Logo Search packages:      
Sourcecode: linux-2.6 version File versions  Download package

esssolo1.c

/****************************************************************************/

/*
 *      esssolo1.c  --  ESS Technology Solo1 (ES1946) audio driver.
 *
 *      Copyright (C) 1998-2001, 2003  Thomas Sailer (t.sailer@alumni.ethz.ch)
 *
 *      This program is free software; you can redistribute it and/or modify
 *      it under the terms of the GNU General Public License as published by
 *      the Free Software Foundation; either version 2 of the License, or
 *      (at your option) any later version.
 *
 *      This program is distributed in the hope that it will be useful,
 *      but WITHOUT ANY WARRANTY; without even the implied warranty of
 *      MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *      GNU General Public License for more details.
 *
 *      You should have received a copy of the GNU General Public License
 *      along with this program; if not, write to the Free Software
 *      Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 *
 * Module command line parameters:
 *   none so far
 *
 *  Supported devices:
 *  /dev/dsp    standard /dev/dsp device, (mostly) OSS compatible
 *  /dev/mixer  standard /dev/mixer device, (mostly) OSS compatible
 *  /dev/midi   simple MIDI UART interface, no ioctl
 *
 *  Revision history
 *    10.11.1998   0.1   Initial release (without any hardware)
 *    22.03.1999   0.2   cinfo.blocks should be reset after GETxPTR ioctl.
 *                       reported by Johan Maes <joma@telindus.be>
 *                       return EAGAIN instead of EBUSY when O_NONBLOCK
 *                       read/write cannot be executed
 *    07.04.1999   0.3   implemented the following ioctl's: SOUND_PCM_READ_RATE, 
 *                       SOUND_PCM_READ_CHANNELS, SOUND_PCM_READ_BITS; 
 *                       Alpha fixes reported by Peter Jones <pjones@redhat.com>
 *    15.06.1999   0.4   Fix bad allocation bug.
 *                       Thanks to Deti Fliegl <fliegl@in.tum.de>
 *    28.06.1999   0.5   Add pci_set_master
 *    12.08.1999   0.6   Fix MIDI UART crashing the driver
 *                       Changed mixer semantics from OSS documented
 *                       behaviour to OSS "code behaviour".
 *                       Recording might actually work now.
 *                       The real DDMA controller address register is at PCI config
 *                       0x60, while the register at 0x18 is used as a placeholder
 *                       register for BIOS address allocation. This register
 *                       is supposed to be copied into 0x60, according
 *                       to the Solo1 datasheet. When I do that, I can access
 *                       the DDMA registers except the mask bit, which
 *                       is stuck at 1. When I copy the contents of 0x18 +0x10
 *                       to the DDMA base register, everything seems to work.
 *                       The fun part is that the Windows Solo1 driver doesn't
 *                       seem to do these tricks.
 *                       Bugs remaining: plops and clicks when starting/stopping playback
 *    31.08.1999   0.7   add spin_lock_init
 *                       replaced current->state = x with set_current_state(x)
 *    03.09.1999   0.8   change read semantics for MIDI to match
 *                       OSS more closely; remove possible wakeup race
 *    07.10.1999   0.9   Fix initialization; complain if sequencer writes time out
 *                       Revised resource grabbing for the FM synthesizer
 *    28.10.1999   0.10  More waitqueue races fixed
 *    09.12.1999   0.11  Work around stupid Alpha port issue (virt_to_bus(kmalloc(GFP_DMA)) > 16M)
 *                       Disabling recording on Alpha
 *    12.01.2000   0.12  Prevent some ioctl's from returning bad count values on underrun/overrun;
 *                       Tim Janik's BSE (Bedevilled Sound Engine) found this
 *                       Integrated (aka redid 8-)) APM support patch by Zach Brown
 *    07.02.2000   0.13  Use pci_alloc_consistent and pci_register_driver
 *    19.02.2000   0.14  Use pci_dma_supported to determine if recording should be disabled
 *    13.03.2000   0.15  Reintroduce initialization of a couple of PCI config space registers
 *    21.11.2000   0.16  Initialize dma buffers in poll, otherwise poll may return a bogus mask
 *    12.12.2000   0.17  More dma buffer initializations, patch from
 *                       Tjeerd Mulder <tjeerd.mulder@fujitsu-siemens.com>
 *    31.01.2001   0.18  Register/Unregister gameport, original patch from
 *                       Nathaniel Daw <daw@cs.cmu.edu>
 *                       Fix SETTRIGGER non OSS API conformity
 *    10.03.2001         provide abs function, prevent picking up a bogus kernel macro
 *                       for abs. Bug report by Andrew Morton <andrewm@uow.edu.au>
 *    15.05.2001         pci_enable_device moved, return values in probe cleaned
 *                       up. Marcus Meissner <mm@caldera.de>
 *    22.05.2001   0.19  more cleanups, changed PM to PCI 2.4 style, got rid
 *                       of global list of devices, using pci device data.
 *                       Marcus Meissner <mm@caldera.de>
 *    03.01.2003   0.20  open_mode fixes from Georg Acher <acher@in.tum.de>
 */

/*****************************************************************************/
      
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/string.h>
#include <linux/ioport.h>
#include <linux/sched.h>
#include <linux/delay.h>
#include <linux/sound.h>
#include <linux/slab.h>
#include <linux/soundcard.h>
#include <linux/pci.h>
#include <linux/bitops.h>
#include <linux/init.h>
#include <linux/poll.h>
#include <linux/spinlock.h>
#include <linux/smp_lock.h>
#include <linux/gameport.h>
#include <linux/wait.h>
#include <linux/dma-mapping.h>
#include <linux/mutex.h>


#include <asm/io.h>
#include <asm/page.h>
#include <asm/uaccess.h>

#include "dm.h"

/* --------------------------------------------------------------------- */

#undef OSS_DOCUMENTED_MIXER_SEMANTICS

/* --------------------------------------------------------------------- */

#ifndef PCI_VENDOR_ID_ESS
#define PCI_VENDOR_ID_ESS         0x125d
#endif
#ifndef PCI_DEVICE_ID_ESS_SOLO1
#define PCI_DEVICE_ID_ESS_SOLO1   0x1969
#endif

#define SOLO1_MAGIC  ((PCI_VENDOR_ID_ESS<<16)|PCI_DEVICE_ID_ESS_SOLO1)

#define DDMABASE_OFFSET           0    /* chip bug workaround kludge */
#define DDMABASE_EXTENT           16

#define IOBASE_EXTENT             16
#define SBBASE_EXTENT             16
#define VCBASE_EXTENT             (DDMABASE_EXTENT+DDMABASE_OFFSET)
#define MPUBASE_EXTENT            4
#define GPBASE_EXTENT             4
#define GAMEPORT_EXTENT         4

#define FMSYNTH_EXTENT            4

/* MIDI buffer sizes */

#define MIDIINBUF  256
#define MIDIOUTBUF 256

#define FMODE_MIDI_SHIFT 3
#define FMODE_MIDI_READ  (FMODE_READ << FMODE_MIDI_SHIFT)
#define FMODE_MIDI_WRITE (FMODE_WRITE << FMODE_MIDI_SHIFT)

#define FMODE_DMFM 0x10

#if defined(CONFIG_GAMEPORT) || (defined(MODULE) && defined(CONFIG_GAMEPORT_MODULE))
#define SUPPORT_JOYSTICK 1
#endif

static struct pci_driver solo1_driver;

/* --------------------------------------------------------------------- */

struct solo1_state {
      /* magic */
      unsigned int magic;

      /* the corresponding pci_dev structure */
      struct pci_dev *dev;

      /* soundcore stuff */
      int dev_audio;
      int dev_mixer;
      int dev_midi;
      int dev_dmfm;

      /* hardware resources */
      unsigned long iobase, sbbase, vcbase, ddmabase, mpubase; /* long for SPARC */
      unsigned int irq;

      /* mixer registers */
      struct {
            unsigned short vol[10];
            unsigned int recsrc;
            unsigned int modcnt;
            unsigned short micpreamp;
      } mix;

      /* wave stuff */
      unsigned fmt;
      unsigned channels;
      unsigned rate;
      unsigned char clkdiv;
      unsigned ena;

      spinlock_t lock;
      struct mutex open_mutex;
      mode_t open_mode;
      wait_queue_head_t open_wait;

      struct dmabuf {
            void *rawbuf;
            dma_addr_t dmaaddr;
            unsigned buforder;
            unsigned numfrag;
            unsigned fragshift;
            unsigned hwptr, swptr;
            unsigned total_bytes;
            int count;
            unsigned error; /* over/underrun */
            wait_queue_head_t wait;
            /* redundant, but makes calculations easier */
            unsigned fragsize;
            unsigned dmasize;
            unsigned fragsamples;
            /* OSS stuff */
            unsigned mapped:1;
            unsigned ready:1;
            unsigned endcleared:1;
            unsigned enabled:1;
            unsigned ossfragshift;
            int ossmaxfrags;
            unsigned subdivision;
      } dma_dac, dma_adc;

      /* midi stuff */
      struct {
            unsigned ird, iwr, icnt;
            unsigned ord, owr, ocnt;
            wait_queue_head_t iwait;
            wait_queue_head_t owait;
            struct timer_list timer;
            unsigned char ibuf[MIDIINBUF];
            unsigned char obuf[MIDIOUTBUF];
      } midi;

#if SUPPORT_JOYSTICK
      struct gameport *gameport;
#endif
};

/* --------------------------------------------------------------------- */

static inline void write_seq(struct solo1_state *s, unsigned char data)
{
        int i;
      unsigned long flags;

      /* the local_irq_save stunt is to send the data within the command window */
        for (i = 0; i < 0xffff; i++) {
            local_irq_save(flags);
                if (!(inb(s->sbbase+0xc) & 0x80)) {
                        outb(data, s->sbbase+0xc);
                  local_irq_restore(flags);
                        return;
                }
            local_irq_restore(flags);
      }
      printk(KERN_ERR "esssolo1: write_seq timeout\n");
      outb(data, s->sbbase+0xc);
}

static inline int read_seq(struct solo1_state *s, unsigned char *data)
{
        int i;

        if (!data)
                return 0;
        for (i = 0; i < 0xffff; i++)
                if (inb(s->sbbase+0xe) & 0x80) {
                        *data = inb(s->sbbase+0xa);
                        return 1;
                }
      printk(KERN_ERR "esssolo1: read_seq timeout\n");
        return 0;
}

static inline int reset_ctrl(struct solo1_state *s)
{
        int i;

        outb(3, s->sbbase+6); /* clear sequencer and FIFO */
        udelay(10);
        outb(0, s->sbbase+6);
        for (i = 0; i < 0xffff; i++)
                if (inb(s->sbbase+0xe) & 0x80)
                        if (inb(s->sbbase+0xa) == 0xaa) {
                        write_seq(s, 0xc6); /* enter enhanced mode */
                                return 1;
                  }
        return 0;
}

static void write_ctrl(struct solo1_state *s, unsigned char reg, unsigned char data)
{
      write_seq(s, reg);
      write_seq(s, data);
}

#if 0 /* unused */
static unsigned char read_ctrl(struct solo1_state *s, unsigned char reg)
{
        unsigned char r;

      write_seq(s, 0xc0);
      write_seq(s, reg);
      read_seq(s, &r);
      return r;
}
#endif /* unused */

static void write_mixer(struct solo1_state *s, unsigned char reg, unsigned char data)
{
      outb(reg, s->sbbase+4);
      outb(data, s->sbbase+5);
}

static unsigned char read_mixer(struct solo1_state *s, unsigned char reg)
{
      outb(reg, s->sbbase+4);
      return inb(s->sbbase+5);
}

/* --------------------------------------------------------------------- */

static inline unsigned ld2(unsigned int x)
{
      unsigned r = 0;
      
      if (x >= 0x10000) {
            x >>= 16;
            r += 16;
      }
      if (x >= 0x100) {
            x >>= 8;
            r += 8;
      }
      if (x >= 0x10) {
            x >>= 4;
            r += 4;
      }
      if (x >= 4) {
            x >>= 2;
            r += 2;
      }
      if (x >= 2)
            r++;
      return r;
}

/* --------------------------------------------------------------------- */

static inline void stop_dac(struct solo1_state *s)
{
      unsigned long flags;

      spin_lock_irqsave(&s->lock, flags);
      s->ena &= ~FMODE_WRITE;
      write_mixer(s, 0x78, 0x10);
      spin_unlock_irqrestore(&s->lock, flags);
}

static void start_dac(struct solo1_state *s)
{
      unsigned long flags;

      spin_lock_irqsave(&s->lock, flags);
      if (!(s->ena & FMODE_WRITE) && (s->dma_dac.mapped || s->dma_dac.count > 0) && s->dma_dac.ready) {
            s->ena |= FMODE_WRITE;
            write_mixer(s, 0x78, 0x12);
            udelay(10);
            write_mixer(s, 0x78, 0x13);
      }
      spin_unlock_irqrestore(&s->lock, flags);
}     

static inline void stop_adc(struct solo1_state *s)
{
      unsigned long flags;

      spin_lock_irqsave(&s->lock, flags);
      s->ena &= ~FMODE_READ;
      write_ctrl(s, 0xb8, 0xe);
      spin_unlock_irqrestore(&s->lock, flags);
}

static void start_adc(struct solo1_state *s)
{
      unsigned long flags;

      spin_lock_irqsave(&s->lock, flags);
      if (!(s->ena & FMODE_READ) && (s->dma_adc.mapped || s->dma_adc.count < (signed)(s->dma_adc.dmasize - 2*s->dma_adc.fragsize))
          && s->dma_adc.ready) {
            s->ena |= FMODE_READ;
            write_ctrl(s, 0xb8, 0xf);
#if 0
            printk(KERN_DEBUG "solo1: DMAbuffer: 0x%08lx\n", (long)s->dma_adc.rawbuf);
            printk(KERN_DEBUG "solo1: DMA: mask: 0x%02x cnt: 0x%04x addr: 0x%08x  stat: 0x%02x\n", 
                   inb(s->ddmabase+0xf), inw(s->ddmabase+4), inl(s->ddmabase), inb(s->ddmabase+8));
#endif
                outb(0, s->ddmabase+0xd); /* master reset */
            outb(1, s->ddmabase+0xf);  /* mask */
            outb(0x54/*0x14*/, s->ddmabase+0xb);  /* DMA_MODE_READ | DMA_MODE_AUTOINIT */
            outl(virt_to_bus(s->dma_adc.rawbuf), s->ddmabase);
            outw(s->dma_adc.dmasize-1, s->ddmabase+4);
            outb(0, s->ddmabase+0xf);
      }
      spin_unlock_irqrestore(&s->lock, flags);
#if 0
      printk(KERN_DEBUG "solo1: start DMA: reg B8: 0x%02x  SBstat: 0x%02x\n"
             KERN_DEBUG "solo1: DMA: stat: 0x%02x  cnt: 0x%04x  mask: 0x%02x\n", 
             read_ctrl(s, 0xb8), inb(s->sbbase+0xc), 
             inb(s->ddmabase+8), inw(s->ddmabase+4), inb(s->ddmabase+0xf));
      printk(KERN_DEBUG "solo1: A1: 0x%02x  A2: 0x%02x  A4: 0x%02x  A5: 0x%02x  A8: 0x%02x\n"  
             KERN_DEBUG "solo1: B1: 0x%02x  B2: 0x%02x  B4: 0x%02x  B7: 0x%02x  B8: 0x%02x  B9: 0x%02x\n",
             read_ctrl(s, 0xa1), read_ctrl(s, 0xa2), read_ctrl(s, 0xa4), read_ctrl(s, 0xa5), read_ctrl(s, 0xa8), 
             read_ctrl(s, 0xb1), read_ctrl(s, 0xb2), read_ctrl(s, 0xb4), read_ctrl(s, 0xb7), read_ctrl(s, 0xb8), 
             read_ctrl(s, 0xb9));
#endif
}

/* --------------------------------------------------------------------- */

#define DMABUF_DEFAULTORDER (15-PAGE_SHIFT)
#define DMABUF_MINORDER 1

static inline void dealloc_dmabuf(struct solo1_state *s, struct dmabuf *db)
{
      struct page *page, *pend;

      if (db->rawbuf) {
            /* undo marking the pages as reserved */
            pend = virt_to_page(db->rawbuf + (PAGE_SIZE << db->buforder) - 1);
            for (page = virt_to_page(db->rawbuf); page <= pend; page++)
                  ClearPageReserved(page);
            pci_free_consistent(s->dev, PAGE_SIZE << db->buforder, db->rawbuf, db->dmaaddr);
      }
      db->rawbuf = NULL;
      db->mapped = db->ready = 0;
}

static int prog_dmabuf(struct solo1_state *s, struct dmabuf *db)
{
      int order;
      unsigned bytespersec;
      unsigned bufs, sample_shift = 0;
      struct page *page, *pend;

      db->hwptr = db->swptr = db->total_bytes = db->count = db->error = db->endcleared = 0;
      if (!db->rawbuf) {
            db->ready = db->mapped = 0;
                for (order = DMABUF_DEFAULTORDER; order >= DMABUF_MINORDER; order--)
                  if ((db->rawbuf = pci_alloc_consistent(s->dev, PAGE_SIZE << order, &db->dmaaddr)))
                        break;
            if (!db->rawbuf)
                  return -ENOMEM;
            db->buforder = order;
            /* now mark the pages as reserved; otherwise remap_pfn_range doesn't do what we want */
            pend = virt_to_page(db->rawbuf + (PAGE_SIZE << db->buforder) - 1);
            for (page = virt_to_page(db->rawbuf); page <= pend; page++)
                  SetPageReserved(page);
      }
      if (s->fmt & (AFMT_S16_LE | AFMT_U16_LE))
            sample_shift++;
      if (s->channels > 1)
            sample_shift++;
      bytespersec = s->rate << sample_shift;
      bufs = PAGE_SIZE << db->buforder;
      if (db->ossfragshift) {
            if ((1000 << db->ossfragshift) < bytespersec)
                  db->fragshift = ld2(bytespersec/1000);
            else
                  db->fragshift = db->ossfragshift;
      } else {
            db->fragshift = ld2(bytespersec/100/(db->subdivision ? db->subdivision : 1));
            if (db->fragshift < 3)
                  db->fragshift = 3;
      }
      db->numfrag = bufs >> db->fragshift;
      while (db->numfrag < 4 && db->fragshift > 3) {
            db->fragshift--;
            db->numfrag = bufs >> db->fragshift;
      }
      db->fragsize = 1 << db->fragshift;
      if (db->ossmaxfrags >= 4 && db->ossmaxfrags < db->numfrag)
            db->numfrag = db->ossmaxfrags;
      db->fragsamples = db->fragsize >> sample_shift;
      db->dmasize = db->numfrag << db->fragshift;
      db->enabled = 1;
      return 0;
}

static inline int prog_dmabuf_adc(struct solo1_state *s)
{
      unsigned long va;
      int c;

      stop_adc(s);
      /* check if PCI implementation supports 24bit busmaster DMA */
      if (s->dev->dma_mask > 0xffffff)
            return -EIO;
      if ((c = prog_dmabuf(s, &s->dma_adc)))
            return c;
      va = s->dma_adc.dmaaddr;
      if ((va & ~((1<<24)-1)))
            panic("solo1: buffer above 16M boundary");
      outb(0, s->ddmabase+0xd);  /* clear */
      outb(1, s->ddmabase+0xf); /* mask */
      /*outb(0, s->ddmabase+8);*/  /* enable (enable is active low!) */
      outb(0x54, s->ddmabase+0xb);  /* DMA_MODE_READ | DMA_MODE_AUTOINIT */
      outl(va, s->ddmabase);
      outw(s->dma_adc.dmasize-1, s->ddmabase+4);
      c = - s->dma_adc.fragsamples;
      write_ctrl(s, 0xa4, c);
      write_ctrl(s, 0xa5, c >> 8);
      outb(0, s->ddmabase+0xf);
      s->dma_adc.ready = 1;
      return 0;
}

static int prog_dmabuf_dac(struct solo1_state *s)
{
      unsigned long va;
      int c;

      stop_dac(s);
      if ((c = prog_dmabuf(s, &s->dma_dac)))
            return c;
      memset(s->dma_dac.rawbuf, (s->fmt & (AFMT_U8 | AFMT_U16_LE)) ? 0 : 0x80, s->dma_dac.dmasize); /* almost correct for U16 */
      va = s->dma_dac.dmaaddr;
      if ((va ^ (va + s->dma_dac.dmasize - 1)) & ~((1<<20)-1))
            panic("solo1: buffer crosses 1M boundary");
      outl(va, s->iobase);
      /* warning: s->dma_dac.dmasize & 0xffff must not be zero! i.e. this limits us to a 32k buffer */
      outw(s->dma_dac.dmasize, s->iobase+4);
      c = - s->dma_dac.fragsamples;
      write_mixer(s, 0x74, c);
      write_mixer(s, 0x76, c >> 8);
      outb(0xa, s->iobase+6);
      s->dma_dac.ready = 1;
      return 0;
}

static inline void clear_advance(void *buf, unsigned bsize, unsigned bptr, unsigned len, unsigned char c)
{
      if (bptr + len > bsize) {
            unsigned x = bsize - bptr;
            memset(((char *)buf) + bptr, c, x);
            bptr = 0;
            len -= x;
      }
      memset(((char *)buf) + bptr, c, len);
}

/* call with spinlock held! */

static void solo1_update_ptr(struct solo1_state *s)
{
      int diff;
      unsigned hwptr;

      /* update ADC pointer */
      if (s->ena & FMODE_READ) {
            hwptr = (s->dma_adc.dmasize - 1 - inw(s->ddmabase+4)) % s->dma_adc.dmasize;
                diff = (s->dma_adc.dmasize + hwptr - s->dma_adc.hwptr) % s->dma_adc.dmasize;
                s->dma_adc.hwptr = hwptr;
            s->dma_adc.total_bytes += diff;
            s->dma_adc.count += diff;
#if 0
            printk(KERN_DEBUG "solo1: rd: hwptr %u swptr %u dmasize %u count %u\n",
                   s->dma_adc.hwptr, s->dma_adc.swptr, s->dma_adc.dmasize, s->dma_adc.count);
#endif
            if (s->dma_adc.mapped) {
                  if (s->dma_adc.count >= (signed)s->dma_adc.fragsize)
                        wake_up(&s->dma_adc.wait);
            } else {
                  if (s->dma_adc.count > (signed)(s->dma_adc.dmasize - ((3 * s->dma_adc.fragsize) >> 1))) {
                        s->ena &= ~FMODE_READ;
                        write_ctrl(s, 0xb8, 0xe);
                        s->dma_adc.error++;
                  }
                  if (s->dma_adc.count > 0)
                        wake_up(&s->dma_adc.wait);
            }
      }
      /* update DAC pointer */
      if (s->ena & FMODE_WRITE) {
                hwptr = (s->dma_dac.dmasize - inw(s->iobase+4)) % s->dma_dac.dmasize;
                diff = (s->dma_dac.dmasize + hwptr - s->dma_dac.hwptr) % s->dma_dac.dmasize;
                s->dma_dac.hwptr = hwptr;
            s->dma_dac.total_bytes += diff;
#if 0
            printk(KERN_DEBUG "solo1: wr: hwptr %u swptr %u dmasize %u count %u\n",
                   s->dma_dac.hwptr, s->dma_dac.swptr, s->dma_dac.dmasize, s->dma_dac.count);
#endif
            if (s->dma_dac.mapped) {
                  s->dma_dac.count += diff;
                  if (s->dma_dac.count >= (signed)s->dma_dac.fragsize)
                        wake_up(&s->dma_dac.wait);
            } else {
                  s->dma_dac.count -= diff;
                  if (s->dma_dac.count <= 0) {
                        s->ena &= ~FMODE_WRITE;
                        write_mixer(s, 0x78, 0x12);
                        s->dma_dac.error++;
                  } else if (s->dma_dac.count <= (signed)s->dma_dac.fragsize && !s->dma_dac.endcleared) {
                        clear_advance(s->dma_dac.rawbuf, s->dma_dac.dmasize, s->dma_dac.swptr,
                                    s->dma_dac.fragsize, (s->fmt & (AFMT_U8 | AFMT_U16_LE)) ? 0 : 0x80);
                        s->dma_dac.endcleared = 1;
                  }
                  if (s->dma_dac.count < (signed)s->dma_dac.dmasize)
                        wake_up(&s->dma_dac.wait);
            }
      }
}

/* --------------------------------------------------------------------- */

static void prog_codec(struct solo1_state *s)
{
      unsigned long flags;
      int fdiv, filter;
      unsigned char c;

      reset_ctrl(s);
      write_seq(s, 0xd3);
      /* program sampling rates */
      filter = s->rate * 9 / 20; /* Set filter roll-off to 90% of rate/2 */
      fdiv = 256 - 7160000 / (filter * 82);
      spin_lock_irqsave(&s->lock, flags);
      write_ctrl(s, 0xa1, s->clkdiv);
      write_ctrl(s, 0xa2, fdiv);
      write_mixer(s, 0x70, s->clkdiv);
      write_mixer(s, 0x72, fdiv);
      /* program ADC parameters */
      write_ctrl(s, 0xb8, 0xe);
      write_ctrl(s, 0xb9, /*0x1*/0);
      write_ctrl(s, 0xa8, (s->channels > 1) ? 0x11 : 0x12);
      c = 0xd0;
      if (s->fmt & (AFMT_S16_LE | AFMT_U16_LE))
            c |= 0x04;
      if (s->fmt & (AFMT_S16_LE | AFMT_S8))
            c |= 0x20;
      if (s->channels > 1)
            c ^= 0x48;
      write_ctrl(s, 0xb7, (c & 0x70) | 1);
      write_ctrl(s, 0xb7, c);
      write_ctrl(s, 0xb1, 0x50);
      write_ctrl(s, 0xb2, 0x50);
      /* program DAC parameters */
      c = 0x40;
      if (s->fmt & (AFMT_S16_LE | AFMT_U16_LE))
            c |= 1;
      if (s->fmt & (AFMT_S16_LE | AFMT_S8))
            c |= 4;
      if (s->channels > 1)
            c |= 2;
      write_mixer(s, 0x7a, c);
      write_mixer(s, 0x78, 0x10);
      s->ena = 0;
      spin_unlock_irqrestore(&s->lock, flags);
}

/* --------------------------------------------------------------------- */

static const char invalid_magic[] = KERN_CRIT "solo1: invalid magic value\n";

#define VALIDATE_STATE(s)                         \
({                                                \
      if (!(s) || (s)->magic != SOLO1_MAGIC) { \
            printk(invalid_magic);            \
            return -ENXIO;                    \
      }                                         \
})

/* --------------------------------------------------------------------- */

static int mixer_ioctl(struct solo1_state *s, unsigned int cmd, unsigned long arg)
{
      static const unsigned int mixer_src[8] = {
            SOUND_MASK_MIC, SOUND_MASK_MIC, SOUND_MASK_CD, SOUND_MASK_VOLUME,
            SOUND_MASK_MIC, 0, SOUND_MASK_LINE, 0
      };
      static const unsigned char mixtable1[SOUND_MIXER_NRDEVICES] = {
            [SOUND_MIXER_PCM]     = 1,   /* voice */
            [SOUND_MIXER_SYNTH]   = 2,   /* FM */
            [SOUND_MIXER_CD]      = 3,   /* CD */
            [SOUND_MIXER_LINE]    = 4,   /* Line */
            [SOUND_MIXER_LINE1]   = 5,   /* AUX */
            [SOUND_MIXER_MIC]     = 6,   /* Mic */
            [SOUND_MIXER_LINE2]   = 7,   /* Mono in */
            [SOUND_MIXER_SPEAKER] = 8,   /* Speaker */
            [SOUND_MIXER_RECLEV]  = 9,   /* Recording level */
            [SOUND_MIXER_VOLUME]  = 10   /* Master Volume */
      };
      static const unsigned char mixreg[] = {
            0x7c,   /* voice */
            0x36,   /* FM */
            0x38,   /* CD */
            0x3e,   /* Line */
            0x3a,   /* AUX */
            0x1a,   /* Mic */
            0x6d    /* Mono in */
      };
      unsigned char l, r, rl, rr, vidx;
      int i, val;
      int __user *p = (int __user *)arg;

      VALIDATE_STATE(s);

      if (cmd == SOUND_MIXER_PRIVATE1) {
            /* enable/disable/query mixer preamp */
            if (get_user(val, p))
                  return -EFAULT;
            if (val != -1) {
                  val = val ? 0xff : 0xf7;
                  write_mixer(s, 0x7d, (read_mixer(s, 0x7d) | 0x08) & val);
            }
            val = (read_mixer(s, 0x7d) & 0x08) ? 1 : 0;
            return put_user(val, p);
      }
      if (cmd == SOUND_MIXER_PRIVATE2) {
            /* enable/disable/query spatializer */
            if (get_user(val, p))
                  return -EFAULT;
            if (val != -1) {
                  val &= 0x3f;
                  write_mixer(s, 0x52, val);
                  write_mixer(s, 0x50, val ? 0x08 : 0);
            }
            return put_user(read_mixer(s, 0x52), p);
      }
        if (cmd == SOUND_MIXER_INFO) {
            mixer_info info;
            strncpy(info.id, "Solo1", sizeof(info.id));
            strncpy(info.name, "ESS Solo1", sizeof(info.name));
            info.modify_counter = s->mix.modcnt;
            if (copy_to_user((void __user *)arg, &info, sizeof(info)))
                  return -EFAULT;
            return 0;
      }
      if (cmd == SOUND_OLD_MIXER_INFO) {
            _old_mixer_info info;
            strncpy(info.id, "Solo1", sizeof(info.id));
            strncpy(info.name, "ESS Solo1", sizeof(info.name));
            if (copy_to_user((void __user *)arg, &info, sizeof(info)))
                  return -EFAULT;
            return 0;
      }
      if (cmd == OSS_GETVERSION)
            return put_user(SOUND_VERSION, p);
      if (_IOC_TYPE(cmd) != 'M' || _SIOC_SIZE(cmd) != sizeof(int))
                return -EINVAL;
        if (_SIOC_DIR(cmd) == _SIOC_READ) {
                switch (_IOC_NR(cmd)) {
                case SOUND_MIXER_RECSRC: /* Arg contains a bit for each recording source */
                  return put_user(mixer_src[read_mixer(s, 0x1c) & 7], p);

                case SOUND_MIXER_DEVMASK: /* Arg contains a bit for each supported device */
                  return put_user(SOUND_MASK_PCM | SOUND_MASK_SYNTH | SOUND_MASK_CD |
                              SOUND_MASK_LINE | SOUND_MASK_LINE1 | SOUND_MASK_MIC |
                              SOUND_MASK_VOLUME | SOUND_MASK_LINE2 | SOUND_MASK_RECLEV |
                              SOUND_MASK_SPEAKER, p);

                case SOUND_MIXER_RECMASK: /* Arg contains a bit for each supported recording source */
                  return put_user(SOUND_MASK_LINE | SOUND_MASK_MIC | SOUND_MASK_CD | SOUND_MASK_VOLUME, p);

                case SOUND_MIXER_STEREODEVS: /* Mixer channels supporting stereo */
                  return put_user(SOUND_MASK_PCM | SOUND_MASK_SYNTH | SOUND_MASK_CD |
                              SOUND_MASK_LINE | SOUND_MASK_LINE1 | SOUND_MASK_MIC |
                              SOUND_MASK_VOLUME | SOUND_MASK_LINE2 | SOUND_MASK_RECLEV, p);
                  
                case SOUND_MIXER_CAPS:
                  return put_user(SOUND_CAP_EXCL_INPUT, p);

            default:
                  i = _IOC_NR(cmd);
                        if (i >= SOUND_MIXER_NRDEVICES || !(vidx = mixtable1[i]))
                                return -EINVAL;
                  return put_user(s->mix.vol[vidx-1], p);
            }
      }
        if (_SIOC_DIR(cmd) != (_SIOC_READ|_SIOC_WRITE)) 
            return -EINVAL;
      s->mix.modcnt++;
      switch (_IOC_NR(cmd)) {
      case SOUND_MIXER_RECSRC: /* Arg contains a bit for each recording source */
#if 0
              {
                  static const unsigned char regs[] = {
                        0x1c, 0x1a, 0x36, 0x38, 0x3a, 0x3c, 0x3e, 0x60, 0x62, 0x6d, 0x7c
                  };
                  int i;
                  
                  for (i = 0; i < sizeof(regs); i++)
                        printk(KERN_DEBUG "solo1: mixer reg 0x%02x: 0x%02x\n",
                               regs[i], read_mixer(s, regs[i]));
                  printk(KERN_DEBUG "solo1: ctrl reg 0x%02x: 0x%02x\n",
                         0xb4, read_ctrl(s, 0xb4));
            }
#endif
              if (get_user(val, p))
                  return -EFAULT;
                i = hweight32(val);
                if (i == 0)
                        return 0;
                else if (i > 1) 
                        val &= ~mixer_src[read_mixer(s, 0x1c) & 7];
            for (i = 0; i < 8; i++) {
                  if (mixer_src[i] & val)
                        break;
            }
            if (i > 7)
                  return 0;
            write_mixer(s, 0x1c, i);
            return 0;

      case SOUND_MIXER_VOLUME:
            if (get_user(val, p))
                  return -EFAULT;
            l = val & 0xff;
            if (l > 100)
                  l = 100;
            r = (val >> 8) & 0xff;
            if (r > 100)
                  r = 100;
            if (l < 6) {
                  rl = 0x40;
                  l = 0;
            } else {
                  rl = (l * 2 - 11) / 3;
                  l = (rl * 3 + 11) / 2;
            }
            if (r < 6) {
                  rr = 0x40;
                  r = 0;
            } else {
                  rr = (r * 2 - 11) / 3;
                  r = (rr * 3 + 11) / 2;
            }
            write_mixer(s, 0x60, rl);
            write_mixer(s, 0x62, rr);
#ifdef OSS_DOCUMENTED_MIXER_SEMANTICS
                s->mix.vol[9] = ((unsigned int)r << 8) | l;
#else
                s->mix.vol[9] = val;
#endif
            return put_user(s->mix.vol[9], p);

      case SOUND_MIXER_SPEAKER:
            if (get_user(val, p))
                  return -EFAULT;
            l = val & 0xff;
            if (l > 100)
                  l = 100;
            else if (l < 2)
                  l = 2;
            rl = (l - 2) / 14;
            l = rl * 14 + 2;
            write_mixer(s, 0x3c, rl);
#ifdef OSS_DOCUMENTED_MIXER_SEMANTICS
                s->mix.vol[7] = l * 0x101;
#else
                s->mix.vol[7] = val;
#endif
            return put_user(s->mix.vol[7], p);

      case SOUND_MIXER_RECLEV:
            if (get_user(val, p))
                  return -EFAULT;
            l = (val << 1) & 0x1fe;
            if (l > 200)
                  l = 200;
            else if (l < 5)
                  l = 5;
            r = (val >> 7) & 0x1fe;
            if (r > 200)
                  r = 200;
            else if (r < 5)
                  r = 5;
            rl = (l - 5) / 13;
            rr = (r - 5) / 13;
            r = (rl * 13 + 5) / 2;
            l = (rr * 13 + 5) / 2;
            write_ctrl(s, 0xb4, (rl << 4) | rr);
#ifdef OSS_DOCUMENTED_MIXER_SEMANTICS
                s->mix.vol[8] = ((unsigned int)r << 8) | l;
#else
                s->mix.vol[8] = val;
#endif
            return put_user(s->mix.vol[8], p);

      default:
            i = _IOC_NR(cmd);
            if (i >= SOUND_MIXER_NRDEVICES || !(vidx = mixtable1[i]))
                  return -EINVAL;
            if (get_user(val, p))
                  return -EFAULT;
            l = (val << 1) & 0x1fe;
            if (l > 200)
                  l = 200;
            else if (l < 5)
                  l = 5;
            r = (val >> 7) & 0x1fe;
            if (r > 200)
                  r = 200;
            else if (r < 5)
                  r = 5;
            rl = (l - 5) / 13;
            rr = (r - 5) / 13;
            r = (rl * 13 + 5) / 2;
            l = (rr * 13 + 5) / 2;
            write_mixer(s, mixreg[vidx-1], (rl << 4) | rr);
#ifdef OSS_DOCUMENTED_MIXER_SEMANTICS
                s->mix.vol[vidx-1] = ((unsigned int)r << 8) | l;
#else
                s->mix.vol[vidx-1] = val;
#endif
            return put_user(s->mix.vol[vidx-1], p);
      }
}

/* --------------------------------------------------------------------- */

static int solo1_open_mixdev(struct inode *inode, struct file *file)
{
      unsigned int minor = iminor(inode);
      struct solo1_state *s = NULL;
      struct pci_dev *pci_dev = NULL;

      while ((pci_dev = pci_find_device(PCI_ANY_ID, PCI_ANY_ID, pci_dev)) != NULL) {
            struct pci_driver *drvr;
            drvr = pci_dev_driver (pci_dev);
            if (drvr != &solo1_driver)
                  continue;
            s = (struct solo1_state*)pci_get_drvdata(pci_dev);
            if (!s)
                  continue;
            if (s->dev_mixer == minor)
                  break;
      }
      if (!s)
            return -ENODEV;
            VALIDATE_STATE(s);
      file->private_data = s;
      return nonseekable_open(inode, file);
}

static int solo1_release_mixdev(struct inode *inode, struct file *file)
{
      struct solo1_state *s = (struct solo1_state *)file->private_data;

      VALIDATE_STATE(s);
      return 0;
}

static int solo1_ioctl_mixdev(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
{
      return mixer_ioctl((struct solo1_state *)file->private_data, cmd, arg);
}

static /*const*/ struct file_operations solo1_mixer_fops = {
      .owner            = THIS_MODULE,
      .llseek           = no_llseek,
      .ioctl            = solo1_ioctl_mixdev,
      .open       = solo1_open_mixdev,
      .release    = solo1_release_mixdev,
};

/* --------------------------------------------------------------------- */

static int drain_dac(struct solo1_state *s, int nonblock)
{
      DECLARE_WAITQUEUE(wait, current);
      unsigned long flags;
      int count;
      unsigned tmo;
      
      if (s->dma_dac.mapped)
            return 0;
        add_wait_queue(&s->dma_dac.wait, &wait);
        for (;;) {
            set_current_state(TASK_INTERRUPTIBLE);
                spin_lock_irqsave(&s->lock, flags);
            count = s->dma_dac.count;
                spin_unlock_irqrestore(&s->lock, flags);
            if (count <= 0)
                  break;
            if (signal_pending(current))
                        break;
                if (nonblock) {
                        remove_wait_queue(&s->dma_dac.wait, &wait);
                        set_current_state(TASK_RUNNING);
                        return -EBUSY;
                }
            tmo = 3 * HZ * (count + s->dma_dac.fragsize) / 2 / s->rate;
            if (s->fmt & (AFMT_S16_LE | AFMT_U16_LE))
                  tmo >>= 1;
            if (s->channels > 1)
                  tmo >>= 1;
                if (!schedule_timeout(tmo + 1))
                        printk(KERN_DEBUG "solo1: dma timed out??\n");
        }
        remove_wait_queue(&s->dma_dac.wait, &wait);
        set_current_state(TASK_RUNNING);
        if (signal_pending(current))
                return -ERESTARTSYS;
        return 0;
}

/* --------------------------------------------------------------------- */

static ssize_t solo1_read(struct file *file, char __user *buffer, size_t count, loff_t *ppos)
{
      struct solo1_state *s = (struct solo1_state *)file->private_data;
      DECLARE_WAITQUEUE(wait, current);
      ssize_t ret;
      unsigned long flags;
      unsigned swptr;
      int cnt;

      VALIDATE_STATE(s);
      if (s->dma_adc.mapped)
            return -ENXIO;
      if (!s->dma_adc.ready && (ret = prog_dmabuf_adc(s)))
            return ret;
      if (!access_ok(VERIFY_WRITE, buffer, count))
            return -EFAULT;
      ret = 0;
      add_wait_queue(&s->dma_adc.wait, &wait);
      while (count > 0) {
            spin_lock_irqsave(&s->lock, flags);
            swptr = s->dma_adc.swptr;
            cnt = s->dma_adc.dmasize-swptr;
            if (s->dma_adc.count < cnt)
                  cnt = s->dma_adc.count;
            if (cnt <= 0)
                  __set_current_state(TASK_INTERRUPTIBLE);
            spin_unlock_irqrestore(&s->lock, flags);
            if (cnt > count)
                  cnt = count;
#ifdef DEBUGREC
            printk(KERN_DEBUG "solo1_read: reg B8: 0x%02x  DMAstat: 0x%02x  DMAcnt: 0x%04x  SBstat: 0x%02x  cnt: %u\n", 
                   read_ctrl(s, 0xb8), inb(s->ddmabase+8), inw(s->ddmabase+4), inb(s->sbbase+0xc), cnt);
#endif
            if (cnt <= 0) {
                  if (s->dma_adc.enabled)
                        start_adc(s);
#ifdef DEBUGREC
                  printk(KERN_DEBUG "solo1_read: regs: A1: 0x%02x  A2: 0x%02x  A4: 0x%02x  A5: 0x%02x  A8: 0x%02x\n"
                         KERN_DEBUG "solo1_read: regs: B1: 0x%02x  B2: 0x%02x  B7: 0x%02x  B8: 0x%02x  B9: 0x%02x\n"
                         KERN_DEBUG "solo1_read: DMA: addr: 0x%08x cnt: 0x%04x stat: 0x%02x mask: 0x%02x\n"  
                         KERN_DEBUG "solo1_read: SBstat: 0x%02x  cnt: %u\n",
                         read_ctrl(s, 0xa1), read_ctrl(s, 0xa2), read_ctrl(s, 0xa4), read_ctrl(s, 0xa5), read_ctrl(s, 0xa8), 
                         read_ctrl(s, 0xb1), read_ctrl(s, 0xb2), read_ctrl(s, 0xb7), read_ctrl(s, 0xb8), read_ctrl(s, 0xb9), 
                         inl(s->ddmabase), inw(s->ddmabase+4), inb(s->ddmabase+8), inb(s->ddmabase+15), inb(s->sbbase+0xc), cnt);
#endif
                  if (inb(s->ddmabase+15) & 1)
                        printk(KERN_ERR "solo1: cannot start recording, DDMA mask bit stuck at 1\n");
                  if (file->f_flags & O_NONBLOCK) {
                        if (!ret)
                              ret = -EAGAIN;
                        break;
                  }
                  schedule();
#ifdef DEBUGREC
                  printk(KERN_DEBUG "solo1_read: regs: A1: 0x%02x  A2: 0x%02x  A4: 0x%02x  A5: 0x%02x  A8: 0x%02x\n"
                         KERN_DEBUG "solo1_read: regs: B1: 0x%02x  B2: 0x%02x  B7: 0x%02x  B8: 0x%02x  B9: 0x%02x\n"
                         KERN_DEBUG "solo1_read: DMA: addr: 0x%08x cnt: 0x%04x stat: 0x%02x mask: 0x%02x\n"  
                         KERN_DEBUG "solo1_read: SBstat: 0x%02x  cnt: %u\n",
                         read_ctrl(s, 0xa1), read_ctrl(s, 0xa2), read_ctrl(s, 0xa4), read_ctrl(s, 0xa5), read_ctrl(s, 0xa8), 
                         read_ctrl(s, 0xb1), read_ctrl(s, 0xb2), read_ctrl(s, 0xb7), read_ctrl(s, 0xb8), read_ctrl(s, 0xb9), 
                         inl(s->ddmabase), inw(s->ddmabase+4), inb(s->ddmabase+8), inb(s->ddmabase+15), inb(s->sbbase+0xc), cnt);
#endif
                  if (signal_pending(current)) {
                        if (!ret)
                              ret = -ERESTARTSYS;
                        break;
                  }
                  continue;
            }
            if (copy_to_user(buffer, s->dma_adc.rawbuf + swptr, cnt)) {
                  if (!ret)
                        ret = -EFAULT;
                  break;
            }
            swptr = (swptr + cnt) % s->dma_adc.dmasize;
            spin_lock_irqsave(&s->lock, flags);
            s->dma_adc.swptr = swptr;
            s->dma_adc.count -= cnt;
            spin_unlock_irqrestore(&s->lock, flags);
            count -= cnt;
            buffer += cnt;
            ret += cnt;
            if (s->dma_adc.enabled)
                  start_adc(s);
#ifdef DEBUGREC
            printk(KERN_DEBUG "solo1_read: reg B8: 0x%02x  DMAstat: 0x%02x  DMAcnt: 0x%04x  SBstat: 0x%02x\n", 
                   read_ctrl(s, 0xb8), inb(s->ddmabase+8), inw(s->ddmabase+4), inb(s->sbbase+0xc));
#endif
      }
      remove_wait_queue(&s->dma_adc.wait, &wait);
      set_current_state(TASK_RUNNING);
      return ret;
}

static ssize_t solo1_write(struct file *file, const char __user *buffer, size_t count, loff_t *ppos)
{
      struct solo1_state *s = (struct solo1_state *)file->private_data;
      DECLARE_WAITQUEUE(wait, current);
      ssize_t ret;
      unsigned long flags;
      unsigned swptr;
      int cnt;

      VALIDATE_STATE(s);
      if (s->dma_dac.mapped)
            return -ENXIO;
      if (!s->dma_dac.ready && (ret = prog_dmabuf_dac(s)))
            return ret;
      if (!access_ok(VERIFY_READ, buffer, count))
            return -EFAULT;
#if 0
      printk(KERN_DEBUG "solo1_write: reg 70: 0x%02x  71: 0x%02x  72: 0x%02x  74: 0x%02x  76: 0x%02x  78: 0x%02x  7A: 0x%02x\n"
             KERN_DEBUG "solo1_write: DMA: addr: 0x%08x  cnt: 0x%04x  stat: 0x%02x  SBstat: 0x%02x\n", 
             read_mixer(s, 0x70), read_mixer(s, 0x71), read_mixer(s, 0x72), read_mixer(s, 0x74), read_mixer(s, 0x76),
             read_mixer(s, 0x78), read_mixer(s, 0x7a), inl(s->iobase), inw(s->iobase+4), inb(s->iobase+6), inb(s->sbbase+0xc));
      printk(KERN_DEBUG "solo1_write: reg 78: 0x%02x  reg 7A: 0x%02x  DMAcnt: 0x%04x  DMAstat: 0x%02x  SBstat: 0x%02x\n", 
             read_mixer(s, 0x78), read_mixer(s, 0x7a), inw(s->iobase+4), inb(s->iobase+6), inb(s->sbbase+0xc));
#endif
      ret = 0;
      add_wait_queue(&s->dma_dac.wait, &wait);  
      while (count > 0) {
            spin_lock_irqsave(&s->lock, flags);
            if (s->dma_dac.count < 0) {
                  s->dma_dac.count = 0;
                  s->dma_dac.swptr = s->dma_dac.hwptr;
            }
            swptr = s->dma_dac.swptr;
            cnt = s->dma_dac.dmasize-swptr;
            if (s->dma_dac.count + cnt > s->dma_dac.dmasize)
                  cnt = s->dma_dac.dmasize - s->dma_dac.count;
            if (cnt <= 0)
                  __set_current_state(TASK_INTERRUPTIBLE);
            spin_unlock_irqrestore(&s->lock, flags);
            if (cnt > count)
                  cnt = count;
            if (cnt <= 0) {
                  if (s->dma_dac.enabled)
                        start_dac(s);
                  if (file->f_flags & O_NONBLOCK) {
                        if (!ret)
                              ret = -EAGAIN;
                        break;
                  }
                  schedule();
                  if (signal_pending(current)) {
                        if (!ret)
                              ret = -ERESTARTSYS;
                        break;
                  }
                  continue;
            }
            if (copy_from_user(s->dma_dac.rawbuf + swptr, buffer, cnt)) {
                  if (!ret)
                        ret = -EFAULT;
                  break;
            }
            swptr = (swptr + cnt) % s->dma_dac.dmasize;
            spin_lock_irqsave(&s->lock, flags);
            s->dma_dac.swptr = swptr;
            s->dma_dac.count += cnt;
            s->dma_dac.endcleared = 0;
            spin_unlock_irqrestore(&s->lock, flags);
            count -= cnt;
            buffer += cnt;
            ret += cnt;
            if (s->dma_dac.enabled)
                  start_dac(s);
      }
      remove_wait_queue(&s->dma_dac.wait, &wait);
      set_current_state(TASK_RUNNING);
      return ret;
}

/* No kernel lock - we have our own spinlock */
static unsigned int solo1_poll(struct file *file, struct poll_table_struct *wait)
{
      struct solo1_state *s = (struct solo1_state *)file->private_data;
      unsigned long flags;
      unsigned int mask = 0;

      VALIDATE_STATE(s);
      if (file->f_mode & FMODE_WRITE) {
            if (!s->dma_dac.ready && prog_dmabuf_dac(s))
                  return 0;
            poll_wait(file, &s->dma_dac.wait, wait);
      }
      if (file->f_mode & FMODE_READ) {
            if (!s->dma_adc.ready && prog_dmabuf_adc(s))
                  return 0;
            poll_wait(file, &s->dma_adc.wait, wait);
      }
      spin_lock_irqsave(&s->lock, flags);
      solo1_update_ptr(s);
      if (file->f_mode & FMODE_READ) {
            if (s->dma_adc.mapped) {
                  if (s->dma_adc.count >= (signed)s->dma_adc.fragsize)
                        mask |= POLLIN | POLLRDNORM;
            } else {
                  if (s->dma_adc.count > 0)
                        mask |= POLLIN | POLLRDNORM;
            }
      }
      if (file->f_mode & FMODE_WRITE) {
            if (s->dma_dac.mapped) {
                  if (s->dma_dac.count >= (signed)s->dma_dac.fragsize) 
                        mask |= POLLOUT | POLLWRNORM;
            } else {
                  if ((signed)s->dma_dac.dmasize > s->dma_dac.count)
                        mask |= POLLOUT | POLLWRNORM;
            }
      }
      spin_unlock_irqrestore(&s->lock, flags);
      return mask;
}


static int solo1_mmap(struct file *file, struct vm_area_struct *vma)
{
      struct solo1_state *s = (struct solo1_state *)file->private_data;
      struct dmabuf *db;
      int ret = -EINVAL;
      unsigned long size;

      VALIDATE_STATE(s);
      lock_kernel();
      if (vma->vm_flags & VM_WRITE) {
            if ((ret = prog_dmabuf_dac(s)) != 0)
                  goto out;
            db = &s->dma_dac;
      } else if (vma->vm_flags & VM_READ) {
            if ((ret = prog_dmabuf_adc(s)) != 0)
                  goto out;
            db = &s->dma_adc;
      } else 
            goto out;
      ret = -EINVAL;
      if (vma->vm_pgoff != 0)
            goto out;
      size = vma->vm_end - vma->vm_start;
      if (size > (PAGE_SIZE << db->buforder))
            goto out;
      ret = -EAGAIN;
      if (remap_pfn_range(vma, vma->vm_start,
                        virt_to_phys(db->rawbuf) >> PAGE_SHIFT,
                        size, vma->vm_page_prot))
            goto out;
      db->mapped = 1;
      ret = 0;
out:
      unlock_kernel();
      return ret;
}

static int solo1_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
{
      struct solo1_state *s = (struct solo1_state *)file->private_data;
      unsigned long flags;
        audio_buf_info abinfo;
        count_info cinfo;
      int val, mapped, ret, count;
        int div1, div2;
        unsigned rate1, rate2;
      void __user *argp = (void __user *)arg;
      int __user *p = argp;

      VALIDATE_STATE(s);
        mapped = ((file->f_mode & FMODE_WRITE) && s->dma_dac.mapped) ||
            ((file->f_mode & FMODE_READ) && s->dma_adc.mapped);
      switch (cmd) {
      case OSS_GETVERSION:
            return put_user(SOUND_VERSION, p);

      case SNDCTL_DSP_SYNC:
            if (file->f_mode & FMODE_WRITE)
                  return drain_dac(s, 0/*file->f_flags & O_NONBLOCK*/);
            return 0;
            
      case SNDCTL_DSP_SETDUPLEX:
            return 0;

      case SNDCTL_DSP_GETCAPS:
            return put_user(DSP_CAP_DUPLEX | DSP_CAP_REALTIME | DSP_CAP_TRIGGER | DSP_CAP_MMAP, p);
            
        case SNDCTL_DSP_RESET:
            if (file->f_mode & FMODE_WRITE) {
                  stop_dac(s);
                  synchronize_irq(s->irq);
                  s->dma_dac.swptr = s->dma_dac.hwptr = s->dma_dac.count = s->dma_dac.total_bytes = 0;
            }
            if (file->f_mode & FMODE_READ) {
                  stop_adc(s);
                  synchronize_irq(s->irq);
                  s->dma_adc.swptr = s->dma_adc.hwptr = s->dma_adc.count = s->dma_adc.total_bytes = 0;
            }
            prog_codec(s);
            return 0;

        case SNDCTL_DSP_SPEED:
                if (get_user(val, p))
                  return -EFAULT;
            if (val >= 0) {
                  stop_adc(s);
                  stop_dac(s);
                  s->dma_adc.ready = s->dma_dac.ready = 0;
                  /* program sampling rates */
                  if (val > 48000)
                        val = 48000;
                  if (val < 6300)
                        val = 6300;
                  div1 = (768000 + val / 2) / val;
                  rate1 = (768000 + div1 / 2) / div1;
                  div1 = -div1;
                  div2 = (793800 + val / 2) / val;
                  rate2 = (793800 + div2 / 2) / div2;
                  div2 = (-div2) & 0x7f;
                  if (abs(val - rate2) < abs(val - rate1)) {
                        rate1 = rate2;
                        div1 = div2;
                  }
                  s->rate = rate1;
                  s->clkdiv = div1;
                  prog_codec(s);
            }
            return put_user(s->rate, p);
            
        case SNDCTL_DSP_STEREO:
                if (get_user(val, p))
                  return -EFAULT;
            stop_adc(s);
            stop_dac(s);
            s->dma_adc.ready = s->dma_dac.ready = 0;
            /* program channels */
            s->channels = val ? 2 : 1;
            prog_codec(s);
            return 0;

        case SNDCTL_DSP_CHANNELS:
                if (get_user(val, p))
                  return -EFAULT;
            if (val != 0) {
                  stop_adc(s);
                  stop_dac(s);
                  s->dma_adc.ready = s->dma_dac.ready = 0;
                  /* program channels */
                  s->channels = (val >= 2) ? 2 : 1;
                  prog_codec(s);
            }
            return put_user(s->channels, p);

      case SNDCTL_DSP_GETFMTS: /* Returns a mask */
                return put_user(AFMT_S16_LE|AFMT_U16_LE|AFMT_S8|AFMT_U8, p);

      case SNDCTL_DSP_SETFMT: /* Selects ONE fmt*/
            if (get_user(val, p))
                  return -EFAULT;
            if (val != AFMT_QUERY) {
                  stop_adc(s);
                  stop_dac(s);
                  s->dma_adc.ready = s->dma_dac.ready = 0;
                  /* program format */
                  if (val != AFMT_S16_LE && val != AFMT_U16_LE && 
                      val != AFMT_S8 && val != AFMT_U8)
                        val = AFMT_U8;
                  s->fmt = val;
                  prog_codec(s);
            }
            return put_user(s->fmt, p);

      case SNDCTL_DSP_POST:
                return 0;

        case SNDCTL_DSP_GETTRIGGER:
            val = 0;
            if (file->f_mode & s->ena & FMODE_READ)
                  val |= PCM_ENABLE_INPUT;
            if (file->f_mode & s->ena & FMODE_WRITE)
                  val |= PCM_ENABLE_OUTPUT;
            return put_user(val, p);

      case SNDCTL_DSP_SETTRIGGER:
            if (get_user(val, p))
                  return -EFAULT;
            if (file->f_mode & FMODE_READ) {
                  if (val & PCM_ENABLE_INPUT) {
                        if (!s->dma_adc.ready && (ret = prog_dmabuf_adc(s)))
                              return ret;
                        s->dma_dac.enabled = 1;
                        start_adc(s);
                        if (inb(s->ddmabase+15) & 1)
                              printk(KERN_ERR "solo1: cannot start recording, DDMA mask bit stuck at 1\n");
                  } else {
                        s->dma_dac.enabled = 0;
                        stop_adc(s);
                  }
            }
            if (file->f_mode & FMODE_WRITE) {
                  if (val & PCM_ENABLE_OUTPUT) {
                        if (!s->dma_dac.ready && (ret = prog_dmabuf_dac(s)))
                              return ret;
                        s->dma_dac.enabled = 1;
                        start_dac(s);
                  } else {
                        s->dma_dac.enabled = 0;
                        stop_dac(s);
                  }
            }
            return 0;

      case SNDCTL_DSP_GETOSPACE:
            if (!(file->f_mode & FMODE_WRITE))
                  return -EINVAL;
            if (!s->dma_dac.ready && (val = prog_dmabuf_dac(s)) != 0)
                  return val;
            spin_lock_irqsave(&s->lock, flags);
            solo1_update_ptr(s);
            abinfo.fragsize = s->dma_dac.fragsize;
            count = s->dma_dac.count;
            if (count < 0)
                  count = 0;
                abinfo.bytes = s->dma_dac.dmasize - count;
                abinfo.fragstotal = s->dma_dac.numfrag;
                abinfo.fragments = abinfo.bytes >> s->dma_dac.fragshift;      
            spin_unlock_irqrestore(&s->lock, flags);
            return copy_to_user(argp, &abinfo, sizeof(abinfo)) ? -EFAULT : 0;

      case SNDCTL_DSP_GETISPACE:
            if (!(file->f_mode & FMODE_READ))
                  return -EINVAL;
            if (!s->dma_adc.ready && (val = prog_dmabuf_adc(s)) != 0)
                  return val;
            spin_lock_irqsave(&s->lock, flags);
            solo1_update_ptr(s);
            abinfo.fragsize = s->dma_adc.fragsize;
                abinfo.bytes = s->dma_adc.count;
                abinfo.fragstotal = s->dma_adc.numfrag;
                abinfo.fragments = abinfo.bytes >> s->dma_adc.fragshift;      
            spin_unlock_irqrestore(&s->lock, flags);
            return copy_to_user(argp, &abinfo, sizeof(abinfo)) ? -EFAULT : 0;

        case SNDCTL_DSP_NONBLOCK:
                file->f_flags |= O_NONBLOCK;
                return 0;

        case SNDCTL_DSP_GETODELAY:
            if (!(file->f_mode & FMODE_WRITE))
                  return -EINVAL;
            if (!s->dma_dac.ready && (val = prog_dmabuf_dac(s)) != 0)
                  return val;
            spin_lock_irqsave(&s->lock, flags);
            solo1_update_ptr(s);
                count = s->dma_dac.count;
            spin_unlock_irqrestore(&s->lock, flags);
            if (count < 0)
                  count = 0;
            return put_user(count, p);

        case SNDCTL_DSP_GETIPTR:
            if (!(file->f_mode & FMODE_READ))
                  return -EINVAL;
            if (!s->dma_adc.ready && (val = prog_dmabuf_adc(s)) != 0)
                  return val;
            spin_lock_irqsave(&s->lock, flags);
            solo1_update_ptr(s);
                cinfo.bytes = s->dma_adc.total_bytes;
                cinfo.blocks = s->dma_adc.count >> s->dma_adc.fragshift;
                cinfo.ptr = s->dma_adc.hwptr;
            if (s->dma_adc.mapped)
                  s->dma_adc.count &= s->dma_adc.fragsize-1;
            spin_unlock_irqrestore(&s->lock, flags);
            if (copy_to_user(argp, &cinfo, sizeof(cinfo)))
                  return -EFAULT;
            return 0;

        case SNDCTL_DSP_GETOPTR:
            if (!(file->f_mode & FMODE_WRITE))
                  return -EINVAL;
            if (!s->dma_dac.ready && (val = prog_dmabuf_dac(s)) != 0)
                  return val;
            spin_lock_irqsave(&s->lock, flags);
            solo1_update_ptr(s);
                cinfo.bytes = s->dma_dac.total_bytes;
            count = s->dma_dac.count;
            if (count < 0)
                  count = 0;
                cinfo.blocks = count >> s->dma_dac.fragshift;
                cinfo.ptr = s->dma_dac.hwptr;
            if (s->dma_dac.mapped)
                  s->dma_dac.count &= s->dma_dac.fragsize-1;
            spin_unlock_irqrestore(&s->lock, flags);
#if 0
            printk(KERN_DEBUG "esssolo1: GETOPTR: bytes %u blocks %u ptr %u, buforder %u numfrag %u fragshift %u\n"
                   KERN_DEBUG "esssolo1: swptr %u count %u fragsize %u dmasize %u fragsamples %u\n",
                   cinfo.bytes, cinfo.blocks, cinfo.ptr, s->dma_dac.buforder, s->dma_dac.numfrag, s->dma_dac.fragshift,
                   s->dma_dac.swptr, s->dma_dac.count, s->dma_dac.fragsize, s->dma_dac.dmasize, s->dma_dac.fragsamples);
#endif
            if (copy_to_user(argp, &cinfo, sizeof(cinfo)))
                  return -EFAULT;
            return 0;

        case SNDCTL_DSP_GETBLKSIZE:
            if (file->f_mode & FMODE_WRITE) {
                  if ((val = prog_dmabuf_dac(s)))
                        return val;
                  return put_user(s->dma_dac.fragsize, p);
            }
            if ((val = prog_dmabuf_adc(s)))
                  return val;
            return put_user(s->dma_adc.fragsize, p);

        case SNDCTL_DSP_SETFRAGMENT:
                if (get_user(val, p))
                  return -EFAULT;
            if (file->f_mode & FMODE_READ) {
                  s->dma_adc.ossfragshift = val & 0xffff;
                  s->dma_adc.ossmaxfrags = (val >> 16) & 0xffff;
                  if (s->dma_adc.ossfragshift < 4)
                        s->dma_adc.ossfragshift = 4;
                  if (s->dma_adc.ossfragshift > 15)
                        s->dma_adc.ossfragshift = 15;
                  if (s->dma_adc.ossmaxfrags < 4)
                        s->dma_adc.ossmaxfrags = 4;
            }
            if (file->f_mode & FMODE_WRITE) {
                  s->dma_dac.ossfragshift = val & 0xffff;
                  s->dma_dac.ossmaxfrags = (val >> 16) & 0xffff;
                  if (s->dma_dac.ossfragshift < 4)
                        s->dma_dac.ossfragshift = 4;
                  if (s->dma_dac.ossfragshift > 15)
                        s->dma_dac.ossfragshift = 15;
                  if (s->dma_dac.ossmaxfrags < 4)
                        s->dma_dac.ossmaxfrags = 4;
            }
            return 0;

        case SNDCTL_DSP_SUBDIVIDE:
            if ((file->f_mode & FMODE_READ && s->dma_adc.subdivision) ||
                (file->f_mode & FMODE_WRITE && s->dma_dac.subdivision))
                  return -EINVAL;
                if (get_user(val, p))
                  return -EFAULT;
            if (val != 1 && val != 2 && val != 4)
                  return -EINVAL;
            if (file->f_mode & FMODE_READ)
                  s->dma_adc.subdivision = val;
            if (file->f_mode & FMODE_WRITE)
                  s->dma_dac.subdivision = val;
            return 0;

        case SOUND_PCM_READ_RATE:
            return put_user(s->rate, p);

        case SOUND_PCM_READ_CHANNELS:
            return put_user(s->channels, p);

        case SOUND_PCM_READ_BITS:
            return put_user((s->fmt & (AFMT_S8|AFMT_U8)) ? 8 : 16, p);

        case SOUND_PCM_WRITE_FILTER:
        case SNDCTL_DSP_SETSYNCRO:
        case SOUND_PCM_READ_FILTER:
                return -EINVAL;
            
      }
      return mixer_ioctl(s, cmd, arg);
}

static int solo1_release(struct inode *inode, struct file *file)
{
      struct solo1_state *s = (struct solo1_state *)file->private_data;

      VALIDATE_STATE(s);
      lock_kernel();
      if (file->f_mode & FMODE_WRITE)
            drain_dac(s, file->f_flags & O_NONBLOCK);
      mutex_lock(&s->open_mutex);
      if (file->f_mode & FMODE_WRITE) {
            stop_dac(s);
            outb(0, s->iobase+6);  /* disable DMA */
            dealloc_dmabuf(s, &s->dma_dac);
      }
      if (file->f_mode & FMODE_READ) {
            stop_adc(s);
            outb(1, s->ddmabase+0xf); /* mask DMA channel */
            outb(0, s->ddmabase+0xd); /* DMA master clear */
            dealloc_dmabuf(s, &s->dma_adc);
      }
      s->open_mode &= ~(FMODE_READ | FMODE_WRITE);
      wake_up(&s->open_wait);
      mutex_unlock(&s->open_mutex);
      unlock_kernel();
      return 0;
}

static int solo1_open(struct inode *inode, struct file *file)
{
      unsigned int minor = iminor(inode);
      DECLARE_WAITQUEUE(wait, current);
      struct solo1_state *s = NULL;
      struct pci_dev *pci_dev = NULL;
      
      while ((pci_dev = pci_find_device(PCI_ANY_ID, PCI_ANY_ID, pci_dev)) != NULL) {
            struct pci_driver *drvr;

            drvr = pci_dev_driver(pci_dev);
            if (drvr != &solo1_driver)
                  continue;
            s = (struct solo1_state*)pci_get_drvdata(pci_dev);
            if (!s)
                  continue;
            if (!((s->dev_audio ^ minor) & ~0xf))
                  break;
      }
      if (!s)
            return -ENODEV;
            VALIDATE_STATE(s);
      file->private_data = s;
      /* wait for device to become free */
      mutex_lock(&s->open_mutex);
      while (s->open_mode & (FMODE_READ | FMODE_WRITE)) {
            if (file->f_flags & O_NONBLOCK) {
                  mutex_unlock(&s->open_mutex);
                  return -EBUSY;
            }
            add_wait_queue(&s->open_wait, &wait);
            __set_current_state(TASK_INTERRUPTIBLE);
            mutex_unlock(&s->open_mutex);
            schedule();
            remove_wait_queue(&s->open_wait, &wait);
            set_current_state(TASK_RUNNING);
            if (signal_pending(current))
                  return -ERESTARTSYS;
            mutex_lock(&s->open_mutex);
      }
      s->fmt = AFMT_U8;
      s->channels = 1;
      s->rate = 8000;
      s->clkdiv = 96 | 0x80;
      s->ena = 0;
      s->dma_adc.ossfragshift = s->dma_adc.ossmaxfrags = s->dma_adc.subdivision = 0;
      s->dma_adc.enabled = 1;
      s->dma_dac.ossfragshift = s->dma_dac.ossmaxfrags = s->dma_dac.subdivision = 0;
      s->dma_dac.enabled = 1;
      s->open_mode |= file->f_mode & (FMODE_READ | FMODE_WRITE);
      mutex_unlock(&s->open_mutex);
      prog_codec(s);
      return nonseekable_open(inode, file);
}

static /*const*/ struct file_operations solo1_audio_fops = {
      .owner            = THIS_MODULE,
      .llseek           = no_llseek,
      .read       = solo1_read,
      .write            = solo1_write,
      .poll       = solo1_poll,
      .ioctl            = solo1_ioctl,
      .mmap       = solo1_mmap,
      .open       = solo1_open,
      .release    = solo1_release,
};

/* --------------------------------------------------------------------- */

/* hold spinlock for the following! */
static void solo1_handle_midi(struct solo1_state *s)
{
      unsigned char ch;
      int wake;

      if (!(s->mpubase))
            return;
      wake = 0;
      while (!(inb(s->mpubase+1) & 0x80)) {
            ch = inb(s->mpubase);
            if (s->midi.icnt < MIDIINBUF) {
                  s->midi.ibuf[s->midi.iwr] = ch;
                  s->midi.iwr = (s->midi.iwr + 1) % MIDIINBUF;
                  s->midi.icnt++;
            }
            wake = 1;
      }
      if (wake)
            wake_up(&s->midi.iwait);
      wake = 0;
      while (!(inb(s->mpubase+1) & 0x40) && s->midi.ocnt > 0) {
            outb(s->midi.obuf[s->midi.ord], s->mpubase);
            s->midi.ord = (s->midi.ord + 1) % MIDIOUTBUF;
            s->midi.ocnt--;
            if (s->midi.ocnt < MIDIOUTBUF-16)
                  wake = 1;
      }
      if (wake)
            wake_up(&s->midi.owait);
}

static irqreturn_t solo1_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
        struct solo1_state *s = (struct solo1_state *)dev_id;
      unsigned int intsrc;
      
      /* fastpath out, to ease interrupt sharing */
      intsrc = inb(s->iobase+7); /* get interrupt source(s) */
      if (!intsrc)
            return IRQ_NONE;
      (void)inb(s->sbbase+0xe);  /* clear interrupt */
      spin_lock(&s->lock);
      /* clear audio interrupts first */
      if (intsrc & 0x20)
            write_mixer(s, 0x7a, read_mixer(s, 0x7a) & 0x7f);
      solo1_update_ptr(s);
      solo1_handle_midi(s);
      spin_unlock(&s->lock);
      return IRQ_HANDLED;
}

static void solo1_midi_timer(unsigned long data)
{
      struct solo1_state *s = (struct solo1_state *)data;
      unsigned long flags;
      
      spin_lock_irqsave(&s->lock, flags);
      solo1_handle_midi(s);
      spin_unlock_irqrestore(&s->lock, flags);
      s->midi.timer.expires = jiffies+1;
      add_timer(&s->midi.timer);
}

/* --------------------------------------------------------------------- */

static ssize_t solo1_midi_read(struct file *file, char __user *buffer, size_t count, loff_t *ppos)
{
      struct solo1_state *s = (struct solo1_state *)file->private_data;
      DECLARE_WAITQUEUE(wait, current);
      ssize_t ret;
      unsigned long flags;
      unsigned ptr;
      int cnt;

      VALIDATE_STATE(s);
      if (!access_ok(VERIFY_WRITE, buffer, count))
            return -EFAULT;
      if (count == 0)
            return 0;
      ret = 0;
      add_wait_queue(&s->midi.iwait, &wait);
      while (count > 0) {
            spin_lock_irqsave(&s->lock, flags);
            ptr = s->midi.ird;
            cnt = MIDIINBUF - ptr;
            if (s->midi.icnt < cnt)
                  cnt = s->midi.icnt;
            if (cnt <= 0)
                  __set_current_state(TASK_INTERRUPTIBLE);
            spin_unlock_irqrestore(&s->lock, flags);
            if (cnt > count)
                  cnt = count;
            if (cnt <= 0) {
                  if (file->f_flags & O_NONBLOCK) {
                        if (!ret)
                              ret = -EAGAIN;
                        break;
                  }
                  schedule();
                  if (signal_pending(current)) {
                        if (!ret)
                              ret = -ERESTARTSYS;
                        break;
                  }
                  continue;
            }
            if (copy_to_user(buffer, s->midi.ibuf + ptr, cnt)) {
                  if (!ret)
                        ret = -EFAULT;
                  break;
            }
            ptr = (ptr + cnt) % MIDIINBUF;
            spin_lock_irqsave(&s->lock, flags);
            s->midi.ird = ptr;
            s->midi.icnt -= cnt;
            spin_unlock_irqrestore(&s->lock, flags);
            count -= cnt;
            buffer += cnt;
            ret += cnt;
            break;
      }
      __set_current_state(TASK_RUNNING);
      remove_wait_queue(&s->midi.iwait, &wait);
      return ret;
}

static ssize_t solo1_midi_write(struct file *file, const char __user *buffer, size_t count, loff_t *ppos)
{
      struct solo1_state *s = (struct solo1_state *)file->private_data;
      DECLARE_WAITQUEUE(wait, current);
      ssize_t ret;
      unsigned long flags;
      unsigned ptr;
      int cnt;

      VALIDATE_STATE(s);
      if (!access_ok(VERIFY_READ, buffer, count))
            return -EFAULT;
      if (count == 0)
            return 0;
      ret = 0;
        add_wait_queue(&s->midi.owait, &wait);
      while (count > 0) {
            spin_lock_irqsave(&s->lock, flags);
            ptr = s->midi.owr;
            cnt = MIDIOUTBUF - ptr;
            if (s->midi.ocnt + cnt > MIDIOUTBUF)
                  cnt = MIDIOUTBUF - s->midi.ocnt;
            if (cnt <= 0) {
                  __set_current_state(TASK_INTERRUPTIBLE);
                  solo1_handle_midi(s);
            }
            spin_unlock_irqrestore(&s->lock, flags);
            if (cnt > count)
                  cnt = count;
            if (cnt <= 0) {
                  if (file->f_flags & O_NONBLOCK) {
                        if (!ret)
                              ret = -EAGAIN;
                        break;
                  }
                  schedule();
                  if (signal_pending(current)) {
                        if (!ret)
                              ret = -ERESTARTSYS;
                        break;
                  }
                  continue;
            }
            if (copy_from_user(s->midi.obuf + ptr, buffer, cnt)) {
                  if (!ret)
                        ret = -EFAULT;
                  break;
            }
            ptr = (ptr + cnt) % MIDIOUTBUF;
            spin_lock_irqsave(&s->lock, flags);
            s->midi.owr = ptr;
            s->midi.ocnt += cnt;
            spin_unlock_irqrestore(&s->lock, flags);
            count -= cnt;
            buffer += cnt;
            ret += cnt;
            spin_lock_irqsave(&s->lock, flags);
            solo1_handle_midi(s);
            spin_unlock_irqrestore(&s->lock, flags);
      }
      __set_current_state(TASK_RUNNING);
      remove_wait_queue(&s->midi.owait, &wait);
      return ret;
}

/* No kernel lock - we have our own spinlock */
static unsigned int solo1_midi_poll(struct file *file, struct poll_table_struct *wait)
{
      struct solo1_state *s = (struct solo1_state *)file->private_data;
      unsigned long flags;
      unsigned int mask = 0;

      VALIDATE_STATE(s);
      if (file->f_flags & FMODE_WRITE)
            poll_wait(file, &s->midi.owait, wait);
      if (file->f_flags & FMODE_READ)
            poll_wait(file, &s->midi.iwait, wait);
      spin_lock_irqsave(&s->lock, flags);
      if (file->f_flags & FMODE_READ) {
            if (s->midi.icnt > 0)
                  mask |= POLLIN | POLLRDNORM;
      }
      if (file->f_flags & FMODE_WRITE) {
            if (s->midi.ocnt < MIDIOUTBUF)
                  mask |= POLLOUT | POLLWRNORM;
      }
      spin_unlock_irqrestore(&s->lock, flags);
      return mask;
}

static int solo1_midi_open(struct inode *inode, struct file *file)
{
      unsigned int minor = iminor(inode);
      DECLARE_WAITQUEUE(wait, current);
      unsigned long flags;
      struct solo1_state *s = NULL;
      struct pci_dev *pci_dev = NULL;

      while ((pci_dev = pci_find_device(PCI_ANY_ID, PCI_ANY_ID, pci_dev)) != NULL) {
            struct pci_driver *drvr;

            drvr = pci_dev_driver(pci_dev);
            if (drvr != &solo1_driver)
                  continue;
            s = (struct solo1_state*)pci_get_drvdata(pci_dev);
            if (!s)
                  continue;
            if (s->dev_midi == minor)
                  break;
      }
      if (!s)
            return -ENODEV;
            VALIDATE_STATE(s);
      file->private_data = s;
      /* wait for device to become free */
      mutex_lock(&s->open_mutex);
      while (s->open_mode & (file->f_mode << FMODE_MIDI_SHIFT)) {
            if (file->f_flags & O_NONBLOCK) {
                  mutex_unlock(&s->open_mutex);
                  return -EBUSY;
            }
            add_wait_queue(&s->open_wait, &wait);
            __set_current_state(TASK_INTERRUPTIBLE);
            mutex_unlock(&s->open_mutex);
            schedule();
            remove_wait_queue(&s->open_wait, &wait);
            set_current_state(TASK_RUNNING);
            if (signal_pending(current))
                  return -ERESTARTSYS;
            mutex_lock(&s->open_mutex);
      }
      spin_lock_irqsave(&s->lock, flags);
      if (!(s->open_mode & (FMODE_MIDI_READ | FMODE_MIDI_WRITE))) {
            s->midi.ird = s->midi.iwr = s->midi.icnt = 0;
            s->midi.ord = s->midi.owr = s->midi.ocnt = 0;
            outb(0xff, s->mpubase+1); /* reset command */
            outb(0x3f, s->mpubase+1); /* uart command */
            if (!(inb(s->mpubase+1) & 0x80))
                  inb(s->mpubase);
            s->midi.ird = s->midi.iwr = s->midi.icnt = 0;
            outb(0xb0, s->iobase + 7); /* enable A1, A2, MPU irq's */
            init_timer(&s->midi.timer);
            s->midi.timer.expires = jiffies+1;
            s->midi.timer.data = (unsigned long)s;
            s->midi.timer.function = solo1_midi_timer;
            add_timer(&s->midi.timer);
      }
      if (file->f_mode & FMODE_READ) {
            s->midi.ird = s->midi.iwr = s->midi.icnt = 0;
      }
      if (file->f_mode & FMODE_WRITE) {
            s->midi.ord = s->midi.owr = s->midi.ocnt = 0;
      }
      spin_unlock_irqrestore(&s->lock, flags);
      s->open_mode |= (file->f_mode << FMODE_MIDI_SHIFT) & (FMODE_MIDI_READ | FMODE_MIDI_WRITE);
      mutex_unlock(&s->open_mutex);
      return nonseekable_open(inode, file);
}

static int solo1_midi_release(struct inode *inode, struct file *file)
{
      struct solo1_state *s = (struct solo1_state *)file->private_data;
      DECLARE_WAITQUEUE(wait, current);
      unsigned long flags;
      unsigned count, tmo;

      VALIDATE_STATE(s);

      lock_kernel();
      if (file->f_mode & FMODE_WRITE) {
            add_wait_queue(&s->midi.owait, &wait);
            for (;;) {
                  __set_current_state(TASK_INTERRUPTIBLE);
                  spin_lock_irqsave(&s->lock, flags);
                  count = s->midi.ocnt;
                  spin_unlock_irqrestore(&s->lock, flags);
                  if (count <= 0)
                        break;
                  if (signal_pending(current))
                        break;
                  if (file->f_flags & O_NONBLOCK)
                        break;
                  tmo = (count * HZ) / 3100;
                  if (!schedule_timeout(tmo ? : 1) && tmo)
                        printk(KERN_DEBUG "solo1: midi timed out??\n");
            }
            remove_wait_queue(&s->midi.owait, &wait);
            set_current_state(TASK_RUNNING);
      }
      mutex_lock(&s->open_mutex);
      s->open_mode &= ~((file->f_mode << FMODE_MIDI_SHIFT) & (FMODE_MIDI_READ|FMODE_MIDI_WRITE));
      spin_lock_irqsave(&s->lock, flags);
      if (!(s->open_mode & (FMODE_MIDI_READ | FMODE_MIDI_WRITE))) {
            outb(0x30, s->iobase + 7); /* enable A1, A2 irq's */
            del_timer(&s->midi.timer);          
      }
      spin_unlock_irqrestore(&s->lock, flags);
      wake_up(&s->open_wait);
      mutex_unlock(&s->open_mutex);
      unlock_kernel();
      return 0;
}

static /*const*/ struct file_operations solo1_midi_fops = {
      .owner            = THIS_MODULE,
      .llseek           = no_llseek,
      .read       = solo1_midi_read,
      .write            = solo1_midi_write,
      .poll       = solo1_midi_poll,
      .open       = solo1_midi_open,
      .release    = solo1_midi_release,
};

/* --------------------------------------------------------------------- */

static int solo1_dmfm_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
{
      static const unsigned char op_offset[18] = {
            0x00, 0x01, 0x02, 0x03, 0x04, 0x05,
            0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D,
            0x10, 0x11, 0x12, 0x13, 0x14, 0x15
      };
      struct solo1_state *s = (struct solo1_state *)file->private_data;
      struct dm_fm_voice v;
      struct dm_fm_note n;
      struct dm_fm_params p;
      unsigned int io;
      unsigned int regb;

      switch (cmd) {          
      case FM_IOCTL_RESET:
            for (regb = 0xb0; regb < 0xb9; regb++) {
                  outb(regb, s->sbbase);
                  outb(0, s->sbbase+1);
                  outb(regb, s->sbbase+2);
                  outb(0, s->sbbase+3);
            }
            return 0;

      case FM_IOCTL_PLAY_NOTE:
            if (copy_from_user(&n, (void __user *)arg, sizeof(n)))
                  return -EFAULT;
            if (n.voice >= 18)
                  return -EINVAL;
            if (n.voice >= 9) {
                  regb = n.voice - 9;
                  io = s->sbbase+2;
            } else {
                  regb = n.voice;
                  io = s->sbbase;
            }
            outb(0xa0 + regb, io);
            outb(n.fnum & 0xff, io+1);
            outb(0xb0 + regb, io);
            outb(((n.fnum >> 8) & 3) | ((n.octave & 7) << 2) | ((n.key_on & 1) << 5), io+1);
            return 0;

      case FM_IOCTL_SET_VOICE:
            if (copy_from_user(&v, (void __user *)arg, sizeof(v)))
                  return -EFAULT;
            if (v.voice >= 18)
                  return -EINVAL;
            regb = op_offset[v.voice];
            io = s->sbbase + ((v.op & 1) << 1);
            outb(0x20 + regb, io);
            outb(((v.am & 1) << 7) | ((v.vibrato & 1) << 6) | ((v.do_sustain & 1) << 5) | 
                 ((v.kbd_scale & 1) << 4) | (v.harmonic & 0xf), io+1);
            outb(0x40 + regb, io);
            outb(((v.scale_level & 0x3) << 6) | (v.volume & 0x3f), io+1);
            outb(0x60 + regb, io);
            outb(((v.attack & 0xf) << 4) | (v.decay & 0xf), io+1);
            outb(0x80 + regb, io);
            outb(((v.sustain & 0xf) << 4) | (v.release & 0xf), io+1);
            outb(0xe0 + regb, io);
            outb(v.waveform & 0x7, io+1);
            if (n.voice >= 9) {
                  regb = n.voice - 9;
                  io = s->sbbase+2;
            } else {
                  regb = n.voice;
                  io = s->sbbase;
            }
            outb(0xc0 + regb, io);
            outb(((v.right & 1) << 5) | ((v.left & 1) << 4) | ((v.feedback & 7) << 1) |
                 (v.connection & 1), io+1);
            return 0;
            
      case FM_IOCTL_SET_PARAMS:
            if (copy_from_user(&p, (void __user *)arg, sizeof(p)))
                  return -EFAULT;
            outb(0x08, s->sbbase);
            outb((p.kbd_split & 1) << 6, s->sbbase+1);
            outb(0xbd, s->sbbase);
            outb(((p.am_depth & 1) << 7) | ((p.vib_depth & 1) << 6) | ((p.rhythm & 1) << 5) | ((p.bass & 1) << 4) |
                 ((p.snare & 1) << 3) | ((p.tomtom & 1) << 2) | ((p.cymbal & 1) << 1) | (p.hihat & 1), s->sbbase+1);
            return 0;

      case FM_IOCTL_SET_OPL:
            outb(4, s->sbbase+2);
            outb(arg, s->sbbase+3);
            return 0;

      case FM_IOCTL_SET_MODE:
            outb(5, s->sbbase+2);
            outb(arg & 1, s->sbbase+3);
            return 0;

      default:
            return -EINVAL;
      }
}

static int solo1_dmfm_open(struct inode *inode, struct file *file)
{
      unsigned int minor = iminor(inode);
      DECLARE_WAITQUEUE(wait, current);
      struct solo1_state *s = NULL;
      struct pci_dev *pci_dev = NULL;

      while ((pci_dev = pci_find_device(PCI_ANY_ID, PCI_ANY_ID, pci_dev)) != NULL) {
            struct pci_driver *drvr;

            drvr = pci_dev_driver(pci_dev);
            if (drvr != &solo1_driver)
                  continue;
            s = (struct solo1_state*)pci_get_drvdata(pci_dev);
            if (!s)
                  continue;
            if (s->dev_dmfm == minor)
                  break;
      }
      if (!s)
            return -ENODEV;
            VALIDATE_STATE(s);
      file->private_data = s;
      /* wait for device to become free */
      mutex_lock(&s->open_mutex);
      while (s->open_mode & FMODE_DMFM) {
            if (file->f_flags & O_NONBLOCK) {
                  mutex_unlock(&s->open_mutex);
                  return -EBUSY;
            }
            add_wait_queue(&s->open_wait, &wait);
            __set_current_state(TASK_INTERRUPTIBLE);
            mutex_unlock(&s->open_mutex);
            schedule();
            remove_wait_queue(&s->open_wait, &wait);
            set_current_state(TASK_RUNNING);
            if (signal_pending(current))
                  return -ERESTARTSYS;
            mutex_lock(&s->open_mutex);
      }
      if (!request_region(s->sbbase, FMSYNTH_EXTENT, "ESS Solo1")) {
            mutex_unlock(&s->open_mutex);
            printk(KERN_ERR "solo1: FM synth io ports in use, opl3 loaded?\n");
            return -EBUSY;
      }
      /* init the stuff */
      outb(1, s->sbbase);
      outb(0x20, s->sbbase+1); /* enable waveforms */
      outb(4, s->sbbase+2);
      outb(0, s->sbbase+3);  /* no 4op enabled */
      outb(5, s->sbbase+2);
      outb(1, s->sbbase+3);  /* enable OPL3 */
      s->open_mode |= FMODE_DMFM;
      mutex_unlock(&s->open_mutex);
      return nonseekable_open(inode, file);
}

static int solo1_dmfm_release(struct inode *inode, struct file *file)
{
      struct solo1_state *s = (struct solo1_state *)file->private_data;
      unsigned int regb;

      VALIDATE_STATE(s);
      lock_kernel();
      mutex_lock(&s->open_mutex);
      s->open_mode &= ~FMODE_DMFM;
      for (regb = 0xb0; regb < 0xb9; regb++) {
            outb(regb, s->sbbase);
            outb(0, s->sbbase+1);
            outb(regb, s->sbbase+2);
            outb(0, s->sbbase+3);
      }
      release_region(s->sbbase, FMSYNTH_EXTENT);
      wake_up(&s->open_wait);
      mutex_unlock(&s->open_mutex);
      unlock_kernel();
      return 0;
}

static /*const*/ struct file_operations solo1_dmfm_fops = {
      .owner            = THIS_MODULE,
      .llseek           = no_llseek,
      .ioctl            = solo1_dmfm_ioctl,
      .open       = solo1_dmfm_open,
      .release    = solo1_dmfm_release,
};

/* --------------------------------------------------------------------- */

static struct initvol {
      int mixch;
      int vol;
} initvol[] __devinitdata = {
      { SOUND_MIXER_WRITE_VOLUME, 0x4040 },
      { SOUND_MIXER_WRITE_PCM, 0x4040 },
      { SOUND_MIXER_WRITE_SYNTH, 0x4040 },
      { SOUND_MIXER_WRITE_CD, 0x4040 },
      { SOUND_MIXER_WRITE_LINE, 0x4040 },
      { SOUND_MIXER_WRITE_LINE1, 0x4040 },
      { SOUND_MIXER_WRITE_LINE2, 0x4040 },
      { SOUND_MIXER_WRITE_RECLEV, 0x4040 },
      { SOUND_MIXER_WRITE_SPEAKER, 0x4040 },
      { SOUND_MIXER_WRITE_MIC, 0x4040 }
};

static int setup_solo1(struct solo1_state *s)
{
      struct pci_dev *pcidev = s->dev;
      mm_segment_t fs;
      int i, val;

      /* initialize DDMA base address */
      printk(KERN_DEBUG "solo1: ddma base address: 0x%lx\n", s->ddmabase);
      pci_write_config_word(pcidev, 0x60, (s->ddmabase & (~0xf)) | 1);
      /* set DMA policy to DDMA, IRQ emulation off (CLKRUN disabled for now) */
      pci_write_config_dword(pcidev, 0x50, 0);
      /* disable legacy audio address decode */
      pci_write_config_word(pcidev, 0x40, 0x907f);

      /* initialize the chips */
      if (!reset_ctrl(s)) {
            printk(KERN_ERR "esssolo1: cannot reset controller\n");
            return -1;
      }
      outb(0xb0, s->iobase+7); /* enable A1, A2, MPU irq's */
      
      /* initialize mixer regs */
      write_mixer(s, 0x7f, 0); /* disable music digital recording */
      write_mixer(s, 0x7d, 0x0c); /* enable mic preamp, MONO_OUT is 2nd DAC right channel */
      write_mixer(s, 0x64, 0x45); /* volume control */
      write_mixer(s, 0x48, 0x10); /* enable music DAC/ES6xx interface */
      write_mixer(s, 0x50, 0);  /* disable spatializer */
      write_mixer(s, 0x52, 0);
      write_mixer(s, 0x14, 0);  /* DAC1 minimum volume */
      write_mixer(s, 0x71, 0x20); /* enable new 0xA1 reg format */
      outb(0, s->ddmabase+0xd); /* DMA master clear */
      outb(1, s->ddmabase+0xf); /* mask channel */
      /*outb(0, s->ddmabase+0x8);*/ /* enable controller (enable is low active!!) */

      pci_set_master(pcidev);  /* enable bus mastering */
      
      fs = get_fs();
      set_fs(KERNEL_DS);
      val = SOUND_MASK_LINE;
      mixer_ioctl(s, SOUND_MIXER_WRITE_RECSRC, (unsigned long)&val);
      for (i = 0; i < sizeof(initvol)/sizeof(initvol[0]); i++) {
            val = initvol[i].vol;
            mixer_ioctl(s, initvol[i].mixch, (unsigned long)&val);
      }
      val = 1; /* enable mic preamp */
      mixer_ioctl(s, SOUND_MIXER_PRIVATE1, (unsigned long)&val);
      set_fs(fs);
      return 0;
}

static int
solo1_suspend(struct pci_dev *pci_dev, pm_message_t state) {
      struct solo1_state *s = (struct solo1_state*)pci_get_drvdata(pci_dev);
      if (!s)
            return 1;
      outb(0, s->iobase+6);
      /* DMA master clear */
      outb(0, s->ddmabase+0xd); 
      /* reset sequencer and FIFO */
      outb(3, s->sbbase+6); 
      /* turn off DDMA controller address space */
      pci_write_config_word(s->dev, 0x60, 0); 
      return 0;
}

static int
solo1_resume(struct pci_dev *pci_dev) {
      struct solo1_state *s = (struct solo1_state*)pci_get_drvdata(pci_dev);
      if (!s)
            return 1;
      setup_solo1(s);
      return 0;
}

#ifdef SUPPORT_JOYSTICK
static int __devinit solo1_register_gameport(struct solo1_state *s, int io_port)
{
      struct gameport *gp;

      if (!request_region(io_port, GAMEPORT_EXTENT, "ESS Solo1")) {
            printk(KERN_ERR "solo1: gameport io ports are in use\n");
            return -EBUSY;
      }

      s->gameport = gp = gameport_allocate_port();
      if (!gp) {
            printk(KERN_ERR "solo1: can not allocate memory for gameport\n");
            release_region(io_port, GAMEPORT_EXTENT);
            return -ENOMEM;
      }

      gameport_set_name(gp, "ESS Solo1 Gameport");
      gameport_set_phys(gp, "isa%04x/gameport0", io_port);
      gp->dev.parent = &s->dev->dev;
      gp->io = io_port;

      gameport_register_port(gp);

      return 0;
}

static inline void solo1_unregister_gameport(struct solo1_state *s)
{
      if (s->gameport) {
            int gpio = s->gameport->io;
            gameport_unregister_port(s->gameport);
            release_region(gpio, GAMEPORT_EXTENT);
      }
}
#else
static inline int solo1_register_gameport(struct solo1_state *s, int io_port) { return -ENOSYS; }
static inline void solo1_unregister_gameport(struct solo1_state *s) { }
#endif /* SUPPORT_JOYSTICK */

static int __devinit solo1_probe(struct pci_dev *pcidev, const struct pci_device_id *pciid)
{
      struct solo1_state *s;
      int gpio;
      int ret;

      if ((ret=pci_enable_device(pcidev)))
            return ret;
      if (!(pci_resource_flags(pcidev, 0) & IORESOURCE_IO) ||
          !(pci_resource_flags(pcidev, 1) & IORESOURCE_IO) ||
          !(pci_resource_flags(pcidev, 2) & IORESOURCE_IO) ||
          !(pci_resource_flags(pcidev, 3) & IORESOURCE_IO))
            return -ENODEV;
      if (pcidev->irq == 0)
            return -ENODEV;

      /* Recording requires 24-bit DMA, so attempt to set dma mask
       * to 24 bits first, then 32 bits (playback only) if that fails.
       */
      if (pci_set_dma_mask(pcidev, DMA_24BIT_MASK) &&
          pci_set_dma_mask(pcidev, DMA_32BIT_MASK)) {
            printk(KERN_WARNING "solo1: architecture does not support 24bit or 32bit PCI busmaster DMA\n");
            return -ENODEV;
      }

      if (!(s = kmalloc(sizeof(struct solo1_state), GFP_KERNEL))) {
            printk(KERN_WARNING "solo1: out of memory\n");
            return -ENOMEM;
      }
      memset(s, 0, sizeof(struct solo1_state));
      init_waitqueue_head(&s->dma_adc.wait);
      init_waitqueue_head(&s->dma_dac.wait);
      init_waitqueue_head(&s->open_wait);
      init_waitqueue_head(&s->midi.iwait);
      init_waitqueue_head(&s->midi.owait);
      mutex_init(&s->open_mutex);
      spin_lock_init(&s->lock);
      s->magic = SOLO1_MAGIC;
      s->dev = pcidev;
      s->iobase = pci_resource_start(pcidev, 0);
      s->sbbase = pci_resource_start(pcidev, 1);
      s->vcbase = pci_resource_start(pcidev, 2);
      s->ddmabase = s->vcbase + DDMABASE_OFFSET;
      s->mpubase = pci_resource_start(pcidev, 3);
      gpio = pci_resource_start(pcidev, 4);
      s->irq = pcidev->irq;
      ret = -EBUSY;
      if (!request_region(s->iobase, IOBASE_EXTENT, "ESS Solo1")) {
            printk(KERN_ERR "solo1: io ports in use\n");
            goto err_region1;
      }
      if (!request_region(s->sbbase+FMSYNTH_EXTENT, SBBASE_EXTENT-FMSYNTH_EXTENT, "ESS Solo1")) {
            printk(KERN_ERR "solo1: io ports in use\n");
            goto err_region2;
      }
      if (!request_region(s->ddmabase, DDMABASE_EXTENT, "ESS Solo1")) {
            printk(KERN_ERR "solo1: io ports in use\n");
            goto err_region3;
      }
      if (!request_region(s->mpubase, MPUBASE_EXTENT, "ESS Solo1")) {
            printk(KERN_ERR "solo1: io ports in use\n");
            goto err_region4;
      }
      if ((ret=request_irq(s->irq,solo1_interrupt,IRQF_SHARED,"ESS Solo1",s))) {
            printk(KERN_ERR "solo1: irq %u in use\n", s->irq);
            goto err_irq;
      }
      /* register devices */
      if ((s->dev_audio = register_sound_dsp(&solo1_audio_fops, -1)) < 0) {
            ret = s->dev_audio;
            goto err_dev1;
      }
      if ((s->dev_mixer = register_sound_mixer(&solo1_mixer_fops, -1)) < 0) {
            ret = s->dev_mixer;
            goto err_dev2;
      }
      if ((s->dev_midi = register_sound_midi(&solo1_midi_fops, -1)) < 0) {
            ret = s->dev_midi;
            goto err_dev3;
      }
      if ((s->dev_dmfm = register_sound_special(&solo1_dmfm_fops, 15 /* ?? */)) < 0) {
            ret = s->dev_dmfm;
            goto err_dev4;
      }
      if (setup_solo1(s)) {
            ret = -EIO;
            goto err;
      }
      /* register gameport */
      solo1_register_gameport(s, gpio);
      /* store it in the driver field */
      pci_set_drvdata(pcidev, s);
      return 0;

 err:
      unregister_sound_special(s->dev_dmfm);
 err_dev4:
      unregister_sound_midi(s->dev_midi);
 err_dev3:
      unregister_sound_mixer(s->dev_mixer);
 err_dev2:
      unregister_sound_dsp(s->dev_audio);
 err_dev1:
      printk(KERN_ERR "solo1: initialisation error\n");
      free_irq(s->irq, s);
 err_irq:
      release_region(s->mpubase, MPUBASE_EXTENT);
 err_region4:
      release_region(s->ddmabase, DDMABASE_EXTENT);
 err_region3:
      release_region(s->sbbase+FMSYNTH_EXTENT, SBBASE_EXTENT-FMSYNTH_EXTENT);
 err_region2:
      release_region(s->iobase, IOBASE_EXTENT);
 err_region1:
      kfree(s);
      return ret;
}

static void __devexit solo1_remove(struct pci_dev *dev)
{
      struct solo1_state *s = pci_get_drvdata(dev);
      
      if (!s)
            return;
      /* stop DMA controller */
      outb(0, s->iobase+6);
      outb(0, s->ddmabase+0xd); /* DMA master clear */
      outb(3, s->sbbase+6); /* reset sequencer and FIFO */
      synchronize_irq(s->irq);
      pci_write_config_word(s->dev, 0x60, 0); /* turn off DDMA controller address space */
      free_irq(s->irq, s);
      solo1_unregister_gameport(s);
      release_region(s->iobase, IOBASE_EXTENT);
      release_region(s->sbbase+FMSYNTH_EXTENT, SBBASE_EXTENT-FMSYNTH_EXTENT);
      release_region(s->ddmabase, DDMABASE_EXTENT);
      release_region(s->mpubase, MPUBASE_EXTENT);
      unregister_sound_dsp(s->dev_audio);
      unregister_sound_mixer(s->dev_mixer);
      unregister_sound_midi(s->dev_midi);
      unregister_sound_special(s->dev_dmfm);
      kfree(s);
      pci_set_drvdata(dev, NULL);
}

static struct pci_device_id id_table[] = {
      { PCI_VENDOR_ID_ESS, PCI_DEVICE_ID_ESS_SOLO1, PCI_ANY_ID, PCI_ANY_ID, 0, 0 },
      { 0, }
};

MODULE_DEVICE_TABLE(pci, id_table);

static struct pci_driver solo1_driver = {
      .name       = "ESS Solo1",
      .id_table   = id_table,
      .probe            = solo1_probe,
      .remove           = __devexit_p(solo1_remove),
      .suspend    = solo1_suspend,
      .resume           = solo1_resume,
};


static int __init init_solo1(void)
{
      printk(KERN_INFO "solo1: version v0.20 time " __TIME__ " " __DATE__ "\n");
      return pci_register_driver(&solo1_driver);
}

/* --------------------------------------------------------------------- */

MODULE_AUTHOR("Thomas M. Sailer, sailer@ife.ee.ethz.ch, hb9jnx@hb9w.che.eu");
MODULE_DESCRIPTION("ESS Solo1 Driver");
MODULE_LICENSE("GPL");


static void __exit cleanup_solo1(void)
{
      printk(KERN_INFO "solo1: unloading\n");
      pci_unregister_driver(&solo1_driver);
}

/* --------------------------------------------------------------------- */

module_init(init_solo1);
module_exit(cleanup_solo1);


Generated by  Doxygen 1.6.0   Back to index