllers only 0-13 entries are filled here
       */
      mc_ptr = netdev->mc_list;

      for (i = 1; i < rar_entries; i++) {
            if (mc_ptr) {
                  e1000_rar_set(hw, mc_ptr->dmi_addr, i);
                  mc_ptr = mc_ptr->next;
            } else {
                  E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
                  E1000_WRITE_FLUSH(hw);
                  E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
                  E1000_WRITE_FLUSH(hw);
            }
      }

      /* clear the old settings from the multicast hash table */

      for (i = 0; i < mta_reg_count; i++) {
            E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
            E1000_WRITE_FLUSH(hw);
      }

      /* load any remaining addresses into the hash table */

      for (; mc_ptr; mc_ptr = mc_ptr->next) {
            hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
            e1000_mta_set(hw, hash_value);
      }

      if (hw->mac_type == e1000_82542_rev2_0)
            e1000_leave_82542_rst(adapter);
}

/* Need to wait a few seconds after link up to get diagnostic information from
 * the phy */

static void
e1000_update_phy_info(unsigned long data)
{
      struct e1000_adapter *adapter = (struct e1000_adapter *) data;
      e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
}

/**
 * e1000_82547_tx_fifo_stall - Timer Call-back
 * @data: pointer to adapter cast into an unsigned long
 **/

static void
e1000_82547_tx_fifo_stall(unsigned long data)
{
      struct e1000_adapter *adapter = (struct e1000_adapter *) data;
      struct net_device *netdev = adapter->netdev;
      uint32_t tctl;

      if (atomic_read(&adapter->tx_fifo_stall)) {
            if ((E1000_READ_REG(&adapter->hw, TDT) ==
                E1000_READ_REG(&adapter->hw, TDH)) &&
               (E1000_READ_REG(&adapter->hw, TDFT) ==
                E1000_READ_REG(&adapter->hw, TDFH)) &&
               (E1000_READ_REG(&adapter->hw, TDFTS) ==
                E1000_READ_REG(&adapter->hw, TDFHS))) {
                  tctl = E1000_READ_REG(&adapter->hw, TCTL);
                  E1000_WRITE_REG(&adapter->hw, TCTL,
                              tctl & ~E1000_TCTL_EN);
                  E1000_WRITE_REG(&adapter->hw, TDFT,
                              adapter->tx_head_addr);
                  E1000_WRITE_REG(&adapter->hw, TDFH,
                              adapter->tx_head_addr);
                  E1000_WRITE_REG(&adapter->hw, TDFTS,
                              adapter->tx_head_addr);
                  E1000_WRITE_REG(&adapter->hw, TDFHS,
                              adapter->tx_head_addr);
                  E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
                  E1000_WRITE_FLUSH(&adapter->hw);

                  adapter->tx_fifo_head = 0;
                  atomic_set(&adapter->tx_fifo_stall, 0);
                  netif_wake_queue(netdev);
            } else {
                  mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
            }
      }
}

/**
 * e1000_watchdog - Timer Call-back
 * @data: pointer to adapter cast into an unsigned long
 **/
static void
e1000_watchdog(unsigned long data)
{
      struct e1000_adapter *adapter = (struct e1000_adapter *) data;
      struct net_device *netdev = adapter->netdev;
      struct e1000_tx_ring *txdr = adapter->tx_ring;
      uint32_t link, tctl;
      int32_t ret_val;

      ret_val = e1000_check_for_link(&adapter->hw);
      if ((ret_val == E1000_ERR_PHY) &&
          (adapter->hw.phy_type == e1000_phy_igp_3) &&
          (E1000_READ_REG(&adapter->hw, CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
            /* See e1000_kumeran_lock_loss_workaround() */
            DPRINTK(LINK, INFO,
                  "Gigabit has been disabled, downgrading speed\n");
      }
      if (adapter->hw.mac_type == e1000_82573) {
            e1000_enable_tx_pkt_filtering(&adapter->hw);
            if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
                  e1000_update_mng_vlan(adapter);
      }

      if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
         !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
            link = !adapter->hw.serdes_link_down;
      else
            link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;

      if (link) {
            if (!netif_carrier_ok(netdev)) {
                  boolean_t txb2b = 1;
                  e1000_get_speed_and_duplex(&adapter->hw,
                                             &adapter->link_speed,
                                             &adapter->link_duplex);

                  DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
                         adapter->link_speed,
                         adapter->link_duplex == FULL_DUPLEX ?
                         "Full Duplex" : "Half Duplex");

                  /* tweak tx_queue_len according to speed/duplex
                   * and adjust the timeout factor */
                  netdev->tx_queue_len = adapter->tx_queue_len;
                  adapter->tx_timeout_factor = 1;
                  switch (adapter->link_speed) {
                  case SPEED_10:
                        txb2b = 0;
                        netdev->tx_queue_len = 10;
                        adapter->tx_timeout_factor = 8;
                        break;
                  case SPEED_100:
                        txb2b = 0;
                        netdev->tx_queue_len = 100;
                        /* maybe add some timeout factor ? */
                        break;
                  }

                  if ((adapter->hw.mac_type == e1000_82571 ||
                       adapter->hw.mac_type == e1000_82572) &&
                      txb2b == 0) {
#define SPEED_MODE_BIT (1 << 21)
                        uint32_t tarc0;
                        tarc0 = E1000_READ_REG(&adapter->hw, TARC0);
                        tarc0 &= ~SPEED_MODE_BIT;
                        E1000_WRITE_REG(&adapter->hw, TARC0, tarc0);
                  }
                        
#ifdef NETIF_F_TSO
                  /* disable TSO for pcie and 10/100 speeds, to avoid
                   * some hardware issues */
                  if (!adapter->tso_force &&
                      adapter->hw.bus_type == e1000_bus_type_pci_express){
                        switch (adapter->link_speed) {
                        case SPEED_10:
                        case SPEED_100:
                              DPRINTK(PROBE,INFO,
                                "10/100 speed: disabling TSO\n");
                              netdev->features &= ~NETIF_F_TSO;
                              break;
                        case SPEED_1000:
                              netdev->features |= NETIF_F_TSO;
                              break;
                        default:
                              /* oops */
                              break;
                        }
                  }
#endif

                  /* enable transmits in the hardware, need to do this
                   * after setting TARC0 */
                  tctl = E1000_READ_REG(&adapter->hw, TCTL);
                  tctl |= E1000_TCTL_EN;
                  E1000_WRITE_REG(&adapter->hw, TCTL, tctl);

                  netif_carrier_on(netdev);
                  netif_wake_queue(netdev);
                  mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
                  adapter->smartspeed = 0;
            }
      } else {
            if (netif_carrier_ok(netdev)) {
                  adapter->link_speed = 0;
                  adapter->link_duplex = 0;
                  DPRINTK(LINK, INFO, "NIC Link is Down\n");
                  netif_carrier_off(netdev);
                  netif_stop_queue(netdev);
                  mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);

                  /* 80003ES2LAN workaround--
                   * For packet buffer work-around on link down event;
                   * disable receives in the ISR and
                   * reset device here in the watchdog
                   */
                  if (adapter->hw.mac_type == e1000_80003es2lan) {
                        /* reset device */
                        schedule_work(&adapter->reset_task);
                  }
            }

            e1000_smartspeed(adapter);
      }

      e1000_update_stats(adapter);

      adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
      adapter->tpt_old = adapter->stats.tpt;
      adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
      adapter->colc_old = adapter->stats.colc;

      adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
      adapter->gorcl_old = adapter->stats.gorcl;
      adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
      adapter->gotcl_old = adapter->stats.gotcl;

      e1000_update_adaptive(&adapter->hw);

      if (!netif_carrier_ok(netdev)) {
            if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
                  /* We've lost link, so the controller stops DMA,
                   * but we've got queued Tx work that's never going
                   * to get done, so reset controller to flush Tx.
                   * (Do the reset outside of interrupt context). */
                  adapter->tx_timeout_count++;
                  schedule_work(&adapter->reset_task);
            }
      }

      /* Dynamic mode for Interrupt Throttle Rate (ITR) */
      if (adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) {
            /* Symmetric Tx/Rx gets a reduced ITR=2000; Total
             * asymmetrical Tx or Rx gets ITR=8000; everyone
             * else is between 2000-8000. */
            uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000;
            uint32_t dif = (adapter->gotcl > adapter->gorcl ?
                  adapter->gotcl - adapter->gorcl :
                  adapter->gorcl - adapter->gotcl) / 10000;
            uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
            E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256));
      }

      /* Cause software interrupt to ensure rx ring is cleaned */
      E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);

      /* Force detection of hung controller every watchdog period */
      adapter->detect_tx_hung = TRUE;

      /* With 82571 controllers, LAA may be overwritten due to controller
       * reset from the other port. Set the appropriate LAA in RAR[0] */
      if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
            e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);

      /* Reset the timer */
      mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
}

#define E1000_TX_FLAGS_CSUM         0x00000001
#define E1000_TX_FLAGS_VLAN         0x00000002
#define E1000_TX_FLAGS_TSO          0x00000004
#define E1000_TX_FLAGS_IPV4         0x00000008
#define E1000_TX_FLAGS_VLAN_MASK    0xffff0000
#define E1000_TX_FLAGS_VLAN_SHIFT   16

static int
e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
          struct sk_buff *skb)
{
#ifdef NETIF_F_TSO
      struct e1000_context_desc *context_desc;
      struct e1000_buffer *buffer_info;
      unsigned int i;
      uint32_t cmd_length = 0;
      uint16_t ipcse = 0, tucse, mss;
      uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
      int err;

      if (skb_is_gso(skb)) {
            if (skb_header_cloned(skb)) {
                  err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
                  if (err)
                        return err;
            }

            hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
            mss = skb_shinfo(skb)->gso_size;
            if (skb->protocol == htons(ETH_P_IP)) {
                  skb->nh.iph->tot_len = 0;
                  skb->nh.iph->check = 0;
                  skb->h.th->check =
                        ~csum_tcpudp_magic(skb->nh.iph->saddr,
                                       skb->nh.iph->daddr,
                                       0,
                                       IPPROTO_TCP,
                                       0);
                  cmd_length = E1000_TXD_CMD_IP;
                  ipcse = skb->h.raw - skb->data - 1;
#ifdef NETIF_F_TSO_IPV6
            } else if (skb->protocol == ntohs(ETH_P_IPV6)) {
                  skb->nh.ipv6h->payload_len = 0;
                  skb->h.th->check =
                        ~csum_ipv6_magic(&skb->nh.ipv6h->saddr,
                                     &skb->nh.ipv6h->daddr,
                                     0,
                                     IPPROTO_TCP,
                                     0);
                  ipcse = 0;
#endif
            }
            ipcss = skb->nh.raw - skb->data;
            ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
            tucss = skb->h.raw - skb->data;
            tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
            tucse = 0;

            cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
                         E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));

            i = tx_ring->next_to_use;
            context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
            buffer_info = &tx_ring->buffer_info[i];

            context_desc->lower_setup.ip_fields.ipcss  = ipcss;
            context_desc->lower_setup.ip_fields.ipcso  = ipcso;
            context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
            context_desc->upper_setup.tcp_fields.tucss = tucss;
            context_desc->upper_setup.tcp_fields.tucso = tucso;
            context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
            context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
            context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
            context_desc->cmd_and_length = cpu_to_le32(cmd_length);

            buffer_info->time_stamp = jiffies;

            if (++i == tx_ring->count) i = 0;
            tx_ring->next_to_use = i;

            return TRUE;
      }
#endif

      return FALSE;
}

static boolean_t
e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
              struct sk_buff *skb)
{
      struct e1000_context_desc *context_desc;
      struct e1000_buffer *buffer_info;
      unsigned int i;
      uint8_t css;

      if (likely(skb->ip_summed == CHECKSUM_HW)) {
            css = skb->h.raw - skb->data;

            i = tx_ring->next_to_use;
            buffer_info = &tx_ring->buffer_info[i];
            context_desc = E1000_CONTEXT_DESC(*tx_ring, i);

            context_desc->upper_setup.tcp_fields.tucss = css;
            context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
            context_desc->upper_setup.tcp_fields.tucse = 0;
            context_desc->tcp_seg_setup.data = 0;
            context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);

            buffer_info->time_stamp = jiffies;

            if (unlikely(++i == tx_ring->count)) i = 0;
            tx_ring->next_to_use = i;

            return TRUE;
      }

      return FALSE;
}

#define E1000_MAX_TXD_PWR     12
#define E1000_MAX_DATA_PER_TXD      (1<<E1000_MAX_TXD_PWR)

static int
e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
             struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
             unsigned int nr_frags, unsigned int mss)
{
      struct e1000_buffer *buffer_info;
      unsigned int len = skb->len;
      unsigned int offset = 0, size, count = 0, i;
      unsigned int f;
      len -= skb->data_len;

      i = tx_ring->next_to_use;

      while (len) {
            buffer_info = &tx_ring->buffer_info[i];
            size = min(len, max_per_txd);
#ifdef NETIF_F_TSO
            /* Workaround for Controller erratum --
             * descriptor for non-tso packet in a linear SKB that follows a
             * tso gets written back prematurely before the data is fully
             * DMA'd to the controller */
            if (!skb->data_len && tx_ring->last_tx_tso &&
                !skb_is_gso(skb)) {
                  tx_ring->last_tx_tso = 0;
                  size -= 4;
            }

            /* Workaround for premature desc write-backs
             * in TSO mode.  Append 4-byte sentinel desc */
            if (unlikely(mss && !nr_frags && size == len && size > 8))
                  size -= 4;
#endif
            /* work-around for errata 10 and it applies
             * to all controllers in PCI-X mode
             * The fix is to make sure that the first descriptor of a
             * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
             */
            if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
                            (size > 2015) && count == 0))
                    size = 2015;

            /* Workaround for potential 82544 hang in PCI-X.  Avoid
             * terminating buffers within evenly-aligned dwords. */
            if (unlikely(adapter->pcix_82544 &&
               !((unsigned long)(skb->data + offset + size - 1) & 4) &&
               size > 4))
                  size -= 4;

            buffer_info->length = size;
            buffer_info->dma =
                  pci_map_single(adapter->pdev,
                        skb->data + offset,
                        size,
                        PCI_DMA_TODEVICE);
            buffer_info->time_stamp = jiffies;

            len -= size;
            offset += size;
            count++;
            if (unlikely(++i == tx_ring->count)) i = 0;
      }

      for (f = 0; f < nr_frags; f++) {
            struct skb_frag_struct *frag;

            frag = &skb_shinfo(skb)->frags[f];
            len = frag->size;
            offset = frag->page_offset;

            while (len) {
                  buffer_info = &tx_ring->buffer_info[i];
                  size = min(len, max_per_txd);
#ifdef NETIF_F_TSO
                  /* Workaround for premature desc write-backs
                   * in TSO mode.  Append 4-byte sentinel desc */
                  if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
                        size -= 4;
#endif
                  /* Workaround for potential 82544 hang in PCI-X.
                   * Avoid terminating buffers within evenly-aligned
                   * dwords. */
                  if (unlikely(adapter->pcix_82544 &&
                     !((unsigned long)(frag->page+offset+size-1) & 4) &&
                     size > 4))
                        size -= 4;

                  buffer_info->length = size;
                  buffer_info->dma =
                        pci_map_page(adapter->pdev,
                              frag->page,
                              offset,
                              size,
                              PCI_DMA_TODEVICE);
                  buffer_info->time_stamp = jiffies;

                  len -= size;
                  offset += size;
                  count++;
                  if (unlikely(++i == tx_ring->count)) i = 0;
            }
      }

      i = (i == 0) ? tx_ring->count - 1 : i - 1;
      tx_ring->buffer_info[i].skb = skb;
      tx_ring->buffer_info[first].next_to_watch = i;

      return count;
}

static void
e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
               int tx_flags, int count)
{
      struct e1000_tx_desc *tx_desc = NULL;
      struct e1000_buffer *buffer_info;
      uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
      unsigned int i;

      if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
            txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
                         E1000_TXD_CMD_TSE;
            txd_upper |= E1000_TXD_POPTS_TXSM << 8;

            if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
                  txd_upper |= E1000_TXD_POPTS_IXSM << 8;
      }

      if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
            txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
            txd_upper |= E1000_TXD_POPTS_TXSM << 8;
      }

      if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
            txd_lower |= E1000_TXD_CMD_VLE;
            txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
      }

      i = tx_ring->next_to_use;

      while (count--) {
            buffer_info = &tx_ring->buffer_info[i];
            tx_desc = E1000_TX_DESC(*tx_ring, i);
            tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
            tx_desc->lower.data =
                  cpu_to_le32(txd_lower | buffer_info->length);
            tx_desc->upper.data = cpu_to_le32(txd_upper);
            if (unlikely(++i == tx_ring->count)) i = 0;
      }

      tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);

      /* Force memory writes to complete before letting h/w
       * know there are new descriptors to fetch.  (Only
       * applicable for weak-ordered memory model archs,
       * such as IA-64). */
      wmb();

      tx_ring->next_to_use = i;
      writel(i, adapter->hw.hw_addr + tx_ring->tdt);
}

/**
 * 82547 workaround to avoid controller hang in half-duplex environment.
 * The workaround is to avoid queuing a large packet that would span
 * the internal Tx FIFO ring boundary by notifying the stack to resend
 * the packet at a later time.  This gives the Tx FIFO an opportunity to
 * flush all packets.  When that occurs, we reset the Tx FIFO pointers
 * to the beginning of the Tx FIFO.
 **/

#define E1000_FIFO_HDR              0x10
#define E1000_82547_PAD_LEN         0x3E0

static int
e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
{
      uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
      uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;

      E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);

      if (adapter->link_duplex != HALF_DUPLEX)
            goto no_fifo_stall_required;

      if (atomic_read(&adapter->tx_fifo_stall))
            return 1;

      if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
            atomic_set(&adapter->tx_fifo_stall, 1);
            return 1;
      }

no_fifo_stall_required:
      adapter->tx_fifo_head += skb_fifo_len;
      if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
            adapter->tx_fifo_head -= adapter->tx_fifo_size;
      return 0;
}

#define MINIMUM_DHCP_PACKET_SIZE 282
static int
e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
{
      struct e1000_hw *hw =  &adapter->hw;
      uint16_t length, offset;
      if (vlan_tx_tag_present(skb)) {
            if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
                  ( adapter->hw.mng_cookie.status &
                    E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
                  return 0;
      }
      if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
            struct ethhdr *eth = (struct ethhdr *) skb->data;
            if ((htons(ETH_P_IP) == eth->h_proto)) {
                  const struct iphdr *ip =
                        (struct iphdr *)((uint8_t *)skb->data+14);
                  if (IPPROTO_UDP == ip->protocol) {
                        struct udphdr *udp =
                              (struct udphdr *)((uint8_t *)ip +
                                    (ip->ihl << 2));
                        if (ntohs(udp->dest) == 67) {
                              offset = (uint8_t *)udp + 8 - skb->data;
                              length = skb->len - offset;

                              return e1000_mng_write_dhcp_info(hw,
                                          (uint8_t *)udp + 8,
                                          length);
                        }
                  }
            }
      }
      return 0;
}

#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
static int
e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
{
      struct e1000_adapter *adapter = netdev_priv(netdev);
      struct e1000_tx_ring *tx_ring;
      unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
      unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
      unsigned int tx_flags = 0;
      unsigned int len = skb->len;
      unsigned long flags;
      unsigned int nr_frags = 0;
      unsigned int mss = 0;
      int count = 0;
      int tso;
      unsigned int f;
      len -= skb->data_len;

      tx_ring = adapter->tx_ring;

      if (unlikely(skb->len <= 0)) {
            dev_kfree_skb_any(skb);
            return NETDEV_TX_OK;
      }

#ifdef NETIF_F_TSO
      mss = skb_shinfo(skb)->gso_size;
      /* The controller does a simple calculation to
       * make sure there is enough room in the FIFO before
       * initiating the DMA for each buffer.  The calc is:
       * 4 = ceil(buffer len/mss).  To make sure we don't
       * overrun the FIFO, adjust the max buffer len if mss
       * drops. */
      if (mss) {
            uint8_t hdr_len;
            max_per_txd = min(mss << 2, max_per_txd);
            max_txd_pwr = fls(max_per_txd) - 1;

      /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
       * points to just header, pull a few bytes of payload from
       * frags into skb->data */
            hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
            if (skb->data_len && (hdr_len == (skb->len - skb->data_len))) {
                  switch (adapter->hw.mac_type) {
                        unsigned int pull_size;
                  case e1000_82571:
                  case e1000_82572:
                  case e1000_82573:
                  case e1000_ich8lan:
                        pull_size = min((unsigned int)4, skb->data_len);
                        if (!__pskb_pull_tail(skb, pull_size)) {
                              DPRINTK(DRV, ERR,
                                    "__pskb_pull_tail failed.\n");
                              dev_kfree_skb_any(skb);
                              return NETDEV_TX_OK;
                        }
                        len = skb->len - skb->data_len;
                        break;
                  default:
                        /* do nothing */
                        break;
                  }
            }
      }

      /* reserve a descriptor for the offload context */
      if ((mss) || (skb->ip_summed == CHECKSUM_HW))
            count++;
      count++;
#else
      if (skb->ip_summed == CHECKSUM_HW)
            count++;
#endif

#ifdef NETIF_F_TSO
      /* Controller Erratum workaround */
      if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
            count++;
#endif

      count += TXD_USE_COUNT(len, max_txd_pwr);

      if (adapter->pcix_82544)
            count++;

      /* work-around for errata 10 and it applies to all controllers
       * in PCI-X mode, so add one more descriptor to the count
       */
      if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
                  (len > 2015)))
            count++;

      nr_frags = skb_shinfo(skb)->nr_frags;
      for (f = 0; f < nr_frags; f++)
            count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
                               max_txd_pwr);
      if (adapter->pcix_82544)
            count += nr_frags;


      if (adapter->hw.tx_pkt_filtering &&
          (adapter->hw.mac_type == e1000_82573))
            e1000_transfer_dhcp_info(adapter, skb);

      local_irq_save(flags);
      if (!spin_trylock(&tx_ring->tx_lock)) {
            /* Collision - tell upper layer to requeue */
            local_irq_restore(flags);
            return NETDEV_TX_LOCKED;
      }

      /* need: count + 2 desc gap to keep tail from touching
       * head, otherwise try next time */
      if (unlikely(E1000_DESC_UNUSED(tx_ring) < count + 2)) {
            netif_stop_queue(netdev);
            spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
            return NETDEV_TX_BUSY;
      }

      if (unlikely(adapter->hw.mac_type == e1000_82547)) {
            if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
                  netif_stop_queue(netdev);
                  mod_timer(&adapter->tx_fifo_stall_timer, jiffies);
                  spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
                  return NETDEV_TX_BUSY;
            }
      }

      if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
            tx_flags |= E1000_TX_FLAGS_VLAN;
            tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
      }

      first = tx_ring->next_to_use;

      tso = e1000_tso(adapter, tx_ring, skb);
      if (tso < 0) {
            dev_kfree_skb_any(skb);
            spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
            return NETDEV_TX_OK;
      }

      if (likely(tso)) {
            tx_ring->last_tx_tso = 1;
            tx_flags |= E1000_TX_FLAGS_TSO;
      } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
            tx_flags |= E1000_TX_FLAGS_CSUM;

      /* Old method was to assume IPv4 packet by default if TSO was enabled.
       * 82571 hardware supports TSO capabilities for IPv6 as well...
       * no longer assume, we must. */
      if (likely(skb->protocol == htons(ETH_P_IP)))
            tx_flags |= E1000_TX_FLAGS_IPV4;

      e1000_tx_queue(adapter, tx_ring, tx_flags,
                     e1000_tx_map(adapter, tx_ring, skb, first,
                                  max_per_txd, nr_frags, mss));

      netdev->trans_start = jiffies;

      /* Make sure there is space in the ring for the next send. */
      if (unlikely(E1000_DESC_UNUSED(tx_ring) < MAX_SKB_FRAGS + 2))
            netif_stop_queue(netdev);

      spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
      return NETDEV_TX_OK;
}

/**
 * e1000_tx_timeout - Respond to a Tx Hang
 * @netdev: network interface device structure
 **/

static void
e1000_tx_timeout(struct net_device *netdev)
{
      struct e1000_adapter *adapter = netdev_priv(netdev);

      /* Do the reset outside of interrupt context */
      adapter->tx_timeout_count++;
      schedule_work(&adapter->reset_task);
}

static void
e1000_reset_task(struct net_device *netdev)
{
      struct e1000_adapter *adapter = netdev_priv(netdev);

      e1000_reinit_locked(adapter);
}

/**
 * e1000_get_stats - Get System Network Statistics
 * @netdev: network interface device structure
 *
 * Returns the address of the device statistics structure.
 * The statistics are actually updated from the timer callback.
 **/

static struct net_device_stats *
e1000_get_stats(struct net_device *netdev)
{
      struct e1000_adapter *adapter = netdev_priv(netdev);

      /* only return the current stats */
      return &adapter->net_stats;
}

/**
 * e1000_change_mtu - Change the Maximum Transfer Unit
 * @netdev: network interface device structure
 * @new_mtu: new value for maximum frame size
 *
 * Returns 0 on success, negative on failure
 **/

static int
e1000_change_mtu(struct net_device *netdev, int new_mtu)
{
      struct e1000_adapter *adapter = netdev_priv(netdev);
      int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
      uint16_t eeprom_data = 0;

      if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
          (max_frame > MAX_JUMBO_FRAME_SIZE)) {
            DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
            return -EINVAL;
      }

      /* Adapter-specific max frame size limits. */
      switch (adapter->hw.mac_type) {
      case e1000_undefined ... e1000_82542_rev2_1:
      case e1000_ich8lan:
            if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
                  DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
                  return -EINVAL;
            }
            break;
      case e1000_82573:
            /* only enable jumbo frames if ASPM is disabled completely
             * this means both bits must be zero in 0x1A bits 3:2 */
            e1000_read_eeprom(&adapter->hw, EEPROM_INIT_3GIO_3, 1,
                              &eeprom_data);
            if (eeprom_data & EEPROM_WORD1A_ASPM_MASK) {
                  if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
                        DPRINTK(PROBE, ERR,
                                    "Jumbo Frames not supported.\n");
                        return -EINVAL;
                  }
                  break;
            }
            /* fall through to get support */
      case e1000_82571:
      case e1000_82572:
      case e1000_80003es2lan:
#define MAX_STD_JUMBO_FRAME_SIZE 9234
            if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
                  DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
                  return -EINVAL;
            }
            break;
      default:
            /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
            break;
      }

      /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
       * means we reserve 2 more, this pushes us to allocate from the next
       * larger slab size
       * i.e. RXBUFFER_2048 --> size-4096 slab */

      if (max_frame <= E1000_RXBUFFER_256)
            adapter->rx_buffer_len = E1000_RXBUFFER_256;
      else if (max_frame <= E1000_RXBUFFER_512)
            adapter->rx_buffer_len = E1000_RXBUFFER_512;
      else if (max_frame <= E1000_RXBUFFER_1024)
            adapter->rx_buffer_len = E1000_RXBUFFER_1024;
      else if (max_frame <= E1000_RXBUFFER_2048)
            adapter->rx_buffer_len = E1000_RXBUFFER_2048;
      else if (max_frame <= E1000_RXBUFFER_4096)
            adapter->rx_buffer_len = E1000_RXBUFFER_4096;
      else if (max_frame <= E1000_RXBUFFER_8192)
            adapter->rx_buffer_len = E1000_RXBUFFER_8192;
      else if (max_frame <= E1000_RXBUFFER_16384)
            adapter->rx_buffer_len = E1000_RXBUFFER_16384;

      /* adjust allocation if LPE protects us, and we aren't using SBP */
      if (!adapter->hw.tbi_compatibility_on &&
          ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
           (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
            adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;

      netdev->mtu = new_mtu;

      if (netif_running(netdev))
            e1000_reinit_locked(adapter);

      adapter->hw.max_frame_size = max_frame;

      return 0;
}

/**
 * e1000_update_stats - Update the board statistics counters
 * @adapter: board private structure
 **/

void
e1000_update_stats(struct e1000_adapter *adapter)
{
      struct e1000_hw *hw = &adapter->hw;
      struct pci_dev *pdev = adapter->pdev;
      unsigned long flags;
      uint16_t phy_tmp;

#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF

      /*
       * Prevent stats update while adapter is being reset, or if the pci
       * connection is down.
       */
      if (adapter->link_speed == 0)
            return;
      if (pdev->error_state && pdev->error_state != pci_channel_io_normal)
            return;

      spin_lock_irqsave(&adapter->stats_lock, flags);

      /* these counters are modified from e1000_adjust_tbi_stats,
       * called from the interrupt context, so they must only
       * be written while holding adapter->stats_lock
       */

      adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
      adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
      adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
      adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
      adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
      adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
      adapter->stats.roc += E1000_READ_REG(hw, ROC);

      if (adapter->hw.mac_type != e1000_ich8lan) {
      adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
      adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
      adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
      adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
      adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
      adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
      }

      adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
      adapter->stats.mpc += E1000_READ_REG(hw, MPC);
      adapter->stats.scc += E1000_READ_REG(hw, SCC);
      adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
      adapter->stats.mcc += E1000_READ_REG(hw, MCC);
      adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
      adapter->stats.dc += E1000_READ_REG(hw, DC);
      adapter->stats.sec += E1000_READ_REG(hw, SEC);
      adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
      adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
      adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
      adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
      adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
      adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
      adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
      adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
      adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
      adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
      adapter->stats.ruc += E1000_READ_REG(hw, RUC);
      adapter->stats.rfc += E1000_READ_REG(hw, RFC);
      adapter->stats.rjc += E1000_READ_REG(hw, RJC);
      adapter->stats.torl += E1000_READ_REG(hw, TORL);
      adapter->stats.torh += E1000_READ_REG(hw, TORH);
      adapter->stats.totl += E1000_READ_REG(hw, TOTL);
      adapter->stats.toth += E1000_READ_REG(hw, TOTH);
      adapter->stats.tpr += E1000_READ_REG(hw, TPR);

      if (adapter->hw.mac_type != e1000_ich8lan) {
      adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
      adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
      adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
      adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
      adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
      adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
      }

      adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
      adapter->stats.bptc += E1000_READ_REG(hw, BPTC);

      /* used for adaptive IFS */

      hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
      adapter->stats.tpt += hw->tx_packet_delta;
      hw->collision_delta = E1000_READ_REG(hw, COLC);
      adapter->stats.colc += hw->collision_delta;

      if (hw->mac_type >= e1000_82543) {
            adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
            adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
            adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
            adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
            adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
            adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
      }
      if (hw->mac_type > e1000_82547_rev_2) {
            adapter->stats.iac += E1000_READ_REG(hw, IAC);
            adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);

            if (adapter->hw.mac_type != e1000_ich8lan) {
            adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
            adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
            adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
            adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
            adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
            adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
            adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
            }
      }

      /* Fill out the OS statistics structure */

      adapter->net_stats.rx_packets = adapter->stats.gprc;
      adapter->net_stats.tx_packets = adapter->stats.gptc;
      adapter->net_stats.rx_bytes = adapter->stats.gorcl;
      adapter->net_stats.tx_bytes = adapter->stats.gotcl;
      adapter->net_stats.multicast = adapter->stats.mprc;
      adapter->net_stats.collisions = adapter->stats.colc;

      /* Rx Errors */

      /* RLEC on some newer hardware can be incorrect so build
      * our own version based on RUC and ROC */
      adapter->net_stats.rx_errors = adapter->stats.rxerrc +
            adapter->stats.crcerrs + adapter->stats.algnerrc +
            adapter->stats.ruc + adapter->stats.roc +
            adapter->stats.cexterr;
      adapter->net_stats.rx_length_errors = adapter->stats.ruc +
                                            adapter->stats.roc;
      adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
      adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
      adapter->net_stats.rx_missed_errors = adapter->stats.mpc;

      /* Tx Errors */

      adapter->net_stats.tx_errors = adapter->stats.ecol +
                                     adapter->stats.latecol;
      adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
      adapter->net_stats.tx_window_errors = adapter->stats.latecol;
      adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;

      /* Tx Dropped needs to be maintained elsewhere */

      /* Phy Stats */

      if (hw->media_type == e1000_media_type_copper) {
            if ((adapter->link_speed == SPEED_1000) &&
               (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
                  phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
                  adapter->phy_stats.idle_errors += phy_tmp;
            }

            if ((hw->mac_type <= e1000_82546) &&
               (hw->phy_type == e1000_phy_m88) &&
               !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
                  adapter->phy_stats.receive_errors += phy_tmp;
      }

      spin_unlock_irqrestore(&adapter->stats_lock, flags);
}

/**
 * e1000_intr - Interrupt Handler
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 * @pt_regs: CPU registers structure
 **/

static irqreturn_t
e1000_intr(int irq, void *data, struct pt_regs *regs)
{
      struct net_device *netdev = data;
      struct e1000_adapter *adapter = netdev_priv(netdev);
      struct e1000_hw *hw = &adapter->hw;
      uint32_t rctl, icr = E1000_READ_REG(hw, ICR);
#ifndef CONFIG_E1000_NAPI
      int i;
#else
      /* Interrupt Auto-Mask...upon reading ICR,
       * interrupts are masked.  No need for the
       * IMC write, but it does mean we should
       * account for it ASAP. */
      if (likely(hw->mac_type >= e1000_82571))
            atomic_inc(&adapter->irq_sem);
#endif

      if (unlikely(!icr)) {
#ifdef CONFIG_E1000_NAPI
            if (hw->mac_type >= e1000_82571)
                  e1000_irq_enable(adapter);
#endif
            return IRQ_NONE;  /* Not our interrupt */
      }

      if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
            hw->get_link_status = 1;
            /* 80003ES2LAN workaround--
             * For packet buffer work-around on link down event;
             * disable receives here in the ISR and
             * reset adapter in watchdog
             */
            if (netif_carrier_ok(netdev) &&
                (adapter->hw.mac_type == e1000_80003es2lan)) {
                  /* disable receives */
                  rctl = E1000_READ_REG(hw, RCTL);
                  E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
            }
            mod_timer(&adapter->watchdog_timer, jiffies);
      }

#ifdef CONFIG_E1000_NAPI
      if (unlikely(hw->mac_type < e1000_82571)) {
            atomic_inc(&adapter->irq_sem);
            E1000_WRITE_REG(hw, IMC, ~0);
            E1000_WRITE_FLUSH(hw);
      }
      if (likely(netif_rx_schedule_prep(netdev)))
            __netif_rx_schedule(netdev);
      else
            e1000_irq_enable(adapter);
#else
      /* Writing IMC and IMS is needed for 82547.
       * Due to Hub Link bus being occupied, an interrupt
       * de-assertion message is not able to be sent.
       * When an interrupt assertion message is generated later,
       * two messages are re-ordered and sent out.
       * That causes APIC to think 82547 is in de-assertion
       * state, while 82547 is in assertion state, resulting
       * in dead lock. Writing IMC forces 82547 into
       * de-assertion state.
       */
      if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2) {
            atomic_inc(&adapter->irq_sem);
            E1000_WRITE_REG(hw, IMC, ~0);
      }

      for (i = 0; i < E1000_MAX_INTR; i++)
            if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
               !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
                  break;

      if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
            e1000_irq_enable(adapter);

#endif

      return IRQ_HANDLED;
}

#ifdef CONFIG_E1000_NAPI
/**
 * e1000_clean - NAPI Rx polling callback
 * @adapter: board private structure
 **/

static int
e1000_clean(struct net_device *poll_dev, int *budget)
{
      struct e1000_adapter *adapter;
      int work_to_do = min(*budget, poll_dev->quota);
      int tx_cleaned = 0, work_done = 0;

      /* Must NOT use netdev_priv macro here. */
      adapter = poll_dev->priv;

      /* Keep link state information with original netdev */
      if (!netif_carrier_ok(poll_dev))
            goto quit_polling;

      /* e1000_clean is called per-cpu.  This lock protects
       * tx_ring[0] from being cleaned by multiple cpus
       * simultaneously.  A failure obtaining the lock means
       * tx_ring[0] is currently being cleaned anyway. */
      if (spin_trylock(&adapter->tx_queue_lock)) {
            tx_cleaned = e1000_clean_tx_irq(adapter,
                                            &adapter->tx_ring[0]);
            spin_unlock(&adapter->tx_queue_lock);
      }

      adapter->clean_rx(adapter, &adapter->rx_ring[0],
                        &work_done, work_to_do);

      *budget -= work_done;
      poll_dev->quota -= work_done;

      /* If no Tx and not enough Rx work done, exit the polling mode */
      if ((!tx_cleaned && (work_done == 0)) ||
         !netif_running(poll_dev)) {
quit_polling:
            netif_rx_complete(poll_dev);
            e1000_irq_enable(adapter);
            return 0;
      }

      return 1;
}

#endif
/**
 * e1000_clean_tx_irq - Reclaim resources after transmit completes
 * @adapter: board private structure
 **/

static boolean_t
e1000_clean_tx_irq(struct e1000_adapter *adapter,
                   struct e1000_tx_ring *tx_ring)
{
      struct net_device *netdev = adapter->netdev;
      struct e1000_tx_desc *tx_desc, *eop_desc;
      struct e1000_buffer *buffer_info;
      unsigned int i, eop;
#ifdef CONFIG_E1000_NAPI
      unsigned int count = 0;
#endif
      boolean_t cleaned = FALSE;

      i = tx_ring->next_to_clean;
      eop = tx_ring->buffer_info[i].next_to_watch;
      eop_desc = E1000_TX_DESC(*tx_ring, eop);

      while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
            for (cleaned = FALSE; !cleaned; ) {
                  tx_desc = E1000_TX_DESC(*tx_ring, i);
                  buffer_info = &tx_ring->buffer_info[i];
                  cleaned = (i == eop);

                  e1000_unmap_and_free_tx_resource(adapter, buffer_info);
                  memset(tx_desc, 0, sizeof(struct e1000_tx_desc));

                  if (unlikely(++i == tx_ring->count)) i = 0;
            }


            eop = tx_ring->buffer_info[i].next_to_watch;
            eop_desc = E1000_TX_DESC(*tx_ring, eop);
#ifdef CONFIG_E1000_NAPI
#define E1000_TX_WEIGHT 64
            /* weight of a sort for tx, to avoid endless transmit cleanup */
            if (count++ == E1000_TX_WEIGHT) break;
#endif
      }

      tx_ring->next_to_clean = i;

#define TX_WAKE_THRESHOLD 32
      if (unlikely(cleaned && netif_queue_stopped(netdev) &&
                   netif_carrier_ok(netdev))) {
            spin_lock(&tx_ring->tx_lock);
            if (netif_queue_stopped(netdev) &&
                (E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))
                  netif_wake_queue(netdev);
            spin_unlock(&tx_ring->tx_lock);
      }

      if (adapter->detect_tx_hung) {
            /* Detect a transmit hang in hardware, this serializes the
             * check with the clearing of time_stamp and movement of i */
            adapter->detect_tx_hung = FALSE;
            if (tx_ring->buffer_info[eop].dma &&
                time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
                           (adapter->tx_timeout_factor * HZ))
                && !(E1000_READ_REG(&adapter->hw, STATUS) &
                     E1000_STATUS_TXOFF)) {

                  /* detected Tx unit hang */
                  DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
                              "  Tx Queue             <%lu>\n"
                              "  TDH                  <%x>\n"
                              "  TDT                  <%x>\n"
                              "  next_to_use          <%x>\n"
                              "  next_to_clean        <%x>\n"
                              "buffer_info[next_to_clean]\n"
                              "  time_stamp           <%lx>\n"
                              "  next_to_watch        <%x>\n"
                              "  jiffies              <%lx>\n"
                              "  next_to_watch.status <%x>\n",
                        (unsigned long)((tx_ring - adapter->tx_ring) /
                              sizeof(struct e1000_tx_ring)),
                        readl(adapter->hw.hw_addr + tx_ring->tdh),
                        readl(adapter->hw.hw_addr + tx_ring->tdt),
                        tx_ring->next_to_use,
                        tx_ring->next_to_clean,
                        tx_ring->buffer_info[eop].time_stamp,
                        eop,
                        jiffies,
                        eop_desc->upper.fields.status);
                  netif_stop_queue(netdev);
            }
      }
      return cleaned;
}

/**
 * e1000_rx_checksum - Receive Checksum Offload for 82543
 * @adapter:     board private structure
 * @status_err:  receive descriptor status and error fields
 * @csum:        receive descriptor csum field
 * @sk_buff:     socket buffer with received data
 **/

static void
e1000_rx_checksum(struct e1000_adapter *adapter,
              uint32_t status_err, uint32_t csum,
              struct sk_buff *skb)
{
      uint16_t status = (uint16_t)status_err;
      uint8_t errors = (uint8_t)(status_err >> 24);
      skb->ip_summed = CHECKSUM_NONE;

      /* 82543 or newer only */
      if (unlikely(adapter->hw.mac_type < e1000_82543)) return;
      /* Ignore Checksum bit is set */
      if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
      /* TCP/UDP checksum error bit is set */
      if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
            /* let the stack verify checksum errors */
            adapter->hw_csum_err++;
            return;
      }
      /* TCP/UDP Checksum has not been calculated */
      if (adapter->hw.mac_type <= e1000_82547_rev_2) {
            if (!(status & E1000_RXD_STAT_TCPCS))
                  return;
      } else {
            if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
                  return;
      }
      /* It must be a TCP or UDP packet with a valid checksum */
      if (likely(status & E1000_RXD_STAT_TCPCS)) {
            /* TCP checksum is good */
            skb->ip_summed = CHECKSUM_UNNECESSARY;
      } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
            /* IP fragment with UDP payload */
            /* Hardware complements the payload checksum, so we undo it
             * and then put the value in host order for further stack use.
             */
            csum = ntohl(csum ^ 0xFFFF);
            skb->csum = csum;
            skb->ip_summed = CHECKSUM_HW;
      }
      adapter->hw_csum_good++;
}

/**
 * e1000_clean_rx_irq - Send received data up the network stack; legacy
 * @adapter: board private structure
 **/

static boolean_t
#ifdef CONFIG_E1000_NAPI
e1000_clean_rx_irq(struct e1000_adapter *adapter,
                   struct e1000_rx_ring *rx_ring,
                   int *work_done, int work_to_do)
#else
e1000_clean_rx_irq(struct e1000_adapter *adapter,
                   struct e1000_rx_ring *rx_ring)
#endif
{
      struct net_device *netdev = adapter->netdev;
      struct pci_dev *pdev = adapter->pdev;
      struct e1000_rx_desc *rx_desc, *next_rxd;
      struct e1000_buffer *buffer_info, *next_buffer;
      unsigned long flags;
      uint32_t length;
      uint8_t last_byte;
      unsigned int i;
      int cleaned_count = 0;
      boolean_t cleaned = FALSE;

      i = rx_ring->next_to_clean;
      rx_desc = E1000_RX_DESC(*rx_ring, i);
      buffer_info = &rx_ring->buffer_info[i];

      while (rx_desc->status & E1000_RXD_STAT_DD) {
            struct sk_buff *skb;
            u8 status;
#ifdef CONFIG_E1000_NAPI
            if (*work_done >= work_to_do)
                  break;
            (*work_done)++;
#endif
            status = rx_desc->status;
            skb = buffer_info->skb;
            buffer_info->skb = NULL;

            prefetch(skb->data - NET_IP_ALIGN);

            if (++i == rx_ring->count) i = 0;
            next_rxd = E1000_RX_DESC(*rx_ring, i);
            prefetch(next_rxd);

            next_buffer = &rx_ring->buffer_info[i];

            cleaned = TRUE;
            cleaned_count++;
            pci_unmap_single(pdev,
                             buffer_info->dma,
                             buffer_info->length,
                             PCI_DMA_FROMDEVICE);

            length = le16_to_cpu(rx_desc->length);

            /* adjust length to remove Ethernet CRC */
            length -= 4;

            if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
                  /* All receives must fit into a single buffer */
                  E1000_DBG("%s: Receive packet consumed multiple"
                          " buffers\n", netdev->name);
                  /* recycle */
                  buffer_info-> skb = skb;
                  goto next_desc;
            }

            if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
                  last_byte = *(skb->data + length - 1);
                  if (TBI_ACCEPT(&adapter->hw, status,
                                rx_desc->errors, length, last_byte)) {
                        spin_lock_irqsave(&adapter->stats_lock, flags);
                        e1000_tbi_adjust_stats(&adapter->hw,
                                               &adapter->stats,
                                               length, skb->data);
                        spin_unlock_irqrestore(&adapter->stats_lock,
                                               flags);
                        length--;
                  } else {
                        /* recycle */
                        buffer_info->skb = skb;
                        goto next_desc;
                  }
            }

            /* code added for copybreak, this should improve
             * performance for small packets with large amounts
             * of reassembly being done in the stack */
#define E1000_CB_LENGTH 256
            if (length < E1000_CB_LENGTH) {
                  struct sk_buff *new_skb =
                      netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
                  if (new_skb) {
                        skb_reserve(new_skb, NET_IP_ALIGN);
                        new_skb->dev = netdev;
                        memcpy(new_skb->data - NET_IP_ALIGN,
                               skb->data - NET_IP_ALIGN,
                               length + NET_IP_ALIGN);
                        /* save the skb in buffer_info as good */
                        buffer_info->skb = skb;
                        skb = new_skb;
                        skb_put(skb, length);
                  }
            } else
                  skb_put(skb, length);

            /* end copybreak code */

            /* Receive Checksum Offload */
            e1000_rx_checksum(adapter,
                          (uint32_t)(status) |
                          ((uint32_t)(rx_desc->errors) << 24),
                          le16_to_cpu(rx_desc->csum), skb);

            skb->protocol = eth_type_trans(skb, netdev);
#ifdef CONFIG_E1000_NAPI
            if (unlikely(adapter->vlgrp &&
                      (status & E1000_RXD_STAT_VP))) {
                  vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
                                     le16_to_cpu(rx_desc->special) &
                                     E1000_RXD_SPC_VLAN_MASK);
            } else {
                  netif_receive_skb(skb);
            }
#else /* CONFIG_E1000_NAPI */
            if (unlikely(adapter->vlgrp &&
                      (status & E1000_RXD_STAT_VP))) {
                  vlan_hwaccel_rx(skb, adapter->vlgrp,
                              le16_to_cpu(rx_desc->special) &
                              E1000_RXD_SPC_VLAN_MASK);
            } else {
                  netif_rx(skb);
            }
#endif /* CONFIG_E1000_NAPI */
            netdev->last_rx = jiffies;

next_desc:
            rx_desc->status = 0;

            /* return some buffers to hardware, one at a time is too slow */
            if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
                  adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
                  cleaned_count = 0;
            }

            /* use prefetched values */
            rx_desc = next_rxd;
            buffer_info = next_buffer;
      }
      rx_ring->next_to_clean = i;

      cleaned_count = E1000_DESC_UNUSED(rx_ring);
      if (cleaned_count)
            adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);

      return cleaned;
}

/**
 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
 * @adapter: board private structure
 **/

static boolean_t
#ifdef CONFIG_E1000_NAPI
e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
                      struct e1000_rx_ring *rx_ring,
                      int *work_done, int work_to_do)
#else
e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
                      struct e1000_rx_ring *rx_ring)
#endif
{
      union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
      struct net_device *netdev = adapter->netdev;
      struct pci_dev *pdev = adapter->pdev;
      struct e1000_buffer *buffer_info, *next_buffer;
      struct e1000_ps_page *ps_page;
      struct e1000_ps_page_dma *ps_page_dma;
      struct sk_buff *skb;
      unsigned int i, j;
      uint32_t length, staterr;
      int cleaned_count = 0;
      boolean_t cleaned = FALSE;

      i = rx_ring->next_to_clean;
      rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
      staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
      buffer_info = &rx_ring->buffer_info[i];

      while (staterr & E1000_RXD_STAT_DD) {
            ps_page = &rx_ring->ps_page[i];
            ps_page_dma = &rx_ring->ps_page_dma[i];
#ifdef CONFIG_E1000_NAPI
            if (unlikely(*work_done >= work_to_do))
                  break;
            (*work_done)++;
#endif
            skb = buffer_info->skb;

            /* in the packet split case this is header only */
            prefetch(skb->data - NET_IP_ALIGN);

            if (++i == rx_ring->count) i = 0;
            next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
            prefetch(next_rxd);

            next_buffer = &rx_ring->buffer_info[i];

            cleaned = TRUE;
            cleaned_count++;
            pci_unmap_single(pdev, buffer_info->dma,
                         buffer_info->length,
                         PCI_DMA_FROMDEVICE);

            if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
                  E1000_DBG("%s: Packet Split buffers didn't pick up"
                          " the full packet\n", netdev->name);
                  dev_kfree_skb_irq(skb);
                  goto next_desc;
            }

            if (unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
                  dev_kfree_skb_irq(skb);
                  goto next_desc;
            }

            length = le16_to_cpu(rx_desc->wb.middle.length0);

            if (unlikely(!length)) {
                  E1000_DBG("%s: Last part of the packet spanning"
                          " multiple descriptors\n", netdev->name);
                  dev_kfree_skb_irq(skb);
                  goto next_desc;
            }

            /* Good Receive */
            skb_put(skb, length);

            {
            /* this looks ugly, but it seems compiler issues make it
               more efficient than reusing j */
            int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);

            /* page alloc/put takes too long and effects small packet
             * throughput, so unsplit small packets and save the alloc/put*/
            if (l1 && ((length + l1) <= adapter->rx_ps_bsize0)) {
                  u8 *vaddr;
                  /* there is no documentation about how to call
                   * kmap_atomic, so we can't hold the mapping
                   * very long */
                  pci_dma_sync_single_for_cpu(pdev,
                        ps_page_dma->ps_page_dma[0],
                        PAGE_SIZE,
                        PCI_DMA_FROMDEVICE);
                  vaddr = kmap_atomic(ps_page->ps_page[0],
                                      KM_SKB_DATA_SOFTIRQ);
                  memcpy(skb->tail, vaddr, l1);
                  kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
                  pci_dma_sync_single_for_device(pdev,
                        ps_page_dma->ps_page_dma[0],
                        PAGE_SIZE, PCI_DMA_FROMDEVICE);
                  /* remove the CRC */
                  l1 -= 4;
                  skb_put(skb, l1);
                  goto copydone;
            } /* if */
            }
            
            for (j = 0; j < adapter->rx_ps_pages; j++) {
                  if (!(length= le16_to_cpu(rx_desc->wb.upper.length[j])))
                        break;
                  pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
                              PAGE_SIZE, PCI_DMA_FROMDEVICE);
                  ps_page_dma->ps_page_dma[j] = 0;
                  skb_fill_page_desc(skb, j, ps_page->ps_page[j], 0,
                                     length);
                  ps_page->ps_page[j] = NULL;
                  skb->len += length;
                  skb->data_len += length;
                  skb->truesize += length;
            }

            /* strip the ethernet crc, problem is we're using pages now so
             * this whole operation can get a little cpu intensive */
            pskb_trim(skb, skb->len - 4);

copydone:
            e1000_rx_checksum(adapter, staterr,
                          le16_to_cpu(rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
            skb->protocol = eth_type_trans(skb, netdev);

            if (likely(rx_desc->wb.upper.header_status &
                     cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)))
                  adapter->rx_hdr_split++;
#ifdef CONFIG_E1000_NAPI
            if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
                  vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
                        le16_to_cpu(rx_desc->wb.middle.vlan) &
                        E1000_RXD_SPC_VLAN_MASK);
            } else {
                  netif_receive_skb(skb);
            }
#else /* CONFIG_E1000_NAPI */
            if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
                  vlan_hwaccel_rx(skb, adapter->vlgrp,
                        le16_to_cpu(rx_desc->wb.middle.vlan) &
                        E1000_RXD_SPC_VLAN_MASK);
            } else {
                  netif_rx(skb);
            }
#endif /* CONFIG_E1000_NAPI */
            netdev->last_rx = jiffies;

next_desc:
            rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
            buffer_info->skb = NULL;

            /* return some buffers to hardware, one at a time is too slow */
            if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
                  adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
                  cleaned_count = 0;
            }

            /* use prefetched values */
            rx_desc = next_rxd;
            buffer_info = next_buffer;

            staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
      }
      rx_ring->next_to_clean = i;

      cleaned_count = E1000_DESC_UNUSED(rx_ring);
      if (cleaned_count)
            adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);

      return cleaned;
}

/**
 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
 * @adapter: address of board private structure
 **/

static void
e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
                       struct e1000_rx_ring *rx_ring,
                   int cleaned_count)
{
      struct net_device *netdev = adapter->netdev;
      struct pci_dev *pdev = adapter->pdev;
      struct e1000_rx_desc *rx_desc;
      struct e1000_buffer *buffer_info;
      struct sk_buff *skb;
      unsigned int i;
      unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;

      i = rx_ring->next_to_use;
      buffer_info = &rx_ring->buffer_info[i];

      while (cleaned_count--) {
            if (!(skb = buffer_info->skb))
                  skb = netdev_alloc_skb(netdev, bufsz);
            else {
                  skb_trim(skb, 0);
                  goto map_skb;
            }

            if (unlikely(!skb)) {
                  /* Better luck next round */
                  adapter->alloc_rx_buff_failed++;
                  break;
            }

            /* Fix for errata 23, can't cross 64kB boundary */
            if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
                  struct sk_buff *oldskb = skb;
                  DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
                                   "at %p\n", bufsz, skb->data);
                  /* Try again, without freeing the previous */
                  skb = netdev_alloc_skb(netdev, bufsz);
                  /* Failed allocation, critical failure */
                  if (!skb) {
                        dev_kfree_skb(oldskb);
                        break;
                  }

                  if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
                        /* give up */
                        dev_kfree_skb(skb);
                        dev_kfree_skb(oldskb);
                        break; /* while !buffer_info->skb */
                  } else {
                        /* Use new allocation */
                        dev_kfree_skb(oldskb);
                  }
            }
            /* Make buffer alignment 2 beyond a 16 byte boundary
             * this will result in a 16 byte aligned IP header after
             * the 14 byte MAC header is removed
             */
            skb_reserve(skb, NET_IP_ALIGN);

            skb->dev = netdev;

            buffer_info->skb = skb;
            buffer_info->length = adapter->rx_buffer_len;
map_skb:
            buffer_info->dma = pci_map_single(pdev,
                                      skb->data,
                                      adapter->rx_buffer_len,
                                      PCI_DMA_FROMDEVICE);

            /* Fix for errata 23, can't cross 64kB boundary */
            if (!e1000_check_64k_bound(adapter,
                              (void *)(unsigned long)buffer_info->dma,
                              adapter->rx_buffer_len)) {
                  DPRINTK(RX_ERR, ERR,
                        "dma align check failed: %u bytes at %p\n",
                        adapter->rx_buffer_len,
                        (void *)(unsigned long)buffer_info->dma);
                  dev_kfree_skb(skb);
                  buffer_info->skb = NULL;

                  pci_unmap_single(pdev, buffer_info->dma,
                               adapter->rx_buffer_len,
                               PCI_DMA_FROMDEVICE);

                  break; /* while !buffer_info->skb */
            }
            rx_desc = E1000_RX_DESC(*rx_ring, i);
            rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);

            if (unlikely(++i == rx_ring->count))
                  i = 0;
            buffer_info = &rx_ring->buffer_info[i];
      }

      if (likely(rx_ring->next_to_use != i)) {
            rx_ring->next_to_use = i;
            if (unlikely(i-- == 0))
                  i = (rx_ring->count - 1);

            /* Force memory writes to complete before letting h/w
             * know there are new descriptors to fetch.  (Only
             * applicable for weak-ordered memory model archs,
             * such as IA-64). */
            wmb();
            writel(i, adapter->hw.hw_addr + rx_ring->rdt);
      }
}

/**
 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
 * @adapter: address of board private structure
 **/

static void
e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
                          struct e1000_rx_ring *rx_ring,
                    int cleaned_count)
{
      struct net_device *netdev = adapter->netdev;
      struct pci_dev *pdev = adapter->pdev;
      union e1000_rx_desc_packet_split *rx_desc;
      struct e1000_buffer *buffer_info;
      struct e1000_ps_page *ps_page;
      struct e1000_ps_page_dma *ps_page_dma;
      struct sk_buff *skb;
      unsigned int i, j;

      i = rx_ring->next_to_use;
      buffer_info = &rx_ring->buffer_info[i];
      ps_page = &rx_ring->ps_page[i];
      ps_page_dma = &rx_ring->ps_page_dma[i];

      while (cleaned_count--) {
            rx_desc = E1000_RX_DESC_PS(*rx_ring, i);

            for (j = 0; j < PS_PAGE_BUFFERS; j++) {
                  if (j < adapter->rx_ps_pages) {
                        if (likely(!ps_page->ps_page[j])) {
                              ps_page->ps_page[j] =
                                    alloc_page(GFP_ATOMIC);
                              if (unlikely(!ps_page->ps_page[j])) {
                                    adapter->alloc_rx_buff_failed++;
                                    goto no_buffers;
                              }
                              ps_page_dma->ps_page_dma[j] =
                                    pci_map_page(pdev,
                                              ps_page->ps_page[j],
                                              0, PAGE_SIZE,
                                              PCI_DMA_FROMDEVICE);
                        }
                        /* Refresh the desc even if buffer_addrs didn't
                         * change because each write-back erases
                         * this info.
                         */
                        rx_desc->read.buffer_addr[j+1] =
                             cpu_to_le64(ps_page_dma->ps_page_dma[j]);
                  } else
                        rx_desc->read.buffer_addr[j+1] = ~0;
            }

            skb = netdev_alloc_skb(netdev,
                               adapter->rx_ps_bsize0 + NET_IP_ALIGN);

            if (unlikely(!skb)) {
                  adapter->alloc_rx_buff_failed++;
                  break;
            }

            /* Make buffer alignment 2 beyond a 16 byte boundary
             * this will result in a 16 byte aligned IP header after
             * the 14 byte MAC header is removed
             */
            skb_reserve(skb, NET_IP_ALIGN);

            skb->dev = netdev;

            buffer_info->skb = skb;
            buffer_info->length = adapter->rx_ps_bsize0;
            buffer_info->dma = pci_map_single(pdev, skb->data,
                                      adapter->rx_ps_bsize0,
                                      PCI_DMA_FROMDEVICE);

            rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);

            if (unlikely(++i == rx_ring->count)) i = 0;
            buffer_info = &rx_ring->buffer_info[i];
            ps_page = &rx_ring->ps_page[i];
            ps_page_dma = &rx_ring->ps_page_dma[i];
      }

no_buffers:
      if (likely(rx_ring->next_to_use != i)) {
            rx_ring->next_to_use = i;
            if (unlikely(i-- == 0)) i = (rx_ring->count - 1);

            /* Force memory writes to complete before letting h/w
             * know there are new descriptors to fetch.  (Only
             * applicable for weak-ordered memory model archs,
             * such as IA-64). */
            wmb();
            /* Hardware increments by 16 bytes, but packet split
             * descriptors are 32 bytes...so we increment tail
             * twice as much.
             */
            writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt);
      }
}

/**
 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
 * @adapter:
 **/

static void
e1000_smartspeed(struct e1000_adapter *adapter)
{
      uint16_t phy_status;
      uint16_t phy_ctrl;

      if ((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
         !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
            return;

      if (adapter->smartspeed == 0) {
            /* If Master/Slave config fault is asserted twice,
             * we assume back-to-back */
            e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
            if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
            e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
            if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
            e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
            if (phy_ctrl & CR_1000T_MS_ENABLE) {
                  phy_ctrl &= ~CR_1000T_MS_ENABLE;
                  e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
                                  phy_ctrl);
                  adapter->smartspeed++;
                  if (!e1000_phy_setup_autoneg(&adapter->hw) &&
                     !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
                                     &phy_ctrl)) {
                        phy_ctrl |= (MII_CR_AUTO_NEG_EN |
                                   MII_CR_RESTART_AUTO_NEG);
                        e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
                                        phy_ctrl);
                  }
            }
            return;
      } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
            /* If still no link, perhaps using 2/3 pair cable */
            e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
            phy_ctrl |= CR_1000T_MS_ENABLE;
            e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
            if (!e1000_phy_setup_autoneg(&adapter->hw) &&
               !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
                  phy_ctrl |= (MII_CR_AUTO_NEG_EN |
                             MII_CR_RESTART_AUTO_NEG);
                  e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
            }
      }
      /* Restart process after E1000_SMARTSPEED_MAX iterations */
      if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
            adapter->smartspeed = 0;
}

/**
 * e1000_ioctl -
 * @netdev:
 * @ifreq:
 * @cmd:
 **/

static int
e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
      switch (cmd) {
      case SIOCGMIIPHY:
      case SIOCGMIIREG:
      case SIOCSMIIREG:
            return e1000_mii_ioctl(netdev, ifr, cmd);
      default:
            return -EOPNOTSUPP;
      }
}

/**
 * e1000_mii_ioctl -
 * @netdev:
 * @ifreq:
 * @cmd:
 **/

static int
e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
      struct e1000_adapter *adapter = netdev_priv(netdev);
      struct mii_ioctl_data *data = if_mii(ifr);
      int retval;
      uint16_t mii_reg;
      uint16_t spddplx;
      unsigned long flags;

      if (adapter->hw.media_type != e1000_media_type_copper)
            return -EOPNOTSUPP;

      switch (cmd) {
      case SIOCGMIIPHY:
            data->phy_id = adapter->hw.phy_addr;
            break;
      case SIOCGMIIREG:
            if (!capable(CAP_NET_ADMIN))
                  return -EPERM;
            spin_lock_irqsave(&adapter->stats_lock, flags);
            if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
                           &data->val_out)) {
                  spin_unlock_irqrestore(&adapter->stats_lock, flags);
                  return -EIO;
            }
            spin_unlock_irqrestore(&adapter->stats_lock, flags);
            break;
      case SIOCSMIIREG:
            if (!capable(CAP_NET_ADMIN))
                  return -EPERM;
            if (data->reg_num & ~(0x1F))
                  return -EFAULT;
            mii_reg = data->val_in;
            spin_lock_irqsave(&adapter->stats_lock, flags);
            if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
                              mii_reg)) {
                  spin_unlock_irqrestore(&adapter->stats_lock, flags);
                  return -EIO;
            }
            if (adapter->hw.media_type == e1000_media_type_copper) {
                  switch (data->reg_num) {
                  case PHY_CTRL:
                        if (mii_reg & MII_CR_POWER_DOWN)
                              break;
                        if (mii_reg & MII_CR_AUTO_NEG_EN) {
                              adapter->hw.autoneg = 1;
                              adapter->hw.autoneg_advertised = 0x2F;
                        } else {
                              if (mii_reg & 0x40)
                                    spddplx = SPEED_1000;
                              else if (mii_reg & 0x2000)
                                    spddplx = SPEED_100;
                              else
                                    spddplx = SPEED_10;
                              spddplx += (mii_reg & 0x100)
                                       ? DUPLEX_FULL :
                                       DUPLEX_HALF;
                              retval = e1000_set_spd_dplx(adapter,
                                                    spddplx);
                              if (retval) {
                                    spin_unlock_irqrestore(
                                          &adapter->stats_lock,
                                          flags);
                                    return retval;
                              }
                        }
                        if (netif_running(adapter->netdev))
                              e1000_reinit_locked(adapter);
                        else
                              e1000_reset(adapter);
                        break;
                  case M88E1000_PHY_SPEC_CTRL:
                  case M88E1000_EXT_PHY_SPEC_CTRL:
                        if (e1000_phy_reset(&adapter->hw)) {
                              spin_unlock_irqrestore(
                                    &adapter->stats_lock, flags);
                              return -EIO;
                        }
                        break;
                  }
            } else {
                  switch (data->reg_num) {
                  case PHY_CTRL:
                        if (mii_reg & MII_CR_POWER_DOWN)
                              break;
                        if (netif_running(adapter->netdev))
                              e1000_reinit_locked(adapter);
                        else
                              e1000_reset(adapter);
                        break;
                  }
            }
            spin_unlock_irqrestore(&adapter->stats_lock, flags);
            break;
      default:
            return -EOPNOTSUPP;
      }
      return E1000_SUCCESS;
}

void
e1000_pci_set_mwi(struct e1000_hw *hw)
{
      struct e1000_adapter *adapter = hw->back;
      int ret_val = pci_set_mwi(adapter->pdev);

      if (ret_val)
            DPRINTK(PROBE, ERR, "Error in setting MWI\n");
}

void
e1000_pci_clear_mwi(struct e1000_hw *hw)
{
      struct e1000_adapter *adapter = hw->back;

      pci_clear_mwi(adapter->pdev);
}

void
e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
{
      struct e1000_adapter *adapter = hw->back;

      pci_read_config_word(adapter->pdev, reg, value);
}

void
e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
{
      struct e1000_adapter *adapter = hw->back;

      pci_write_config_word(adapter->pdev, reg, *value);
}

#if 0
uint32_t
e1000_io_read(struct e1000_hw *hw, unsigned long port)
{
      return inl(port);
}
#endif  /*  0  */

void
e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
{
      outl(value, port);
}

static void
e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
{
      struct e1000_adapter *adapter = netdev_priv(netdev);
      uint32_t ctrl, rctl;

      e1000_irq_disable(adapter);
      adapter->vlgrp = grp;

      if (grp) {
            /* enable VLAN tag insert/strip */
            ctrl = E1000_READ_REG(&adapter->hw, CTRL);
            ctrl |= E1000_CTRL_VME;
            E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);

            if (adapter->hw.mac_type != e1000_ich8lan) {
            /* enable VLAN receive filtering */
            rctl = E1000_READ_REG(&adapter->hw, RCTL);
            rctl |= E1000_RCTL_VFE;
            rctl &= ~E1000_RCTL_CFIEN;
            E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
            e1000_update_mng_vlan(adapter);
            }
      } else {
            /* disable VLAN tag insert/strip */
            ctrl = E1000_READ_REG(&adapter->hw, CTRL);
            ctrl &= ~E1000_CTRL_VME;
            E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);

            if (adapter->hw.mac_type != e1000_ich8lan) {
            /* disable VLAN filtering */
            rctl = E1000_READ_REG(&adapter->hw, RCTL);
            rctl &= ~E1000_RCTL_VFE;
            E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
            if (adapter->mng_vlan_id != (uint16_t)E1000_MNG_VLAN_NONE) {
                  e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
                  adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
            }
            }
      }

      e1000_irq_enable(adapter);
}

static void
e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
{
      struct e1000_adapter *adapter = netdev_priv(netdev);
      uint32_t vfta, index;

      if ((adapter->hw.mng_cookie.status &
           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
          (vid == adapter->mng_vlan_id))
            return;
      /* add VID to filter table */
      index = (vid >> 5) & 0x7F;
      vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
      vfta |= (1 << (vid & 0x1F));
      e1000_write_vfta(&adapter->hw, index, vfta);
}

static void
e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
{
      struct e1000_adapter *adapter = netdev_priv(netdev);
      uint32_t vfta, index;

      e1000_irq_disable(adapter);

      if (adapter->vlgrp)
            adapter->vlgrp->vlan_devices[vid] = NULL;

      e1000_irq_enable(adapter);

      if ((adapter->hw.mng_cookie.status &
           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
          (vid == adapter->mng_vlan_id)) {
            /* release control to f/w */
            e1000_release_hw_control(adapter);
            return;
      }

      /* remove VID from filter table */
      index = (vid >> 5) & 0x7F;
      vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
      vfta &= ~(1 << (vid & 0x1F));
      e1000_write_vfta(&adapter->hw, index, vfta);
}

static void
e1000_restore_vlan(struct e1000_adapter *adapter)
{
      e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);

      if (adapter->vlgrp) {
            uint16_t vid;
            for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
                  if (!adapter->vlgrp->vlan_devices[vid])
                        continue;
                  e1000_vlan_rx_add_vid(adapter->netdev, vid);
            }
      }
}

int
e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
{
      adapter->hw.autoneg = 0;

      /* Fiber NICs only allow 1000 gbps Full duplex */
      if ((adapter->hw.media_type == e1000_media_type_fiber) &&
            spddplx != (SPEED_1000 + DUPLEX_FULL)) {
            DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
            return -EINVAL;
      }

      switch (spddplx) {
      case SPEED_10 + DUPLEX_HALF:
            adapter->hw.forced_speed_duplex = e1000_10_half;
            break;
      case SPEED_10 + DUPLEX_FULL:
            adapter->hw.forced_speed_duplex = e1000_10_full;
            break;
      case SPEED_100 + DUPLEX_HALF:
            adapter->hw.forced_speed_duplex = e1000_100_half;
            break;
      case SPEED_100 + DUPLEX_FULL:
            adapter->hw.forced_speed_duplex = e1000_100_full;
            break;
      case SPEED_1000 + DUPLEX_FULL:
            adapter->hw.autoneg = 1;
            adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
            break;
      case SPEED_1000 + DUPLEX_HALF: /* not supported */
      default:
            DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
            return -EINVAL;
      }
      return 0;
}

#ifdef CONFIG_PM
/* Save/restore 16 or 64 dwords of PCI config space depending on which
 * bus we're on (PCI(X) vs. PCI-E)
 */
#define PCIE_CONFIG_SPACE_LEN 256
#define PCI_CONFIG_SPACE_LEN 64
static int
e1000_pci_save_state(struct e1000_adapter *adapter)
{
      struct pci_dev *dev = adapter->pdev;
      int size;
      int i;

      if (adapter->hw.mac_type >= e1000_82571)
            size = PCIE_CONFIG_SPACE_LEN;
      else
            size = PCI_CONFIG_SPACE_LEN;

      WARN_ON(adapter->config_space != NULL);

      adapter->config_space = kmalloc(size, GFP_KERNEL);
      if (!adapter->config_space) {
            DPRINTK(PROBE, ERR, "unable to allocate %d bytes\n", size);
            return -ENOMEM;
      }
      for (i = 0; i < (size / 4); i++)
            pci_read_config_dword(dev, i * 4, &adapter->config_space[i]);
      return 0;
}

static void
e1000_pci_restore_state(struct e1000_adapter *adapter)
{
      struct pci_dev *dev = adapter->pdev;
      int size;
      int i;

      if (adapter->config_space == NULL)
            return;

      if (adapter->hw.mac_type >= e1000_82571)
            size = PCIE_CONFIG_SPACE_LEN;
      else
            size = PCI_CONFIG_SPACE_LEN;
      for (i = 0; i < (size / 4); i++)
            pci_write_config_dword(dev, i * 4, adapter->config_space[i]);
      kfree(adapter->config_space);
      adapter->config_space = NULL;
      return;
}
#endif /* CONFIG_PM */

static int
e1000_suspend(struct pci_dev *pdev, pm_message_t state)
{
      struct net_device *netdev = pci_get_drvdata(pdev);
      struct e1000_adapter *adapter = netdev_priv(netdev);
      uint32_t ctrl, ctrl_ext, rctl, manc, status;
      uint32_t wufc = adapter->wol;
#ifdef CONFIG_PM
      int retval = 0;
#endif

      netif_device_detach(netdev);

      if (netif_running(netdev)) {
            WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
            e1000_down(adapter);
      }

#ifdef CONFIG_PM
      /* Implement our own version of pci_save_state(pdev) because pci-
       * express adapters have 256-byte config spaces. */
      retval = e1000_pci_save_state(adapter);
      if (retval)
            return retval;
#endif

      status = E1000_READ_REG(&adapter->hw, STATUS);
      if (status & E1000_STATUS_LU)
            wufc &= ~E1000_WUFC_LNKC;

      if (wufc) {
            e1000_setup_rctl(adapter);
            e1000_set_multi(netdev);

            /* turn on all-multi mode if wake on multicast is enabled */
            if (adapter->wol & E1000_WUFC_MC) {
                  rctl = E1000_READ_REG(&adapter->hw, RCTL);
                  rctl |= E1000_RCTL_MPE;
                  E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
            }

            if (adapter->hw.mac_type >= e1000_82540) {
                  ctrl = E1000_READ_REG(&adapter->hw, CTRL);
                  /* advertise wake from D3Cold */
                  #define E1000_CTRL_ADVD3WUC 0x00100000
                  /* phy power management enable */
                  #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
                  ctrl |= E1000_CTRL_ADVD3WUC |
                        E1000_CTRL_EN_PHY_PWR_MGMT;
                  E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
            }

            if (adapter->hw.media_type == e1000_media_type_fiber ||
               adapter->hw.media_type == e1000_media_type_internal_serdes) {
                  /* keep the laser running in D3 */
                  ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
                  ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
                  E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
            }

            /* Allow time for pending master requests to run */
            e1000_disable_pciex_master(&adapter->hw);

            E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
            E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
            pci_enable_wake(pdev, PCI_D3hot, 1);
            pci_enable_wake(pdev, PCI_D3cold, 1);
      } else {
            E1000_WRITE_REG(&adapter->hw, WUC, 0);
            E1000_WRITE_REG(&adapter->hw, WUFC, 0);
            pci_enable_wake(pdev, PCI_D3hot, 0);
            pci_enable_wake(pdev, PCI_D3cold, 0);
      }

      /* FIXME: this code is incorrect for PCI Express */
      if (adapter->hw.mac_type >= e1000_82540 &&
         adapter->hw.mac_type != e1000_ich8lan &&
         adapter->hw.media_type == e1000_media_type_copper) {
            manc = E1000_READ_REG(&adapter->hw, MANC);
            if (manc & E1000_MANC_SMBUS_EN) {
                  manc |= E1000_MANC_ARP_EN;
                  E1000_WRITE_REG(&adapter->hw, MANC, manc);
                  pci_enable_wake(pdev, PCI_D3hot, 1);
                  pci_enable_wake(pdev, PCI_D3cold, 1);
            }
      }

      if (adapter->hw.phy_type == e1000_phy_igp_3)
            e1000_phy_powerdown_workaround(&adapter->hw);

      /* Release control of h/w to f/w.  If f/w is AMT enabled, this
       * would have already happened in close and is redundant. */
      e1000_release_hw_control(adapter);

      pci_disable_device(pdev);

      pci_set_power_state(pdev, pci_choose_state(pdev, state));

      return 0;
}

#ifdef CONFIG_PM
static int
e1000_resume(struct pci_dev *pdev)
{
      struct net_device *netdev = pci_get_drvdata(pdev);
      struct e1000_adapter *adapter = netdev_priv(netdev);
      uint32_t manc, ret_val;

      pci_set_power_state(pdev, PCI_D0);
      e1000_pci_restore_state(adapter);
      ret_val = pci_enable_device(pdev);
      pci_set_master(pdev);

      pci_enable_wake(pdev, PCI_D3hot, 0);
      pci_enable_wake(pdev, PCI_D3cold, 0);

      e1000_reset(adapter);
      E1000_WRITE_REG(&adapter->hw, WUS, ~0);

      if (netif_running(netdev))
            e1000_up(adapter);

      netif_device_attach(netdev);

      /* FIXME: this code is incorrect for PCI Express */
      if (adapter->hw.mac_type >= e1000_82540 &&
         adapter->hw.mac_type != e1000_ich8lan &&
         adapter->hw.media_type == e1000_media_type_copper) {
            manc = E1000_READ_REG(&adapter->hw, MANC);
            manc &= ~(E1000_MANC_ARP_EN);
            E1000_WRITE_REG(&adapter->hw, MANC, manc);
      }

      /* If the controller is 82573 and f/w is AMT, do not set
       * DRV_LOAD until the interface is up.  For all other cases,
       * let the f/w know that the h/w is now under the control
       * of the driver. */
      if (adapter->hw.mac_type != e1000_82573 ||
          !e1000_check_mng_mode(&adapter->hw))
            e1000_get_hw_control(adapter);

      return 0;
}
#endif

static void e1000_shutdown(struct pci_dev *pdev)
{
      e1000_suspend(pdev, PMSG_SUSPEND);
}

#ifdef CONFIG_NET_POLL_CONTROLLER
/*
 * Polling 'interrupt' - used by things like netconsole to send skbs
 * without having to re-enable interrupts. It's not called while
 * the interrupt routine is executing.
 */
static void
e1000_netpoll(struct net_device *netdev)
{
      struct e1000_adapter *adapter = netdev_priv(netdev);

      disable_irq(adapter->pdev->irq);
      e1000_intr(adapter->pdev->irq, netdev, NULL);
      e1000_clean_tx_irq(adapter, adapter->tx_ring);
#ifndef CONFIG_E1000_NAPI
      adapter->clean_rx(adapter, adapter->rx_ring);
#endif
      enable_irq(adapter->pdev->irq);
}
#endif

/**
 * e1000_io_error_detected - called when PCI error is detected
 * @pdev: Pointer to PCI device
 * @state: The current pci conneection state
 *
 * This function is called after a PCI bus error affecting
 * this device has been detected.
 */
static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
{
      struct net_device *netdev = pci_get_drvdata(pdev);
      struct e1000_adapter *adapter = netdev->priv;

      netif_device_detach(netdev);

      if (netif_running(netdev))
            e1000_down(adapter);

      /* Request a slot slot reset. */
      return PCI_ERS_RESULT_NEED_RESET;
}

/**
 * e1000_io_slot_reset - called after the pci bus has been reset.
 * @pdev: Pointer to PCI device
 *
 * Restart the card from scratch, as if from a cold-boot. Implementation
 * resembles the first-half of the e1000_resume routine.
 */
static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
{
      struct net_device *netdev = pci_get_drvdata(pdev);
      struct e1000_adapter *adapter = netdev->priv;

      if (pci_enable_device(pdev)) {
            printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
            return PCI_ERS_RESULT_DISCONNECT;
      }
      pci_set_master(pdev);

      pci_enable_wake(pdev, 3, 0);
      pci_enable_wake(pdev, 4, 0); /* 4 == D3 cold */

      /* Perform card reset only on one instance of the card */
      if (PCI_FUNC (pdev->devfn) != 0)
            return PCI_ERS_RESULT_RECOVERED;

      e1000_reset(adapter);
      E1000_WRITE_REG(&adapter->hw, WUS, ~0);

      return PCI_ERS_RESULT_RECOVERED;
}

/**
 * e1000_io_resume - called when traffic can start flowing again.
 * @pdev: Pointer to PCI device
 *
 * This callback is called when the error recovery driver tells us that
 * its OK to resume normal operation. Implementation resembles the
 * second-half of the e1000_resume routine.
 */
static void e1000_io_resume(struct pci_dev *pdev)
{
      struct net_device *netdev = pci_get_drvdata(pdev);
      struct e1000_adapter *adapter = netdev->priv;
      uint32_t manc, swsm;

      if (netif_running(netdev)) {
            if (e1000_up(adapter)) {
                  printk("e1000: can't bring device back up after reset\n");
                  return;
            }
      }

      netif_device_attach(netdev);

      if (adapter->hw.mac_type >= e1000_82540 &&
          adapter->hw.media_type == e1000_media_type_copper) {
            manc = E1000_READ_REG(&adapter->hw, MANC);
            manc &= ~(E1000_MANC_ARP_EN);
            E1000_WRITE_REG(&adapter->hw, MANC, manc);
      }

      switch (adapter->hw.mac_type) {
      case e1000_82573:
            swsm = E1000_READ_REG(&adapter->hw, SWSM);
            E1000_WRITE_REG(&adapter->hw, SWSM,
                        swsm | E1000_SWSM_DRV_LOAD);
            break;
      default:
            break;
      }

      if (netif_running(netdev))
            mod_timer(&adapter->watchdog_timer, jiffies);
}

/* e1000_main.c */

Generated by  Doxygen 1.6.0   Back to index