Logo Search packages:      
Sourcecode: linux-2.6 version File versions  Download package

floppy.c

/*
 *  linux/drivers/block/floppy.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *  Copyright (C) 1993, 1994  Alain Knaff
 *  Copyright (C) 1998 Alan Cox
 */
/*
 * 02.12.91 - Changed to static variables to indicate need for reset
 * and recalibrate. This makes some things easier (output_byte reset
 * checking etc), and means less interrupt jumping in case of errors,
 * so the code is hopefully easier to understand.
 */

/*
 * This file is certainly a mess. I've tried my best to get it working,
 * but I don't like programming floppies, and I have only one anyway.
 * Urgel. I should check for more errors, and do more graceful error
 * recovery. Seems there are problems with several drives. I've tried to
 * correct them. No promises.
 */

/*
 * As with hd.c, all routines within this file can (and will) be called
 * by interrupts, so extreme caution is needed. A hardware interrupt
 * handler may not sleep, or a kernel panic will happen. Thus I cannot
 * call "floppy-on" directly, but have to set a special timer interrupt
 * etc.
 */

/*
 * 28.02.92 - made track-buffering routines, based on the routines written
 * by entropy@wintermute.wpi.edu (Lawrence Foard). Linus.
 */

/*
 * Automatic floppy-detection and formatting written by Werner Almesberger
 * (almesber@nessie.cs.id.ethz.ch), who also corrected some problems with
 * the floppy-change signal detection.
 */

/*
 * 1992/7/22 -- Hennus Bergman: Added better error reporting, fixed
 * FDC data overrun bug, added some preliminary stuff for vertical
 * recording support.
 *
 * 1992/9/17: Added DMA allocation & DMA functions. -- hhb.
 *
 * TODO: Errors are still not counted properly.
 */

/* 1992/9/20
 * Modifications for ``Sector Shifting'' by Rob Hooft (hooft@chem.ruu.nl)
 * modeled after the freeware MS-DOS program fdformat/88 V1.8 by
 * Christoph H. Hochst\"atter.
 * I have fixed the shift values to the ones I always use. Maybe a new
 * ioctl() should be created to be able to modify them.
 * There is a bug in the driver that makes it impossible to format a
 * floppy as the first thing after bootup.
 */

/*
 * 1993/4/29 -- Linus -- cleaned up the timer handling in the kernel, and
 * this helped the floppy driver as well. Much cleaner, and still seems to
 * work.
 */

/* 1994/6/24 --bbroad-- added the floppy table entries and made
 * minor modifications to allow 2.88 floppies to be run.
 */

/* 1994/7/13 -- Paul Vojta -- modified the probing code to allow three or more
 * disk types.
 */

/*
 * 1994/8/8 -- Alain Knaff -- Switched to fdpatch driver: Support for bigger
 * format bug fixes, but unfortunately some new bugs too...
 */

/* 1994/9/17 -- Koen Holtman -- added logging of physical floppy write
 * errors to allow safe writing by specialized programs.
 */

/* 1995/4/24 -- Dan Fandrich -- added support for Commodore 1581 3.5" disks
 * by defining bit 1 of the "stretch" parameter to mean put sectors on the
 * opposite side of the disk, leaving the sector IDs alone (i.e. Commodore's
 * drives are "upside-down").
 */

/*
 * 1995/8/26 -- Andreas Busse -- added Mips support.
 */

/*
 * 1995/10/18 -- Ralf Baechle -- Portability cleanup; move machine dependent
 * features to asm/floppy.h.
 */

/*
 * 1998/1/21 -- Richard Gooch <rgooch@atnf.csiro.au> -- devfs support
 */

/*
 * 1998/05/07 -- Russell King -- More portability cleanups; moved definition of
 * interrupt and dma channel to asm/floppy.h. Cleaned up some formatting &
 * use of '0' for NULL.
 */

/*
 * 1998/06/07 -- Alan Cox -- Merged the 2.0.34 fixes for resource allocation
 * failures.
 */

/*
 * 1998/09/20 -- David Weinehall -- Added slow-down code for buggy PS/2-drives.
 */

/*
 * 1999/08/13 -- Paul Slootman -- floppy stopped working on Alpha after 24
 * days, 6 hours, 32 minutes and 32 seconds (i.e. MAXINT jiffies; ints were
 * being used to store jiffies, which are unsigned longs).
 */

/*
 * 2000/08/28 -- Arnaldo Carvalho de Melo <acme@conectiva.com.br>
 * - get rid of check_region
 * - s/suser/capable/
 */

/*
 * 2001/08/26 -- Paul Gortmaker - fix insmod oops on machines with no
 * floppy controller (lingering task on list after module is gone... boom.)
 */

/*
 * 2002/02/07 -- Anton Altaparmakov - Fix io ports reservation to correct range
 * (0x3f2-0x3f5, 0x3f7). This fix is a bit of a hack but the proper fix
 * requires many non-obvious changes in arch dependent code.
 */

/* 2003/07/28 -- Daniele Bellucci <bellucda@tiscali.it>.
 * Better audit of register_blkdev.
 */

#define FLOPPY_SANITY_CHECK
#undef  FLOPPY_SILENT_DCL_CLEAR

#define REALLY_SLOW_IO

#define DEBUGT 2
#define DCL_DEBUG       /* debug disk change line */

/* do print messages for unexpected interrupts */
static int print_unex = 1;
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/fs.h>
#include <linux/kernel.h>
#include <linux/timer.h>
#include <linux/workqueue.h>
#define FDPATCHES
#include <linux/fdreg.h>

#include <linux/fd.h>
#include <linux/hdreg.h>

#include <linux/errno.h>
#include <linux/slab.h>
#include <linux/mm.h>
#include <linux/bio.h>
#include <linux/string.h>
#include <linux/jiffies.h>
#include <linux/fcntl.h>
#include <linux/delay.h>
#include <linux/mc146818rtc.h>      /* CMOS defines */
#include <linux/ioport.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/platform_device.h>
#include <linux/buffer_head.h>      /* for invalidate_buffers() */
#include <linux/mutex.h>

/*
 * PS/2 floppies have much slower step rates than regular floppies.
 * It's been recommended that take about 1/4 of the default speed
 * in some more extreme cases.
 */
static int slow_floppy;

#include <asm/dma.h>
#include <asm/irq.h>
#include <asm/system.h>
#include <asm/io.h>
#include <asm/uaccess.h>

static int FLOPPY_IRQ = 6;
static int FLOPPY_DMA = 2;
static int can_use_virtual_dma = 2;
/* =======
 * can use virtual DMA:
 * 0 = use of virtual DMA disallowed by config
 * 1 = use of virtual DMA prescribed by config
 * 2 = no virtual DMA preference configured.  By default try hard DMA,
 * but fall back on virtual DMA when not enough memory available
 */

static int use_virtual_dma;
/* =======
 * use virtual DMA
 * 0 using hard DMA
 * 1 using virtual DMA
 * This variable is set to virtual when a DMA mem problem arises, and
 * reset back in floppy_grab_irq_and_dma.
 * It is not safe to reset it in other circumstances, because the floppy
 * driver may have several buffers in use at once, and we do currently not
 * record each buffers capabilities
 */

static DEFINE_SPINLOCK(floppy_lock);
static struct completion device_release;

static unsigned short virtual_dma_port = 0x3f0;
irqreturn_t floppy_interrupt(int irq, void *dev_id, struct pt_regs *regs);
static int set_dor(int fdc, char mask, char data);

#define K_64      0x10000           /* 64KB */

/* the following is the mask of allowed drives. By default units 2 and
 * 3 of both floppy controllers are disabled, because switching on the
 * motor of these drives causes system hangs on some PCI computers. drive
 * 0 is the low bit (0x1), and drive 7 is the high bit (0x80). Bits are on if
 * a drive is allowed.
 *
 * NOTE: This must come before we include the arch floppy header because
 *       some ports reference this variable from there. -DaveM
 */

static int allowed_drive_mask = 0x33;

#include <asm/floppy.h>

static int irqdma_allocated;

#define DEVICE_NAME "floppy"

#include <linux/blkdev.h>
#include <linux/blkpg.h>
#include <linux/cdrom.h>      /* for the compatibility eject ioctl */
#include <linux/completion.h>

static struct request *current_req;
static struct request_queue *floppy_queue;
static void do_fd_request(request_queue_t * q);

#ifndef fd_get_dma_residue
#define fd_get_dma_residue() get_dma_residue(FLOPPY_DMA)
#endif

/* Dma Memory related stuff */

#ifndef fd_dma_mem_free
#define fd_dma_mem_free(addr, size) free_pages(addr, get_order(size))
#endif

#ifndef fd_dma_mem_alloc
#define fd_dma_mem_alloc(size) __get_dma_pages(GFP_KERNEL,get_order(size))
#endif

static inline void fallback_on_nodma_alloc(char **addr, size_t l)
{
#ifdef FLOPPY_CAN_FALLBACK_ON_NODMA
      if (*addr)
            return;           /* we have the memory */
      if (can_use_virtual_dma != 2)
            return;           /* no fallback allowed */
      printk
          ("DMA memory shortage. Temporarily falling back on virtual DMA\n");
      *addr = (char *)nodma_mem_alloc(l);
#else
      return;
#endif
}

/* End dma memory related stuff */

static unsigned long fake_change;
static int initialising = 1;

#define ITYPE(x) (((x)>>2) & 0x1f)
#define TOMINOR(x) ((x & 3) | ((x & 4) << 5))
#define UNIT(x) ((x) & 0x03)  /* drive on fdc */
#define FDC(x) (((x) & 0x04) >> 2)  /* fdc of drive */
#define REVDRIVE(fdc, unit) ((unit) + ((fdc) << 2))
                        /* reverse mapping from unit and fdc to drive */
#define DP (&drive_params[current_drive])
#define DRS (&drive_state[current_drive])
#define DRWE (&write_errors[current_drive])
#define FDCS (&fdc_state[fdc])
#define CLEARF(x) (clear_bit(x##_BIT, &DRS->flags))
#define SETF(x) (set_bit(x##_BIT, &DRS->flags))
#define TESTF(x) (test_bit(x##_BIT, &DRS->flags))

#define UDP (&drive_params[drive])
#define UDRS (&drive_state[drive])
#define UDRWE (&write_errors[drive])
#define UFDCS (&fdc_state[FDC(drive)])
#define UCLEARF(x) (clear_bit(x##_BIT, &UDRS->flags))
#define USETF(x) (set_bit(x##_BIT, &UDRS->flags))
#define UTESTF(x) (test_bit(x##_BIT, &UDRS->flags))

#define DPRINT(format, args...) printk(DEVICE_NAME "%d: " format, current_drive , ## args)

#define PH_HEAD(floppy,head) (((((floppy)->stretch & 2) >>1) ^ head) << 2)
#define STRETCH(floppy) ((floppy)->stretch & FD_STRETCH)

#define CLEARSTRUCT(x) memset((x), 0, sizeof(*(x)))

/* read/write */
#define COMMAND raw_cmd->cmd[0]
#define DR_SELECT raw_cmd->cmd[1]
#define TRACK raw_cmd->cmd[2]
#define HEAD raw_cmd->cmd[3]
#define SECTOR raw_cmd->cmd[4]
#define SIZECODE raw_cmd->cmd[5]
#define SECT_PER_TRACK raw_cmd->cmd[6]
#define GAP raw_cmd->cmd[7]
#define SIZECODE2 raw_cmd->cmd[8]
#define NR_RW 9

/* format */
#define F_SIZECODE raw_cmd->cmd[2]
#define F_SECT_PER_TRACK raw_cmd->cmd[3]
#define F_GAP raw_cmd->cmd[4]
#define F_FILL raw_cmd->cmd[5]
#define NR_F 6

/*
 * Maximum disk size (in kilobytes). This default is used whenever the
 * current disk size is unknown.
 * [Now it is rather a minimum]
 */
#define MAX_DISK_SIZE 4       /* 3984 */

/*
 * globals used by 'result()'
 */
#define MAX_REPLIES 16
static unsigned char reply_buffer[MAX_REPLIES];
static int inr;               /* size of reply buffer, when called from interrupt */
#define ST0 (reply_buffer[0])
#define ST1 (reply_buffer[1])
#define ST2 (reply_buffer[2])
#define ST3 (reply_buffer[0]) /* result of GETSTATUS */
#define R_TRACK (reply_buffer[3])
#define R_HEAD (reply_buffer[4])
#define R_SECTOR (reply_buffer[5])
#define R_SIZECODE (reply_buffer[6])

#define SEL_DLY (2*HZ/100)

/*
 * this struct defines the different floppy drive types.
 */
static struct {
      struct floppy_drive_params params;
      const char *name; /* name printed while booting */
} default_drive_params[] = {
/* NOTE: the time values in jiffies should be in msec!
 CMOS drive type
  |     Maximum data rate supported by drive type
  |     |   Head load time, msec
  |     |   |   Head unload time, msec (not used)
  |     |   |   |     Step rate interval, usec
  |     |   |   |     |       Time needed for spinup time (jiffies)
  |     |   |   |     |       |      Timeout for spinning down (jiffies)
  |     |   |   |     |       |      |   Spindown offset (where disk stops)
  |     |   |   |     |       |      |   |     Select delay
  |     |   |   |     |       |      |   |     |     RPS
  |     |   |   |     |       |      |   |     |     |    Max number of tracks
  |     |   |   |     |       |      |   |     |     |    |     Interrupt timeout
  |     |   |   |     |       |      |   |     |     |    |     |   Max nonintlv. sectors
  |     |   |   |     |       |      |   |     |     |    |     |   | -Max Errors- flags */
{{0,  500, 16, 16, 8000,    1*HZ, 3*HZ,  0, SEL_DLY, 5,  80, 3*HZ, 20, {3,1,2,0,2}, 0,
      0, { 7, 4, 8, 2, 1, 5, 3,10}, 3*HZ/2, 0 }, "unknown" },

{{1,  300, 16, 16, 8000,    1*HZ, 3*HZ,  0, SEL_DLY, 5,  40, 3*HZ, 17, {3,1,2,0,2}, 0,
      0, { 1, 0, 0, 0, 0, 0, 0, 0}, 3*HZ/2, 1 }, "360K PC" }, /*5 1/4 360 KB PC*/

{{2,  500, 16, 16, 6000, 4*HZ/10, 3*HZ, 14, SEL_DLY, 6,  83, 3*HZ, 17, {3,1,2,0,2}, 0,
      0, { 2, 5, 6,23,10,20,12, 0}, 3*HZ/2, 2 }, "1.2M" }, /*5 1/4 HD AT*/

{{3,  250, 16, 16, 3000,    1*HZ, 3*HZ,  0, SEL_DLY, 5,  83, 3*HZ, 20, {3,1,2,0,2}, 0,
      0, { 4,22,21,30, 3, 0, 0, 0}, 3*HZ/2, 4 }, "720k" }, /*3 1/2 DD*/

{{4,  500, 16, 16, 4000, 4*HZ/10, 3*HZ, 10, SEL_DLY, 5,  83, 3*HZ, 20, {3,1,2,0,2}, 0,
      0, { 7, 4,25,22,31,21,29,11}, 3*HZ/2, 7 }, "1.44M" }, /*3 1/2 HD*/

{{5, 1000, 15,  8, 3000, 4*HZ/10, 3*HZ, 10, SEL_DLY, 5,  83, 3*HZ, 40, {3,1,2,0,2}, 0,
      0, { 7, 8, 4,25,28,22,31,21}, 3*HZ/2, 8 }, "2.88M AMI BIOS" }, /*3 1/2 ED*/

{{6, 1000, 15,  8, 3000, 4*HZ/10, 3*HZ, 10, SEL_DLY, 5,  83, 3*HZ, 40, {3,1,2,0,2}, 0,
      0, { 7, 8, 4,25,28,22,31,21}, 3*HZ/2, 8 }, "2.88M" } /*3 1/2 ED*/
/*    |  --autodetected formats---    |      |      |
 *    read_track                      |      |    Name printed when booting
 *                            |     Native format
 *                Frequency of disk change checks */
};

static struct floppy_drive_params drive_params[N_DRIVE];
static struct floppy_drive_struct drive_state[N_DRIVE];
static struct floppy_write_errors write_errors[N_DRIVE];
static struct timer_list motor_off_timer[N_DRIVE];
static struct gendisk *disks[N_DRIVE];
static struct block_device *opened_bdev[N_DRIVE];
static DEFINE_MUTEX(open_lock);
static struct floppy_raw_cmd *raw_cmd, default_raw_cmd;

/*
 * This struct defines the different floppy types.
 *
 * Bit 0 of 'stretch' tells if the tracks need to be doubled for some
 * types (e.g. 360kB diskette in 1.2MB drive, etc.).  Bit 1 of 'stretch'
 * tells if the disk is in Commodore 1581 format, which means side 0 sectors
 * are located on side 1 of the disk but with a side 0 ID, and vice-versa.
 * This is the same as the Sharp MZ-80 5.25" CP/M disk format, except that the
 * 1581's logical side 0 is on physical side 1, whereas the Sharp's logical
 * side 0 is on physical side 0 (but with the misnamed sector IDs).
 * 'stretch' should probably be renamed to something more general, like
 * 'options'.  Other parameters should be self-explanatory (see also
 * setfdprm(8)).
 */
/*
          Size
           |  Sectors per track
           |  | Head
           |  | |  Tracks
           |  | |  | Stretch
           |  | |  | |  Gap 1 size
           |  | |  | |    |  Data rate, | 0x40 for perp
           |  | |  | |    |    |  Spec1 (stepping rate, head unload
           |  | |  | |    |    |    |    /fmt gap (gap2) */
static struct floppy_struct floppy_type[32] = {
      {    0, 0,0, 0,0,0x00,0x00,0x00,0x00,NULL    }, /*  0 no testing    */
      {  720, 9,2,40,0,0x2A,0x02,0xDF,0x50,"d360"  }, /*  1 360KB PC      */
      { 2400,15,2,80,0,0x1B,0x00,0xDF,0x54,"h1200" }, /*  2 1.2MB AT      */
      {  720, 9,1,80,0,0x2A,0x02,0xDF,0x50,"D360"  }, /*  3 360KB SS 3.5" */
      { 1440, 9,2,80,0,0x2A,0x02,0xDF,0x50,"D720"  }, /*  4 720KB 3.5"    */
      {  720, 9,2,40,1,0x23,0x01,0xDF,0x50,"h360"  }, /*  5 360KB AT      */
      { 1440, 9,2,80,0,0x23,0x01,0xDF,0x50,"h720"  }, /*  6 720KB AT      */
      { 2880,18,2,80,0,0x1B,0x00,0xCF,0x6C,"H1440" }, /*  7 1.44MB 3.5"   */
      { 5760,36,2,80,0,0x1B,0x43,0xAF,0x54,"E2880" }, /*  8 2.88MB 3.5"   */
      { 6240,39,2,80,0,0x1B,0x43,0xAF,0x28,"E3120" }, /*  9 3.12MB 3.5"   */

      { 2880,18,2,80,0,0x25,0x00,0xDF,0x02,"h1440" }, /* 10 1.44MB 5.25"  */
      { 3360,21,2,80,0,0x1C,0x00,0xCF,0x0C,"H1680" }, /* 11 1.68MB 3.5"   */
      {  820,10,2,41,1,0x25,0x01,0xDF,0x2E,"h410"  }, /* 12 410KB 5.25"   */
      { 1640,10,2,82,0,0x25,0x02,0xDF,0x2E,"H820"  }, /* 13 820KB 3.5"    */
      { 2952,18,2,82,0,0x25,0x00,0xDF,0x02,"h1476" }, /* 14 1.48MB 5.25"  */
      { 3444,21,2,82,0,0x25,0x00,0xDF,0x0C,"H1722" }, /* 15 1.72MB 3.5"   */
      {  840,10,2,42,1,0x25,0x01,0xDF,0x2E,"h420"  }, /* 16 420KB 5.25"   */
      { 1660,10,2,83,0,0x25,0x02,0xDF,0x2E,"H830"  }, /* 17 830KB 3.5"    */
      { 2988,18,2,83,0,0x25,0x00,0xDF,0x02,"h1494" }, /* 18 1.49MB 5.25"  */
      { 3486,21,2,83,0,0x25,0x00,0xDF,0x0C,"H1743" }, /* 19 1.74 MB 3.5"  */

      { 1760,11,2,80,0,0x1C,0x09,0xCF,0x00,"h880"  }, /* 20 880KB 5.25"   */
      { 2080,13,2,80,0,0x1C,0x01,0xCF,0x00,"D1040" }, /* 21 1.04MB 3.5"   */
      { 2240,14,2,80,0,0x1C,0x19,0xCF,0x00,"D1120" }, /* 22 1.12MB 3.5"   */
      { 3200,20,2,80,0,0x1C,0x20,0xCF,0x2C,"h1600" }, /* 23 1.6MB 5.25"   */
      { 3520,22,2,80,0,0x1C,0x08,0xCF,0x2e,"H1760" }, /* 24 1.76MB 3.5"   */
      { 3840,24,2,80,0,0x1C,0x20,0xCF,0x00,"H1920" }, /* 25 1.92MB 3.5"   */
      { 6400,40,2,80,0,0x25,0x5B,0xCF,0x00,"E3200" }, /* 26 3.20MB 3.5"   */
      { 7040,44,2,80,0,0x25,0x5B,0xCF,0x00,"E3520" }, /* 27 3.52MB 3.5"   */
      { 7680,48,2,80,0,0x25,0x63,0xCF,0x00,"E3840" }, /* 28 3.84MB 3.5"   */

      { 3680,23,2,80,0,0x1C,0x10,0xCF,0x00,"H1840" }, /* 29 1.84MB 3.5"   */
      { 1600,10,2,80,0,0x25,0x02,0xDF,0x2E,"D800"  }, /* 30 800KB 3.5"    */
      { 3200,20,2,80,0,0x1C,0x00,0xCF,0x2C,"H1600" }, /* 31 1.6MB 3.5"    */
};

#define SECTSIZE (_FD_SECTSIZE(*floppy))

/* Auto-detection: Disk type used until the next media change occurs. */
static struct floppy_struct *current_type[N_DRIVE];

/*
 * User-provided type information. current_type points to
 * the respective entry of this array.
 */
static struct floppy_struct user_params[N_DRIVE];

static sector_t floppy_sizes[256];

static char floppy_device_name[] = "floppy";

/*
 * The driver is trying to determine the correct media format
 * while probing is set. rw_interrupt() clears it after a
 * successful access.
 */
static int probing;

/* Synchronization of FDC access. */
#define FD_COMMAND_NONE -1
#define FD_COMMAND_ERROR 2
#define FD_COMMAND_OKAY 3

static volatile int command_status = FD_COMMAND_NONE;
static unsigned long fdc_busy;
static DECLARE_WAIT_QUEUE_HEAD(fdc_wait);
static DECLARE_WAIT_QUEUE_HEAD(command_done);

#define NO_SIGNAL (!interruptible || !signal_pending(current))
#define CALL(x) if ((x) == -EINTR) return -EINTR
#define ECALL(x) if ((ret = (x))) return ret;
#define _WAIT(x,i) CALL(ret=wait_til_done((x),i))
#define WAIT(x) _WAIT((x),interruptible)
#define IWAIT(x) _WAIT((x),1)

/* Errors during formatting are counted here. */
static int format_errors;

/* Format request descriptor. */
static struct format_descr format_req;

/*
 * Rate is 0 for 500kb/s, 1 for 300kbps, 2 for 250kbps
 * Spec1 is 0xSH, where S is stepping rate (F=1ms, E=2ms, D=3ms etc),
 * H is head unload time (1=16ms, 2=32ms, etc)
 */

/*
 * Track buffer
 * Because these are written to by the DMA controller, they must
 * not contain a 64k byte boundary crossing, or data will be
 * corrupted/lost.
 */
static char *floppy_track_buffer;
static int max_buffer_sectors;

static int *errors;
typedef void (*done_f) (int);
static struct cont_t {
      void (*interrupt) (void);     /* this is called after the interrupt of the
                               * main command */
      void (*redo) (void);    /* this is called to retry the operation */
      void (*error) (void);   /* this is called to tally an error */
      done_f done;            /* this is called to say if the operation has
                         * succeeded/failed */
} *cont;

static void floppy_ready(void);
static void floppy_start(void);
static void process_fd_request(void);
static void recalibrate_floppy(void);
static void floppy_shutdown(unsigned long);

static int floppy_grab_irq_and_dma(void);
static void floppy_release_irq_and_dma(void);

/*
 * The "reset" variable should be tested whenever an interrupt is scheduled,
 * after the commands have been sent. This is to ensure that the driver doesn't
 * get wedged when the interrupt doesn't come because of a failed command.
 * reset doesn't need to be tested before sending commands, because
 * output_byte is automatically disabled when reset is set.
 */
#define CHECK_RESET { if (FDCS->reset){ reset_fdc(); return; } }
static void reset_fdc(void);

/*
 * These are global variables, as that's the easiest way to give
 * information to interrupts. They are the data used for the current
 * request.
 */
#define NO_TRACK -1
#define NEED_1_RECAL -2
#define NEED_2_RECAL -3

static int usage_count;

/* buffer related variables */
static int buffer_track = -1;
static int buffer_drive = -1;
static int buffer_min = -1;
static int buffer_max = -1;

/* fdc related variables, should end up in a struct */
static struct floppy_fdc_state fdc_state[N_FDC];
static int fdc;               /* current fdc */

static struct floppy_struct *_floppy = floppy_type;
static unsigned char current_drive;
static long current_count_sectors;
static unsigned char fsector_t;     /* sector in track */
static unsigned char in_sector_offset;    /* offset within physical sector,
                               * expressed in units of 512 bytes */

#ifndef fd_eject
static inline int fd_eject(int drive)
{
      return -EINVAL;
}
#endif

/*
 * Debugging
 * =========
 */
#ifdef DEBUGT
static long unsigned debugtimer;

static inline void set_debugt(void)
{
      debugtimer = jiffies;
}

static inline void debugt(const char *message)
{
      if (DP->flags & DEBUGT)
            printk("%s dtime=%lu\n", message, jiffies - debugtimer);
}
#else
static inline void set_debugt(void) { }
static inline void debugt(const char *message) { }
#endif /* DEBUGT */

typedef void (*timeout_fn) (unsigned long);
static DEFINE_TIMER(fd_timeout, floppy_shutdown, 0, 0);

static const char *timeout_message;

#ifdef FLOPPY_SANITY_CHECK
static void is_alive(const char *message)
{
      /* this routine checks whether the floppy driver is "alive" */
      if (test_bit(0, &fdc_busy) && command_status < 2
          && !timer_pending(&fd_timeout)) {
            DPRINT("timeout handler died: %s\n", message);
      }
}
#endif

static void (*do_floppy) (void) = NULL;

#ifdef FLOPPY_SANITY_CHECK

#define OLOGSIZE 20

static void (*lasthandler) (void);
static unsigned long interruptjiffies;
static unsigned long resultjiffies;
static int resultsize;
static unsigned long lastredo;

static struct output_log {
      unsigned char data;
      unsigned char status;
      unsigned long jiffies;
} output_log[OLOGSIZE];

static int output_log_pos;
#endif

#define current_reqD -1
#define MAXTIMEOUT -2

static void __reschedule_timeout(int drive, const char *message, int marg)
{
      if (drive == current_reqD)
            drive = current_drive;
      del_timer(&fd_timeout);
      if (drive < 0 || drive > N_DRIVE) {
            fd_timeout.expires = jiffies + 20UL * HZ;
            drive = 0;
      } else
            fd_timeout.expires = jiffies + UDP->timeout;
      add_timer(&fd_timeout);
      if (UDP->flags & FD_DEBUG) {
            DPRINT("reschedule timeout ");
            printk(message, marg);
            printk("\n");
      }
      timeout_message = message;
}

static void reschedule_timeout(int drive, const char *message, int marg)
{
      unsigned long flags;

      spin_lock_irqsave(&floppy_lock, flags);
      __reschedule_timeout(drive, message, marg);
      spin_unlock_irqrestore(&floppy_lock, flags);
}

#define INFBOUND(a,b) (a)=max_t(int, a, b)

#define SUPBOUND(a,b) (a)=min_t(int, a, b)

/*
 * Bottom half floppy driver.
 * ==========================
 *
 * This part of the file contains the code talking directly to the hardware,
 * and also the main service loop (seek-configure-spinup-command)
 */

/*
 * disk change.
 * This routine is responsible for maintaining the FD_DISK_CHANGE flag,
 * and the last_checked date.
 *
 * last_checked is the date of the last check which showed 'no disk change'
 * FD_DISK_CHANGE is set under two conditions:
 * 1. The floppy has been changed after some i/o to that floppy already
 *    took place.
 * 2. No floppy disk is in the drive. This is done in order to ensure that
 *    requests are quickly flushed in case there is no disk in the drive. It
 *    follows that FD_DISK_CHANGE can only be cleared if there is a disk in
 *    the drive.
 *
 * For 1., maxblock is observed. Maxblock is 0 if no i/o has taken place yet.
 * For 2., FD_DISK_NEWCHANGE is watched. FD_DISK_NEWCHANGE is cleared on
 *  each seek. If a disk is present, the disk change line should also be
 *  cleared on each seek. Thus, if FD_DISK_NEWCHANGE is clear, but the disk
 *  change line is set, this means either that no disk is in the drive, or
 *  that it has been removed since the last seek.
 *
 * This means that we really have a third possibility too:
 *  The floppy has been changed after the last seek.
 */

static int disk_change(int drive)
{
      int fdc = FDC(drive);
#ifdef FLOPPY_SANITY_CHECK
      if (time_before(jiffies, UDRS->select_date + UDP->select_delay))
            DPRINT("WARNING disk change called early\n");
      if (!(FDCS->dor & (0x10 << UNIT(drive))) ||
          (FDCS->dor & 3) != UNIT(drive) || fdc != FDC(drive)) {
            DPRINT("probing disk change on unselected drive\n");
            DPRINT("drive=%d fdc=%d dor=%x\n", drive, FDC(drive),
                   (unsigned int)FDCS->dor);
      }
#endif

#ifdef DCL_DEBUG
      if (UDP->flags & FD_DEBUG) {
            DPRINT("checking disk change line for drive %d\n", drive);
            DPRINT("jiffies=%lu\n", jiffies);
            DPRINT("disk change line=%x\n", fd_inb(FD_DIR) & 0x80);
            DPRINT("flags=%lx\n", UDRS->flags);
      }
#endif
      if (UDP->flags & FD_BROKEN_DCL)
            return UTESTF(FD_DISK_CHANGED);
      if ((fd_inb(FD_DIR) ^ UDP->flags) & 0x80) {
            USETF(FD_VERIFY); /* verify write protection */
            if (UDRS->maxblock) {
                  /* mark it changed */
                  USETF(FD_DISK_CHANGED);
            }

            /* invalidate its geometry */
            if (UDRS->keep_data >= 0) {
                  if ((UDP->flags & FTD_MSG) &&
                      current_type[drive] != NULL)
                        DPRINT("Disk type is undefined after "
                               "disk change\n");
                  current_type[drive] = NULL;
                  floppy_sizes[TOMINOR(drive)] = MAX_DISK_SIZE << 1;
            }

            /*USETF(FD_DISK_NEWCHANGE); */
            return 1;
      } else {
            UDRS->last_checked = jiffies;
            UCLEARF(FD_DISK_NEWCHANGE);
      }
      return 0;
}

static inline int is_selected(int dor, int unit)
{
      return ((dor & (0x10 << unit)) && (dor & 3) == unit);
}

static int set_dor(int fdc, char mask, char data)
{
      register unsigned char drive, unit, newdor, olddor;

      if (FDCS->address == -1)
            return -1;

      olddor = FDCS->dor;
      newdor = (olddor & mask) | data;
      if (newdor != olddor) {
            unit = olddor & 0x3;
            if (is_selected(olddor, unit) && !is_selected(newdor, unit)) {
                  drive = REVDRIVE(fdc, unit);
#ifdef DCL_DEBUG
                  if (UDP->flags & FD_DEBUG) {
                        DPRINT("calling disk change from set_dor\n");
                  }
#endif
                  disk_change(drive);
            }
            FDCS->dor = newdor;
            fd_outb(newdor, FD_DOR);

            unit = newdor & 0x3;
            if (!is_selected(olddor, unit) && is_selected(newdor, unit)) {
                  drive = REVDRIVE(fdc, unit);
                  UDRS->select_date = jiffies;
            }
      }
      return olddor;
}

static void twaddle(void)
{
      if (DP->select_delay)
            return;
      fd_outb(FDCS->dor & ~(0x10 << UNIT(current_drive)), FD_DOR);
      fd_outb(FDCS->dor, FD_DOR);
      DRS->select_date = jiffies;
}

/* reset all driver information about the current fdc. This is needed after
 * a reset, and after a raw command. */
static void reset_fdc_info(int mode)
{
      int drive;

      FDCS->spec1 = FDCS->spec2 = -1;
      FDCS->need_configure = 1;
      FDCS->perp_mode = 1;
      FDCS->rawcmd = 0;
      for (drive = 0; drive < N_DRIVE; drive++)
            if (FDC(drive) == fdc && (mode || UDRS->track != NEED_1_RECAL))
                  UDRS->track = NEED_2_RECAL;
}

/* selects the fdc and drive, and enables the fdc's input/dma. */
static void set_fdc(int drive)
{
      if (drive >= 0 && drive < N_DRIVE) {
            fdc = FDC(drive);
            current_drive = drive;
      }
      if (fdc != 1 && fdc != 0) {
            printk("bad fdc value\n");
            return;
      }
      set_dor(fdc, ~0, 8);
#if N_FDC > 1
      set_dor(1 - fdc, ~8, 0);
#endif
      if (FDCS->rawcmd == 2)
            reset_fdc_info(1);
      if (fd_inb(FD_STATUS) != STATUS_READY)
            FDCS->reset = 1;
}

/* locks the driver */
static int _lock_fdc(int drive, int interruptible, int line)
{
      if (!usage_count) {
            printk(KERN_ERR
                   "Trying to lock fdc while usage count=0 at line %d\n",
                   line);
            return -1;
      }

      if (test_and_set_bit(0, &fdc_busy)) {
            DECLARE_WAITQUEUE(wait, current);
            add_wait_queue(&fdc_wait, &wait);

            for (;;) {
                  set_current_state(TASK_INTERRUPTIBLE);

                  if (!test_and_set_bit(0, &fdc_busy))
                        break;

                  schedule();

                  if (!NO_SIGNAL) {
                        remove_wait_queue(&fdc_wait, &wait);
                        return -EINTR;
                  }
            }

            set_current_state(TASK_RUNNING);
            remove_wait_queue(&fdc_wait, &wait);

            flush_scheduled_work();
      }
      command_status = FD_COMMAND_NONE;

      __reschedule_timeout(drive, "lock fdc", 0);
      set_fdc(drive);
      return 0;
}

#define lock_fdc(drive,interruptible) _lock_fdc(drive,interruptible, __LINE__)

#define LOCK_FDC(drive,interruptible) \
if (lock_fdc(drive,interruptible)) return -EINTR;

/* unlocks the driver */
static inline void unlock_fdc(void)
{
      unsigned long flags;

      raw_cmd = NULL;
      if (!test_bit(0, &fdc_busy))
            DPRINT("FDC access conflict!\n");

      if (do_floppy)
            DPRINT("device interrupt still active at FDC release: %p!\n",
                   do_floppy);
      command_status = FD_COMMAND_NONE;
      spin_lock_irqsave(&floppy_lock, flags);
      del_timer(&fd_timeout);
      cont = NULL;
      clear_bit(0, &fdc_busy);
      if (elv_next_request(floppy_queue))
            do_fd_request(floppy_queue);
      spin_unlock_irqrestore(&floppy_lock, flags);
      wake_up(&fdc_wait);
}

/* switches the motor off after a given timeout */
static void motor_off_callback(unsigned long nr)
{
      unsigned char mask = ~(0x10 << UNIT(nr));

      set_dor(FDC(nr), mask, 0);
}

/* schedules motor off */
static void floppy_off(unsigned int drive)
{
      unsigned long volatile delta;
      register int fdc = FDC(drive);

      if (!(FDCS->dor & (0x10 << UNIT(drive))))
            return;

      del_timer(motor_off_timer + drive);

      /* make spindle stop in a position which minimizes spinup time
       * next time */
      if (UDP->rps) {
            delta = jiffies - UDRS->first_read_date + HZ -
                UDP->spindown_offset;
            delta = ((delta * UDP->rps) % HZ) / UDP->rps;
            motor_off_timer[drive].expires =
                jiffies + UDP->spindown - delta;
      }
      add_timer(motor_off_timer + drive);
}

/*
 * cycle through all N_DRIVE floppy drives, for disk change testing.
 * stopping at current drive. This is done before any long operation, to
 * be sure to have up to date disk change information.
 */
static void scandrives(void)
{
      int i, drive, saved_drive;

      if (DP->select_delay)
            return;

      saved_drive = current_drive;
      for (i = 0; i < N_DRIVE; i++) {
            drive = (saved_drive + i + 1) % N_DRIVE;
            if (UDRS->fd_ref == 0 || UDP->select_delay != 0)
                  continue;   /* skip closed drives */
            set_fdc(drive);
            if (!(set_dor(fdc, ~3, UNIT(drive) | (0x10 << UNIT(drive))) &
                  (0x10 << UNIT(drive))))
                  /* switch the motor off again, if it was off to
                   * begin with */
                  set_dor(fdc, ~(0x10 << UNIT(drive)), 0);
      }
      set_fdc(saved_drive);
}

static void empty(void)
{
}

static DECLARE_WORK(floppy_work, NULL, NULL);

static void schedule_bh(void (*handler) (void))
{
      PREPARE_WORK(&floppy_work, (void (*)(void *))handler, NULL);
      schedule_work(&floppy_work);
}

static DEFINE_TIMER(fd_timer, NULL, 0, 0);

static void cancel_activity(void)
{
      unsigned long flags;

      spin_lock_irqsave(&floppy_lock, flags);
      do_floppy = NULL;
      PREPARE_WORK(&floppy_work, (void *)empty, NULL);
      del_timer(&fd_timer);
      spin_unlock_irqrestore(&floppy_lock, flags);
}

/* this function makes sure that the disk stays in the drive during the
 * transfer */
static void fd_watchdog(void)
{
#ifdef DCL_DEBUG
      if (DP->flags & FD_DEBUG) {
            DPRINT("calling disk change from watchdog\n");
      }
#endif

      if (disk_change(current_drive)) {
            DPRINT("disk removed during i/o\n");
            cancel_activity();
            cont->done(0);
            reset_fdc();
      } else {
            del_timer(&fd_timer);
            fd_timer.function = (timeout_fn) fd_watchdog;
            fd_timer.expires = jiffies + HZ / 10;
            add_timer(&fd_timer);
      }
}

static void main_command_interrupt(void)
{
      del_timer(&fd_timer);
      cont->interrupt();
}

/* waits for a delay (spinup or select) to pass */
static int fd_wait_for_completion(unsigned long delay, timeout_fn function)
{
      if (FDCS->reset) {
            reset_fdc();      /* do the reset during sleep to win time
                         * if we don't need to sleep, it's a good
                         * occasion anyways */
            return 1;
      }

      if (time_before(jiffies, delay)) {
            del_timer(&fd_timer);
            fd_timer.function = function;
            fd_timer.expires = delay;
            add_timer(&fd_timer);
            return 1;
      }
      return 0;
}

static DEFINE_SPINLOCK(floppy_hlt_lock);
static int hlt_disabled;
static void floppy_disable_hlt(void)
{
      unsigned long flags;

      spin_lock_irqsave(&floppy_hlt_lock, flags);
      if (!hlt_disabled) {
            hlt_disabled = 1;
#ifdef HAVE_DISABLE_HLT
            disable_hlt();
#endif
      }
      spin_unlock_irqrestore(&floppy_hlt_lock, flags);
}

static void floppy_enable_hlt(void)
{
      unsigned long flags;

      spin_lock_irqsave(&floppy_hlt_lock, flags);
      if (hlt_disabled) {
            hlt_disabled = 0;
#ifdef HAVE_DISABLE_HLT
            enable_hlt();
#endif
      }
      spin_unlock_irqrestore(&floppy_hlt_lock, flags);
}

static void setup_DMA(void)
{
      unsigned long f;

#ifdef FLOPPY_SANITY_CHECK
      if (raw_cmd->length == 0) {
            int i;

            printk("zero dma transfer size:");
            for (i = 0; i < raw_cmd->cmd_count; i++)
                  printk("%x,", raw_cmd->cmd[i]);
            printk("\n");
            cont->done(0);
            FDCS->reset = 1;
            return;
      }
      if (((unsigned long)raw_cmd->kernel_data) % 512) {
            printk("non aligned address: %p\n", raw_cmd->kernel_data);
            cont->done(0);
            FDCS->reset = 1;
            return;
      }
#endif
      f = claim_dma_lock();
      fd_disable_dma();
#ifdef fd_dma_setup
      if (fd_dma_setup(raw_cmd->kernel_data, raw_cmd->length,
                   (raw_cmd->flags & FD_RAW_READ) ?
                   DMA_MODE_READ : DMA_MODE_WRITE, FDCS->address) < 0) {
            release_dma_lock(f);
            cont->done(0);
            FDCS->reset = 1;
            return;
      }
      release_dma_lock(f);
#else
      fd_clear_dma_ff();
      fd_cacheflush(raw_cmd->kernel_data, raw_cmd->length);
      fd_set_dma_mode((raw_cmd->flags & FD_RAW_READ) ?
                  DMA_MODE_READ : DMA_MODE_WRITE);
      fd_set_dma_addr(raw_cmd->kernel_data);
      fd_set_dma_count(raw_cmd->length);
      virtual_dma_port = FDCS->address;
      fd_enable_dma();
      release_dma_lock(f);
#endif
      floppy_disable_hlt();
}

static void show_floppy(void);

/* waits until the fdc becomes ready */
static int wait_til_ready(void)
{
      int counter, status;
      if (FDCS->reset)
            return -1;
      for (counter = 0; counter < 10000; counter++) {
            status = fd_inb(FD_STATUS);
            if (status & STATUS_READY)
                  return status;
      }
      if (!initialising) {
            DPRINT("Getstatus times out (%x) on fdc %d\n", status, fdc);
            show_floppy();
      }
      FDCS->reset = 1;
      return -1;
}

/* sends a command byte to the fdc */
static int output_byte(char byte)
{
      int status;

      if ((status = wait_til_ready()) < 0)
            return -1;
      if ((status & (STATUS_READY | STATUS_DIR | STATUS_DMA)) == STATUS_READY) {
            fd_outb(byte, FD_DATA);
#ifdef FLOPPY_SANITY_CHECK
            output_log[output_log_pos].data = byte;
            output_log[output_log_pos].status = status;
            output_log[output_log_pos].jiffies = jiffies;
            output_log_pos = (output_log_pos + 1) % OLOGSIZE;
#endif
            return 0;
      }
      FDCS->reset = 1;
      if (!initialising) {
            DPRINT("Unable to send byte %x to FDC. Fdc=%x Status=%x\n",
                   byte, fdc, status);
            show_floppy();
      }
      return -1;
}

#define LAST_OUT(x) if (output_byte(x)<0){ reset_fdc();return;}

/* gets the response from the fdc */
static int result(void)
{
      int i, status = 0;

      for (i = 0; i < MAX_REPLIES; i++) {
            if ((status = wait_til_ready()) < 0)
                  break;
            status &= STATUS_DIR | STATUS_READY | STATUS_BUSY | STATUS_DMA;
            if ((status & ~STATUS_BUSY) == STATUS_READY) {
#ifdef FLOPPY_SANITY_CHECK
                  resultjiffies = jiffies;
                  resultsize = i;
#endif
                  return i;
            }
            if (status == (STATUS_DIR | STATUS_READY | STATUS_BUSY))
                  reply_buffer[i] = fd_inb(FD_DATA);
            else
                  break;
      }
      if (!initialising) {
            DPRINT
                ("get result error. Fdc=%d Last status=%x Read bytes=%d\n",
                 fdc, status, i);
            show_floppy();
      }
      FDCS->reset = 1;
      return -1;
}

#define MORE_OUTPUT -2
/* does the fdc need more output? */
static int need_more_output(void)
{
      int status;
      if ((status = wait_til_ready()) < 0)
            return -1;
      if ((status & (STATUS_READY | STATUS_DIR | STATUS_DMA)) == STATUS_READY)
            return MORE_OUTPUT;
      return result();
}

/* Set perpendicular mode as required, based on data rate, if supported.
 * 82077 Now tested. 1Mbps data rate only possible with 82077-1.
 */
static inline void perpendicular_mode(void)
{
      unsigned char perp_mode;

      if (raw_cmd->rate & 0x40) {
            switch (raw_cmd->rate & 3) {
            case 0:
                  perp_mode = 2;
                  break;
            case 3:
                  perp_mode = 3;
                  break;
            default:
                  DPRINT("Invalid data rate for perpendicular mode!\n");
                  cont->done(0);
                  FDCS->reset = 1;  /* convenient way to return to
                                     * redo without to much hassle (deep
                                     * stack et al. */
                  return;
            }
      } else
            perp_mode = 0;

      if (FDCS->perp_mode == perp_mode)
            return;
      if (FDCS->version >= FDC_82077_ORIG) {
            output_byte(FD_PERPENDICULAR);
            output_byte(perp_mode);
            FDCS->perp_mode = perp_mode;
      } else if (perp_mode) {
            DPRINT("perpendicular mode not supported by this FDC.\n");
      }
}                       /* perpendicular_mode */

static int fifo_depth = 0xa;
static int no_fifo;

static int fdc_configure(void)
{
      /* Turn on FIFO */
      output_byte(FD_CONFIGURE);
      if (need_more_output() != MORE_OUTPUT)
            return 0;
      output_byte(0);
      output_byte(0x10 | (no_fifo & 0x20) | (fifo_depth & 0xf));
      output_byte(0);         /* pre-compensation from track
                           0 upwards */
      return 1;
}

#define NOMINAL_DTR 500

/* Issue a "SPECIFY" command to set the step rate time, head unload time,
 * head load time, and DMA disable flag to values needed by floppy.
 *
 * The value "dtr" is the data transfer rate in Kbps.  It is needed
 * to account for the data rate-based scaling done by the 82072 and 82077
 * FDC types.  This parameter is ignored for other types of FDCs (i.e.
 * 8272a).
 *
 * Note that changing the data transfer rate has a (probably deleterious)
 * effect on the parameters subject to scaling for 82072/82077 FDCs, so
 * fdc_specify is called again after each data transfer rate
 * change.
 *
 * srt: 1000 to 16000 in microseconds
 * hut: 16 to 240 milliseconds
 * hlt: 2 to 254 milliseconds
 *
 * These values are rounded up to the next highest available delay time.
 */
static void fdc_specify(void)
{
      unsigned char spec1, spec2;
      unsigned long srt, hlt, hut;
      unsigned long dtr = NOMINAL_DTR;
      unsigned long scale_dtr = NOMINAL_DTR;
      int hlt_max_code = 0x7f;
      int hut_max_code = 0xf;

      if (FDCS->need_configure && FDCS->version >= FDC_82072A) {
            fdc_configure();
            FDCS->need_configure = 0;
            /*DPRINT("FIFO enabled\n"); */
      }

      switch (raw_cmd->rate & 0x03) {
      case 3:
            dtr = 1000;
            break;
      case 1:
            dtr = 300;
            if (FDCS->version >= FDC_82078) {
                  /* chose the default rate table, not the one
                   * where 1 = 2 Mbps */
                  output_byte(FD_DRIVESPEC);
                  if (need_more_output() == MORE_OUTPUT) {
                        output_byte(UNIT(current_drive));
                        output_byte(0xc0);
                  }
            }
            break;
      case 2:
            dtr = 250;
            break;
      }

      if (FDCS->version >= FDC_82072) {
            scale_dtr = dtr;
            hlt_max_code = 0x00;    /* 0==256msec*dtr0/dtr (not linear!) */
            hut_max_code = 0x0;     /* 0==256msec*dtr0/dtr (not linear!) */
      }

      /* Convert step rate from microseconds to milliseconds and 4 bits */
      srt = 16 - (DP->srt * scale_dtr / 1000 + NOMINAL_DTR - 1) / NOMINAL_DTR;
      if (slow_floppy) {
            srt = srt / 4;
      }
      SUPBOUND(srt, 0xf);
      INFBOUND(srt, 0);

      hlt = (DP->hlt * scale_dtr / 2 + NOMINAL_DTR - 1) / NOMINAL_DTR;
      if (hlt < 0x01)
            hlt = 0x01;
      else if (hlt > 0x7f)
            hlt = hlt_max_code;

      hut = (DP->hut * scale_dtr / 16 + NOMINAL_DTR - 1) / NOMINAL_DTR;
      if (hut < 0x1)
            hut = 0x1;
      else if (hut > 0xf)
            hut = hut_max_code;

      spec1 = (srt << 4) | hut;
      spec2 = (hlt << 1) | (use_virtual_dma & 1);

      /* If these parameters did not change, just return with success */
      if (FDCS->spec1 != spec1 || FDCS->spec2 != spec2) {
            /* Go ahead and set spec1 and spec2 */
            output_byte(FD_SPECIFY);
            output_byte(FDCS->spec1 = spec1);
            output_byte(FDCS->spec2 = spec2);
      }
}                       /* fdc_specify */

/* Set the FDC's data transfer rate on behalf of the specified drive.
 * NOTE: with 82072/82077 FDCs, changing the data rate requires a reissue
 * of the specify command (i.e. using the fdc_specify function).
 */
static int fdc_dtr(void)
{
      /* If data rate not already set to desired value, set it. */
      if ((raw_cmd->rate & 3) == FDCS->dtr)
            return 0;

      /* Set dtr */
      fd_outb(raw_cmd->rate & 3, FD_DCR);

      /* TODO: some FDC/drive combinations (C&T 82C711 with TEAC 1.2MB)
       * need a stabilization period of several milliseconds to be
       * enforced after data rate changes before R/W operations.
       * Pause 5 msec to avoid trouble. (Needs to be 2 jiffies)
       */
      FDCS->dtr = raw_cmd->rate & 3;
      return (fd_wait_for_completion(jiffies + 2UL * HZ / 100,
                               (timeout_fn) floppy_ready));
}                       /* fdc_dtr */

static void tell_sector(void)
{
      printk(": track %d, head %d, sector %d, size %d",
             R_TRACK, R_HEAD, R_SECTOR, R_SIZECODE);
}                       /* tell_sector */

/*
 * OK, this error interpreting routine is called after a
 * DMA read/write has succeeded
 * or failed, so we check the results, and copy any buffers.
 * hhb: Added better error reporting.
 * ak: Made this into a separate routine.
 */
static int interpret_errors(void)
{
      char bad;

      if (inr != 7) {
            DPRINT("-- FDC reply error");
            FDCS->reset = 1;
            return 1;
      }

      /* check IC to find cause of interrupt */
      switch (ST0 & ST0_INTR) {
      case 0x40:        /* error occurred during command execution */
            if (ST1 & ST1_EOC)
                  return 0;   /* occurs with pseudo-DMA */
            bad = 1;
            if (ST1 & ST1_WP) {
                  DPRINT("Drive is write protected\n");
                  CLEARF(FD_DISK_WRITABLE);
                  cont->done(0);
                  bad = 2;
            } else if (ST1 & ST1_ND) {
                  SETF(FD_NEED_TWADDLE);
            } else if (ST1 & ST1_OR) {
                  if (DP->flags & FTD_MSG)
                        DPRINT("Over/Underrun - retrying\n");
                  bad = 0;
            } else if (*errors >= DP->max_errors.reporting) {
                  DPRINT("");
                  if (ST0 & ST0_ECE) {
                        printk("Recalibrate failed!");
                  } else if (ST2 & ST2_CRC) {
                        printk("data CRC error");
                        tell_sector();
                  } else if (ST1 & ST1_CRC) {
                        printk("CRC error");
                        tell_sector();
                  } else if ((ST1 & (ST1_MAM | ST1_ND))
                           || (ST2 & ST2_MAM)) {
                        if (!probing) {
                              printk("sector not found");
                              tell_sector();
                        } else
                              printk("probe failed...");
                  } else if (ST2 & ST2_WC) {    /* seek error */
                        printk("wrong cylinder");
                  } else if (ST2 & ST2_BC) {    /* cylinder marked as bad */
                        printk("bad cylinder");
                  } else {
                        printk
                            ("unknown error. ST[0..2] are: 0x%x 0x%x 0x%x",
                             ST0, ST1, ST2);
                        tell_sector();
                  }
                  printk("\n");

            }
            if (ST2 & ST2_WC || ST2 & ST2_BC)
                  /* wrong cylinder => recal */
                  DRS->track = NEED_2_RECAL;
            return bad;
      case 0x80:        /* invalid command given */
            DPRINT("Invalid FDC command given!\n");
            cont->done(0);
            return 2;
      case 0xc0:
            DPRINT("Abnormal termination caused by polling\n");
            cont->error();
            return 2;
      default:          /* (0) Normal command termination */
            return 0;
      }
}

/*
 * This routine is called when everything should be correctly set up
 * for the transfer (i.e. floppy motor is on, the correct floppy is
 * selected, and the head is sitting on the right track).
 */
static void setup_rw_floppy(void)
{
      int i, r, flags, dflags;
      unsigned long ready_date;
      timeout_fn function;

      flags = raw_cmd->flags;
      if (flags & (FD_RAW_READ | FD_RAW_WRITE))
            flags |= FD_RAW_INTR;

      if ((flags & FD_RAW_SPIN) && !(flags & FD_RAW_NO_MOTOR)) {
            ready_date = DRS->spinup_date + DP->spinup;
            /* If spinup will take a long time, rerun scandrives
             * again just before spinup completion. Beware that
             * after scandrives, we must again wait for selection.
             */
            if (time_after(ready_date, jiffies + DP->select_delay)) {
                  ready_date -= DP->select_delay;
                  function = (timeout_fn) floppy_start;
            } else
                  function = (timeout_fn) setup_rw_floppy;

            /* wait until the floppy is spinning fast enough */
            if (fd_wait_for_completion(ready_date, function))
                  return;
      }
      dflags = DRS->flags;

      if ((flags & FD_RAW_READ) || (flags & FD_RAW_WRITE))
            setup_DMA();

      if (flags & FD_RAW_INTR)
            do_floppy = main_command_interrupt;

      r = 0;
      for (i = 0; i < raw_cmd->cmd_count; i++)
            r |= output_byte(raw_cmd->cmd[i]);

      debugt("rw_command: ");

      if (r) {
            cont->error();
            reset_fdc();
            return;
      }

      if (!(flags & FD_RAW_INTR)) {
            inr = result();
            cont->interrupt();
      } else if (flags & FD_RAW_NEED_DISK)
            fd_watchdog();
}

static int blind_seek;

/*
 * This is the routine called after every seek (or recalibrate) interrupt
 * from the floppy controller.
 */
static void seek_interrupt(void)
{
      debugt("seek interrupt:");
      if (inr != 2 || (ST0 & 0xF8) != 0x20) {
            DPRINT("seek failed\n");
            DRS->track = NEED_2_RECAL;
            cont->error();
            cont->redo();
            return;
      }
      if (DRS->track >= 0 && DRS->track != ST1 && !blind_seek) {
#ifdef DCL_DEBUG
            if (DP->flags & FD_DEBUG) {
                  DPRINT
                      ("clearing NEWCHANGE flag because of effective seek\n");
                  DPRINT("jiffies=%lu\n", jiffies);
            }
#endif
            CLEARF(FD_DISK_NEWCHANGE);    /* effective seek */
            DRS->select_date = jiffies;
      }
      DRS->track = ST1;
      floppy_ready();
}

static void check_wp(void)
{
      if (TESTF(FD_VERIFY)) {
            /* check write protection */
            output_byte(FD_GETSTATUS);
            output_byte(UNIT(current_drive));
            if (result() != 1) {
                  FDCS->reset = 1;
                  return;
            }
            CLEARF(FD_VERIFY);
            CLEARF(FD_NEED_TWADDLE);
#ifdef DCL_DEBUG
            if (DP->flags & FD_DEBUG) {
                  DPRINT("checking whether disk is write protected\n");
                  DPRINT("wp=%x\n", ST3 & 0x40);
            }
#endif
            if (!(ST3 & 0x40))
                  SETF(FD_DISK_WRITABLE);
            else
                  CLEARF(FD_DISK_WRITABLE);
      }
}

static void seek_floppy(void)
{
      int track;

      blind_seek = 0;

#ifdef DCL_DEBUG
      if (DP->flags & FD_DEBUG) {
            DPRINT("calling disk change from seek\n");
      }
#endif

      if (!TESTF(FD_DISK_NEWCHANGE) &&
          disk_change(current_drive) && (raw_cmd->flags & FD_RAW_NEED_DISK)) {
            /* the media changed flag should be cleared after the seek.
             * If it isn't, this means that there is really no disk in
             * the drive.
             */
            SETF(FD_DISK_CHANGED);
            cont->done(0);
            cont->redo();
            return;
      }
      if (DRS->track <= NEED_1_RECAL) {
            recalibrate_floppy();
            return;
      } else if (TESTF(FD_DISK_NEWCHANGE) &&
               (raw_cmd->flags & FD_RAW_NEED_DISK) &&
               (DRS->track <= NO_TRACK || DRS->track == raw_cmd->track)) {
            /* we seek to clear the media-changed condition. Does anybody
             * know a more elegant way, which works on all drives? */
            if (raw_cmd->track)
                  track = raw_cmd->track - 1;
            else {
                  if (DP->flags & FD_SILENT_DCL_CLEAR) {
                        set_dor(fdc, ~(0x10 << UNIT(current_drive)), 0);
                        blind_seek = 1;
                        raw_cmd->flags |= FD_RAW_NEED_SEEK;
                  }
                  track = 1;
            }
      } else {
            check_wp();
            if (raw_cmd->track != DRS->track &&
                (raw_cmd->flags & FD_RAW_NEED_SEEK))
                  track = raw_cmd->track;
            else {
                  setup_rw_floppy();
                  return;
            }
      }

      do_floppy = seek_interrupt;
      output_byte(FD_SEEK);
      output_byte(UNIT(current_drive));
      LAST_OUT(track);
      debugt("seek command:");
}

static void recal_interrupt(void)
{
      debugt("recal interrupt:");
      if (inr != 2)
            FDCS->reset = 1;
      else if (ST0 & ST0_ECE) {
            switch (DRS->track) {
            case NEED_1_RECAL:
                  debugt("recal interrupt need 1 recal:");
                  /* after a second recalibrate, we still haven't
                   * reached track 0. Probably no drive. Raise an
                   * error, as failing immediately might upset
                   * computers possessed by the Devil :-) */
                  cont->error();
                  cont->redo();
                  return;
            case NEED_2_RECAL:
                  debugt("recal interrupt need 2 recal:");
                  /* If we already did a recalibrate,
                   * and we are not at track 0, this
                   * means we have moved. (The only way
                   * not to move at recalibration is to
                   * be already at track 0.) Clear the
                   * new change flag */
#ifdef DCL_DEBUG
                  if (DP->flags & FD_DEBUG) {
                        DPRINT
                            ("clearing NEWCHANGE flag because of second recalibrate\n");
                  }
#endif

                  CLEARF(FD_DISK_NEWCHANGE);
                  DRS->select_date = jiffies;
                  /* fall through */
            default:
                  debugt("recal interrupt default:");
                  /* Recalibrate moves the head by at
                   * most 80 steps. If after one
                   * recalibrate we don't have reached
                   * track 0, this might mean that we
                   * started beyond track 80.  Try
                   * again.  */
                  DRS->track = NEED_1_RECAL;
                  break;
            }
      } else
            DRS->track = ST1;
      floppy_ready();
}

static void print_result(char *message, int inr)
{
      int i;

      DPRINT("%s ", message);
      if (inr >= 0)
            for (i = 0; i < inr; i++)
                  printk("repl[%d]=%x ", i, reply_buffer[i]);
      printk("\n");
}

/* interrupt handler. Note that this can be called externally on the Sparc */
irqreturn_t floppy_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
      void (*handler) (void) = do_floppy;
      int do_print;
      unsigned long f;

      lasthandler = handler;
      interruptjiffies = jiffies;

      f = claim_dma_lock();
      fd_disable_dma();
      release_dma_lock(f);

      floppy_enable_hlt();
      do_floppy = NULL;
      if (fdc >= N_FDC || FDCS->address == -1) {
            /* we don't even know which FDC is the culprit */
            printk("DOR0=%x\n", fdc_state[0].dor);
            printk("floppy interrupt on bizarre fdc %d\n", fdc);
            printk("handler=%p\n", handler);
            is_alive("bizarre fdc");
            return IRQ_NONE;
      }

      FDCS->reset = 0;
      /* We have to clear the reset flag here, because apparently on boxes
       * with level triggered interrupts (PS/2, Sparc, ...), it is needed to
       * emit SENSEI's to clear the interrupt line. And FDCS->reset blocks the
       * emission of the SENSEI's.
       * It is OK to emit floppy commands because we are in an interrupt
       * handler here, and thus we have to fear no interference of other
       * activity.
       */

      do_print = !handler && print_unex && !initialising;

      inr = result();
      if (do_print)
            print_result("unexpected interrupt", inr);
      if (inr == 0) {
            int max_sensei = 4;
            do {
                  output_byte(FD_SENSEI);
                  inr = result();
                  if (do_print)
                        print_result("sensei", inr);
                  max_sensei--;
            } while ((ST0 & 0x83) != UNIT(current_drive) && inr == 2
                   && max_sensei);
      }
      if (!handler) {
            FDCS->reset = 1;
            return IRQ_NONE;
      }
      schedule_bh(handler);
      is_alive("normal interrupt end");

      /* FIXME! Was it really for us? */
      return IRQ_HANDLED;
}

static void recalibrate_floppy(void)
{
      debugt("recalibrate floppy:");
      do_floppy = recal_interrupt;
      output_byte(FD_RECALIBRATE);
      LAST_OUT(UNIT(current_drive));
}

/*
 * Must do 4 FD_SENSEIs after reset because of ``drive polling''.
 */
static void reset_interrupt(void)
{
      debugt("reset interrupt:");
      result();         /* get the status ready for set_fdc */
      if (FDCS->reset) {
            printk("reset set in interrupt, calling %p\n", cont->error);
            cont->error();    /* a reset just after a reset. BAD! */
      }
      cont->redo();
}

/*
 * reset is done by pulling bit 2 of DOR low for a while (old FDCs),
 * or by setting the self clearing bit 7 of STATUS (newer FDCs)
 */
static void reset_fdc(void)
{
      unsigned long flags;

      do_floppy = reset_interrupt;
      FDCS->reset = 0;
      reset_fdc_info(0);

      /* Pseudo-DMA may intercept 'reset finished' interrupt.  */
      /* Irrelevant for systems with true DMA (i386).          */

      flags = claim_dma_lock();
      fd_disable_dma();
      release_dma_lock(flags);

      if (FDCS->version >= FDC_82072A)
            fd_outb(0x80 | (FDCS->dtr & 3), FD_STATUS);
      else {
            fd_outb(FDCS->dor & ~0x04, FD_DOR);
            udelay(FD_RESET_DELAY);
            fd_outb(FDCS->dor, FD_DOR);
      }
}

static void show_floppy(void)
{
      int i;

      printk("\n");
      printk("floppy driver state\n");
      printk("-------------------\n");
      printk("now=%lu last interrupt=%lu diff=%lu last called handler=%p\n",
             jiffies, interruptjiffies, jiffies - interruptjiffies,
             lasthandler);

#ifdef FLOPPY_SANITY_CHECK
      printk("timeout_message=%s\n", timeout_message);
      printk("last output bytes:\n");
      for (i = 0; i < OLOGSIZE; i++)
            printk("%2x %2x %lu\n",
                   output_log[(i + output_log_pos) % OLOGSIZE].data,
                   output_log[(i + output_log_pos) % OLOGSIZE].status,
                   output_log[(i + output_log_pos) % OLOGSIZE].jiffies);
      printk("last result at %lu\n", resultjiffies);
      printk("last redo_fd_request at %lu\n", lastredo);
      for (i = 0; i < resultsize; i++) {
            printk("%2x ", reply_buffer[i]);
      }
      printk("\n");
#endif

      printk("status=%x\n", fd_inb(FD_STATUS));
      printk("fdc_busy=%lu\n", fdc_busy);
      if (do_floppy)
            printk("do_floppy=%p\n", do_floppy);
      if (floppy_work.pending)
            printk("floppy_work.func=%p\n", floppy_work.func);
      if (timer_pending(&fd_timer))
            printk("fd_timer.function=%p\n", fd_timer.function);
      if (timer_pending(&fd_timeout)) {
            printk("timer_function=%p\n", fd_timeout.function);
            printk("expires=%lu\n", fd_timeout.expires - jiffies);
            printk("now=%lu\n", jiffies);
      }
      printk("cont=%p\n", cont);
      printk("current_req=%p\n", current_req);
      printk("command_status=%d\n", command_status);
      printk("\n");
}

static void floppy_shutdown(unsigned long data)
{
      unsigned long flags;

      if (!initialising)
            show_floppy();
      cancel_activity();

      floppy_enable_hlt();

      flags = claim_dma_lock();
      fd_disable_dma();
      release_dma_lock(flags);

      /* avoid dma going to a random drive after shutdown */

      if (!initialising)
            DPRINT("floppy timeout called\n");
      FDCS->reset = 1;
      if (cont) {
            cont->done(0);
            cont->redo();     /* this will recall reset when needed */
      } else {
            printk("no cont in shutdown!\n");
            process_fd_request();
      }
      is_alive("floppy shutdown");
}

/*typedef void (*timeout_fn)(unsigned long);*/

/* start motor, check media-changed condition and write protection */
static int start_motor(void (*function) (void))
{
      int mask, data;

      mask = 0xfc;
      data = UNIT(current_drive);
      if (!(raw_cmd->flags & FD_RAW_NO_MOTOR)) {
            if (!(FDCS->dor & (0x10 << UNIT(current_drive)))) {
                  set_debugt();
                  /* no read since this drive is running */
                  DRS->first_read_date = 0;
                  /* note motor start time if motor is not yet running */
                  DRS->spinup_date = jiffies;
                  data |= (0x10 << UNIT(current_drive));
            }
      } else if (FDCS->dor & (0x10 << UNIT(current_drive)))
            mask &= ~(0x10 << UNIT(current_drive));

      /* starts motor and selects floppy */
      del_timer(motor_off_timer + current_drive);
      set_dor(fdc, mask, data);

      /* wait_for_completion also schedules reset if needed. */
      return (fd_wait_for_completion(DRS->select_date + DP->select_delay,
                               (timeout_fn) function));
}

static void floppy_ready(void)
{
      CHECK_RESET;
      if (start_motor(floppy_ready))
            return;
      if (fdc_dtr())
            return;

#ifdef DCL_DEBUG
      if (DP->flags & FD_DEBUG) {
            DPRINT("calling disk change from floppy_ready\n");
      }
#endif
      if (!(raw_cmd->flags & FD_RAW_NO_MOTOR) &&
          disk_change(current_drive) && !DP->select_delay)
            twaddle();  /* this clears the dcl on certain drive/controller
                         * combinations */

#ifdef fd_chose_dma_mode
      if ((raw_cmd->flags & FD_RAW_READ) || (raw_cmd->flags & FD_RAW_WRITE)) {
            unsigned long flags = claim_dma_lock();
            fd_chose_dma_mode(raw_cmd->kernel_data, raw_cmd->length);
            release_dma_lock(flags);
      }
#endif

      if (raw_cmd->flags & (FD_RAW_NEED_SEEK | FD_RAW_NEED_DISK)) {
            perpendicular_mode();
            fdc_specify();    /* must be done here because of hut, hlt ... */
            seek_floppy();
      } else {
            if ((raw_cmd->flags & FD_RAW_READ) ||
                (raw_cmd->flags & FD_RAW_WRITE))
                  fdc_specify();
            setup_rw_floppy();
      }
}

static void floppy_start(void)
{
      reschedule_timeout(current_reqD, "floppy start", 0);

      scandrives();
#ifdef DCL_DEBUG
      if (DP->flags & FD_DEBUG) {
            DPRINT("setting NEWCHANGE in floppy_start\n");
      }
#endif
      SETF(FD_DISK_NEWCHANGE);
      floppy_ready();
}

/*
 * ========================================================================
 * here ends the bottom half. Exported routines are:
 * floppy_start, floppy_off, floppy_ready, lock_fdc, unlock_fdc, set_fdc,
 * start_motor, reset_fdc, reset_fdc_info, interpret_errors.
 * Initialization also uses output_byte, result, set_dor, floppy_interrupt
 * and set_dor.
 * ========================================================================
 */
/*
 * General purpose continuations.
 * ==============================
 */

static void do_wakeup(void)
{
      reschedule_timeout(MAXTIMEOUT, "do wakeup", 0);
      cont = NULL;
      command_status += 2;
      wake_up(&command_done);
}

static struct cont_t wakeup_cont = {
      .interrupt  = empty,
      .redo       = do_wakeup,
      .error            = empty,
      .done       = (done_f) empty
};

static struct cont_t intr_cont = {
      .interrupt  = empty,
      .redo       = process_fd_request,
      .error            = empty,
      .done       = (done_f) empty
};

static int wait_til_done(void (*handler) (void), int interruptible)
{
      int ret;

      schedule_bh(handler);

      if (command_status < 2 && NO_SIGNAL) {
            DECLARE_WAITQUEUE(wait, current);

            add_wait_queue(&command_done, &wait);
            for (;;) {
                  set_current_state(interruptible ?
                                TASK_INTERRUPTIBLE :
                                TASK_UNINTERRUPTIBLE);

                  if (command_status >= 2 || !NO_SIGNAL)
                        break;

                  is_alive("wait_til_done");

                  schedule();
            }

            set_current_state(TASK_RUNNING);
            remove_wait_queue(&command_done, &wait);
      }

      if (command_status < 2) {
            cancel_activity();
            cont = &intr_cont;
            reset_fdc();
            return -EINTR;
      }

      if (FDCS->reset)
            command_status = FD_COMMAND_ERROR;
      if (command_status == FD_COMMAND_OKAY)
            ret = 0;
      else
            ret = -EIO;
      command_status = FD_COMMAND_NONE;
      return ret;
}

static void generic_done(int result)
{
      command_status = result;
      cont = &wakeup_cont;
}

static void generic_success(void)
{
      cont->done(1);
}

static void generic_failure(void)
{
      cont->done(0);
}

static void success_and_wakeup(void)
{
      generic_success();
      cont->redo();
}

/*
 * formatting and rw support.
 * ==========================
 */

static int next_valid_format(void)
{
      int probed_format;

      probed_format = DRS->probed_format;
      while (1) {
            if (probed_format >= 8 || !DP->autodetect[probed_format]) {
                  DRS->probed_format = 0;
                  return 1;
            }
            if (floppy_type[DP->autodetect[probed_format]].sect) {
                  DRS->probed_format = probed_format;
                  return 0;
            }
            probed_format++;
      }
}

static void bad_flp_intr(void)
{
      int err_count;

      if (probing) {
            DRS->probed_format++;
            if (!next_valid_format())
                  return;
      }
      err_count = ++(*errors);
      INFBOUND(DRWE->badness, err_count);
      if (err_count > DP->max_errors.abort)
            cont->done(0);
      if (err_count > DP->max_errors.reset)
            FDCS->reset = 1;
      else if (err_count > DP->max_errors.recal)
            DRS->track = NEED_2_RECAL;
}

static void set_floppy(int drive)
{
      int type = ITYPE(UDRS->fd_device);
      if (type)
            _floppy = floppy_type + type;
      else
            _floppy = current_type[drive];
}

/*
 * formatting support.
 * ===================
 */
static void format_interrupt(void)
{
      switch (interpret_errors()) {
      case 1:
            cont->error();
      case 2:
            break;
      case 0:
            cont->done(1);
      }
      cont->redo();
}

#define CODE2SIZE (ssize = ((1 << SIZECODE) + 3) >> 2)
#define FM_MODE(x,y) ((y) & ~(((x)->rate & 0x80) >>1))
#define CT(x) ((x) | 0xc0)
static void setup_format_params(int track)
{
      struct fparm {
            unsigned char track, head, sect, size;
      } *here = (struct fparm *)floppy_track_buffer;
      int il, n;
      int count, head_shift, track_shift;

      raw_cmd = &default_raw_cmd;
      raw_cmd->track = track;

      raw_cmd->flags = FD_RAW_WRITE | FD_RAW_INTR | FD_RAW_SPIN |
          FD_RAW_NEED_DISK | FD_RAW_NEED_SEEK;
      raw_cmd->rate = _floppy->rate & 0x43;
      raw_cmd->cmd_count = NR_F;
      COMMAND = FM_MODE(_floppy, FD_FORMAT);
      DR_SELECT = UNIT(current_drive) + PH_HEAD(_floppy, format_req.head);
      F_SIZECODE = FD_SIZECODE(_floppy);
      F_SECT_PER_TRACK = _floppy->sect << 2 >> F_SIZECODE;
      F_GAP = _floppy->fmt_gap;
      F_FILL = FD_FILL_BYTE;

      raw_cmd->kernel_data = floppy_track_buffer;
      raw_cmd->length = 4 * F_SECT_PER_TRACK;

      /* allow for about 30ms for data transport per track */
      head_shift = (F_SECT_PER_TRACK + 5) / 6;

      /* a ``cylinder'' is two tracks plus a little stepping time */
      track_shift = 2 * head_shift + 3;

      /* position of logical sector 1 on this track */
      n = (track_shift * format_req.track + head_shift * format_req.head)
          % F_SECT_PER_TRACK;

      /* determine interleave */
      il = 1;
      if (_floppy->fmt_gap < 0x22)
            il++;

      /* initialize field */
      for (count = 0; count < F_SECT_PER_TRACK; ++count) {
            here[count].track = format_req.track;
            here[count].head = format_req.head;
            here[count].sect = 0;
            here[count].size = F_SIZECODE;
      }
      /* place logical sectors */
      for (count = 1; count <= F_SECT_PER_TRACK; ++count) {
            here[n].sect = count;
            n = (n + il) % F_SECT_PER_TRACK;
            if (here[n].sect) {     /* sector busy, find next free sector */
                  ++n;
                  if (n >= F_SECT_PER_TRACK) {
                        n -= F_SECT_PER_TRACK;
                        while (here[n].sect)
                              ++n;
                  }
            }
      }
      if (_floppy->stretch & FD_ZEROBASED) {
            for (count = 0; count < F_SECT_PER_TRACK; count++)
                  here[count].sect--;
      }
}

static void redo_format(void)
{
      buffer_track = -1;
      setup_format_params(format_req.track << STRETCH(_floppy));
      floppy_start();
      debugt("queue format request");
}

static struct cont_t format_cont = {
      .interrupt  = format_interrupt,
      .redo       = redo_format,
      .error            = bad_flp_intr,
      .done       = generic_done
};

static int do_format(int drive, struct format_descr *tmp_format_req)
{
      int ret;

      LOCK_FDC(drive, 1);
      set_floppy(drive);
      if (!_floppy ||
          _floppy->track > DP->tracks ||
          tmp_format_req->track >= _floppy->track ||
          tmp_format_req->head >= _floppy->head ||
          (_floppy->sect << 2) % (1 << FD_SIZECODE(_floppy)) ||
          !_floppy->fmt_gap) {
            process_fd_request();
            return -EINVAL;
      }
      format_req = *tmp_format_req;
      format_errors = 0;
      cont = &format_cont;
      errors = &format_errors;
      IWAIT(redo_format);
      process_fd_request();
      return ret;
}

/*
 * Buffer read/write and support
 * =============================
 */

static void floppy_end_request(struct request *req, int uptodate)
{
      unsigned int nr_sectors = current_count_sectors;

      /* current_count_sectors can be zero if transfer failed */
      if (!uptodate)
            nr_sectors = req->current_nr_sectors;
      if (end_that_request_first(req, uptodate, nr_sectors))
            return;
      add_disk_randomness(req->rq_disk);
      floppy_off((long)req->rq_disk->private_data);
      blkdev_dequeue_request(req);
      end_that_request_last(req, uptodate);

      /* We're done with the request */
      current_req = NULL;
}

/* new request_done. Can handle physical sectors which are smaller than a
 * logical buffer */
static void request_done(int uptodate)
{
      struct request_queue *q = floppy_queue;
      struct request *req = current_req;
      unsigned long flags;
      int block;

      probing = 0;
      reschedule_timeout(MAXTIMEOUT, "request done %d", uptodate);

      if (!req) {
            printk("floppy.c: no request in request_done\n");
            return;
      }

      if (uptodate) {
            /* maintain values for invalidation on geometry
             * change */
            block = current_count_sectors + req->sector;
            INFBOUND(DRS->maxblock, block);
            if (block > _floppy->sect)
                  DRS->maxtrack = 1;

            /* unlock chained buffers */
            spin_lock_irqsave(q->queue_lock, flags);
            floppy_end_request(req, 1);
            spin_unlock_irqrestore(q->queue_lock, flags);
      } else {
            if (rq_data_dir(req) == WRITE) {
                  /* record write error information */
                  DRWE->write_errors++;
                  if (DRWE->write_errors == 1) {
                        DRWE->first_error_sector = req->sector;
                        DRWE->first_error_generation = DRS->generation;
                  }
                  DRWE->last_error_sector = req->sector;
                  DRWE->last_error_generation = DRS->generation;
            }
            spin_lock_irqsave(q->queue_lock, flags);
            floppy_end_request(req, 0);
            spin_unlock_irqrestore(q->queue_lock, flags);
      }
}

/* Interrupt handler evaluating the result of the r/w operation */
static void rw_interrupt(void)
{
      int nr_sectors, ssize, eoc, heads;

      if (R_HEAD >= 2) {
            /* some Toshiba floppy controllers occasionnally seem to
             * return bogus interrupts after read/write operations, which
             * can be recognized by a bad head number (>= 2) */
            return;
      }

      if (!DRS->first_read_date)
            DRS->first_read_date = jiffies;

      nr_sectors = 0;
      CODE2SIZE;

      if (ST1 & ST1_EOC)
            eoc = 1;
      else
            eoc = 0;

      if (COMMAND & 0x80)
            heads = 2;
      else
            heads = 1;

      nr_sectors = (((R_TRACK - TRACK) * heads +
                   R_HEAD - HEAD) * SECT_PER_TRACK +
                  R_SECTOR - SECTOR + eoc) << SIZECODE >> 2;

#ifdef FLOPPY_SANITY_CHECK
      if (nr_sectors / ssize >
          (in_sector_offset + current_count_sectors + ssize - 1) / ssize) {
            DPRINT("long rw: %x instead of %lx\n",
                   nr_sectors, current_count_sectors);
            printk("rs=%d s=%d\n", R_SECTOR, SECTOR);
            printk("rh=%d h=%d\n", R_HEAD, HEAD);
            printk("rt=%d t=%d\n", R_TRACK, TRACK);
            printk("heads=%d eoc=%d\n", heads, eoc);
            printk("spt=%d st=%d ss=%d\n", SECT_PER_TRACK,
                   fsector_t, ssize);
            printk("in_sector_offset=%d\n", in_sector_offset);
      }
#endif

      nr_sectors -= in_sector_offset;
      INFBOUND(nr_sectors, 0);
      SUPBOUND(current_count_sectors, nr_sectors);

      switch (interpret_errors()) {
      case 2:
            cont->redo();
            return;
      case 1:
            if (!current_count_sectors) {
                  cont->error();
                  cont->redo();
                  return;
            }
            break;
      case 0:
            if (!current_count_sectors) {
                  cont->redo();
                  return;
            }
            current_type[current_drive] = _floppy;
            floppy_sizes[TOMINOR(current_drive)] = _floppy->size;
            break;
      }

      if (probing) {
            if (DP->flags & FTD_MSG)
                  DPRINT("Auto-detected floppy type %s in fd%d\n",
                         _floppy->name, current_drive);
            current_type[current_drive] = _floppy;
            floppy_sizes[TOMINOR(current_drive)] = _floppy->size;
            probing = 0;
      }

      if (CT(COMMAND) != FD_READ ||
          raw_cmd->kernel_data == current_req->buffer) {
            /* transfer directly from buffer */
            cont->done(1);
      } else if (CT(COMMAND) == FD_READ) {
            buffer_track = raw_cmd->track;
            buffer_drive = current_drive;
            INFBOUND(buffer_max, nr_sectors + fsector_t);
      }
      cont->redo();
}

/* Compute maximal contiguous buffer size. */
static int buffer_chain_size(void)
{
      struct bio *bio;
      struct bio_vec *bv;
      int size, i;
      char *base;

      base = bio_data(current_req->bio);
      size = 0;

      rq_for_each_bio(bio, current_req) {
            bio_for_each_segment(bv, bio, i) {
                  if (page_address(bv->bv_page) + bv->bv_offset !=
                      base + size)
                        break;

                  size += bv->bv_len;
            }
      }

      return size >> 9;
}

/* Compute the maximal transfer size */
static int transfer_size(int ssize, int max_sector, int max_size)
{
      SUPBOUND(max_sector, fsector_t + max_size);

      /* alignment */
      max_sector -= (max_sector % _floppy->sect) % ssize;

      /* transfer size, beginning not aligned */
      current_count_sectors = max_sector - fsector_t;

      return max_sector;
}

/*
 * Move data from/to the track buffer to/from the buffer cache.
 */
static void copy_buffer(int ssize, int max_sector, int max_sector_2)
{
      int remaining;          /* number of transferred 512-byte sectors */
      struct bio_vec *bv;
      struct bio *bio;
      char *buffer, *dma_buffer;
      int size, i;

      max_sector = transfer_size(ssize,
                           min(max_sector, max_sector_2),
                           current_req->nr_sectors);

      if (current_count_sectors <= 0 && CT(COMMAND) == FD_WRITE &&
          buffer_max > fsector_t + current_req->nr_sectors)
            current_count_sectors = min_t(int, buffer_max - fsector_t,
                                    current_req->nr_sectors);

      remaining = current_count_sectors << 9;
#ifdef FLOPPY_SANITY_CHECK
      if ((remaining >> 9) > current_req->nr_sectors &&
          CT(COMMAND) == FD_WRITE) {
            DPRINT("in copy buffer\n");
            printk("current_count_sectors=%ld\n", current_count_sectors);
            printk("remaining=%d\n", remaining >> 9);
            printk("current_req->nr_sectors=%ld\n",
                   current_req->nr_sectors);
            printk("current_req->current_nr_sectors=%u\n",
                   current_req->current_nr_sectors);
            printk("max_sector=%d\n", max_sector);
            printk("ssize=%d\n", ssize);
      }
#endif

      buffer_max = max(max_sector, buffer_max);

      dma_buffer = floppy_track_buffer + ((fsector_t - buffer_min) << 9);

      size = current_req->current_nr_sectors << 9;

      rq_for_each_bio(bio, current_req) {
            bio_for_each_segment(bv, bio, i) {
                  if (!remaining)
                        break;

                  size = bv->bv_len;
                  SUPBOUND(size, remaining);

                  buffer = page_address(bv->bv_page) + bv->bv_offset;
#ifdef FLOPPY_SANITY_CHECK
                  if (dma_buffer + size >
                      floppy_track_buffer + (max_buffer_sectors << 10) ||
                      dma_buffer < floppy_track_buffer) {
                        DPRINT("buffer overrun in copy buffer %d\n",
                               (int)((floppy_track_buffer -
                                    dma_buffer) >> 9));
                        printk("fsector_t=%d buffer_min=%d\n",
                               fsector_t, buffer_min);
                        printk("current_count_sectors=%ld\n",
                               current_count_sectors);
                        if (CT(COMMAND) == FD_READ)
                              printk("read\n");
                        if (CT(COMMAND) == FD_WRITE)
                              printk("write\n");
                        break;
                  }
                  if (((unsigned long)buffer) % 512)
                        DPRINT("%p buffer not aligned\n", buffer);
#endif
                  if (CT(COMMAND) == FD_READ)
                        memcpy(buffer, dma_buffer, size);
                  else
                        memcpy(dma_buffer, buffer, size);

                  remaining -= size;
                  dma_buffer += size;
            }
      }
#ifdef FLOPPY_SANITY_CHECK
      if (remaining) {
            if (remaining > 0)
                  max_sector -= remaining >> 9;
            DPRINT("weirdness: remaining %d\n", remaining >> 9);
      }
#endif
}

#if 0
static inline int check_dma_crossing(char *start,
                             unsigned long length, char *message)
{
      if (CROSS_64KB(start, length)) {
            printk("DMA xfer crosses 64KB boundary in %s %p-%p\n",
                   message, start, start + length);
            return 1;
      } else
            return 0;
}
#endif

/* work around a bug in pseudo DMA
 * (on some FDCs) pseudo DMA does not stop when the CPU stops
 * sending data.  Hence we need a different way to signal the
 * transfer length:  We use SECT_PER_TRACK.  Unfortunately, this
 * does not work with MT, hence we can only transfer one head at
 * a time
 */
static void virtualdmabug_workaround(void)
{
      int hard_sectors, end_sector;

      if (CT(COMMAND) == FD_WRITE) {
            COMMAND &= ~0x80; /* switch off multiple track mode */

            hard_sectors = raw_cmd->length >> (7 + SIZECODE);
            end_sector = SECTOR + hard_sectors - 1;
#ifdef FLOPPY_SANITY_CHECK
            if (end_sector > SECT_PER_TRACK) {
                  printk("too many sectors %d > %d\n",
                         end_sector, SECT_PER_TRACK);
                  return;
            }
#endif
            SECT_PER_TRACK = end_sector;  /* make sure SECT_PER_TRACK points
                                     * to end of transfer */
      }
}

/*
 * Formulate a read/write request.
 * this routine decides where to load the data (directly to buffer, or to
 * tmp floppy area), how much data to load (the size of the buffer, the whole
 * track, or a single sector)
 * All floppy_track_buffer handling goes in here. If we ever add track buffer
 * allocation on the fly, it should be done here. No other part should need
 * modification.
 */

static int make_raw_rw_request(void)
{
      int aligned_sector_t;
      int max_sector, max_size, tracksize, ssize;

      if (max_buffer_sectors == 0) {
            printk("VFS: Block I/O scheduled on unopened device\n");
            return 0;
      }

      set_fdc((long)current_req->rq_disk->private_data);

      raw_cmd = &default_raw_cmd;
      raw_cmd->flags = FD_RAW_SPIN | FD_RAW_NEED_DISK | FD_RAW_NEED_DISK |
          FD_RAW_NEED_SEEK;
      raw_cmd->cmd_count = NR_RW;
      if (rq_data_dir(current_req) == READ) {
            raw_cmd->flags |= FD_RAW_READ;
            COMMAND = FM_MODE(_floppy, FD_READ);
      } else if (rq_data_dir(current_req) == WRITE) {
            raw_cmd->flags |= FD_RAW_WRITE;
            COMMAND = FM_MODE(_floppy, FD_WRITE);
      } else {
            DPRINT("make_raw_rw_request: unknown command\n");
            return 0;
      }

      max_sector = _floppy->sect * _floppy->head;

      TRACK = (int)current_req->sector / max_sector;
      fsector_t = (int)current_req->sector % max_sector;
      if (_floppy->track && TRACK >= _floppy->track) {
            if (current_req->current_nr_sectors & 1) {
                  current_count_sectors = 1;
                  return 1;
            } else
                  return 0;
      }
      HEAD = fsector_t / _floppy->sect;

      if (((_floppy->stretch & (FD_SWAPSIDES | FD_ZEROBASED)) ||
           TESTF(FD_NEED_TWADDLE)) && fsector_t < _floppy->sect)
            max_sector = _floppy->sect;

      /* 2M disks have phantom sectors on the first track */
      if ((_floppy->rate & FD_2M) && (!TRACK) && (!HEAD)) {
            max_sector = 2 * _floppy->sect / 3;
            if (fsector_t >= max_sector) {
                  current_count_sectors =
                      min_t(int, _floppy->sect - fsector_t,
                          current_req->nr_sectors);
                  return 1;
            }
            SIZECODE = 2;
      } else
            SIZECODE = FD_SIZECODE(_floppy);
      raw_cmd->rate = _floppy->rate & 0x43;
      if ((_floppy->rate & FD_2M) && (TRACK || HEAD) && raw_cmd->rate == 2)
            raw_cmd->rate = 1;

      if (SIZECODE)
            SIZECODE2 = 0xff;
      else
            SIZECODE2 = 0x80;
      raw_cmd->track = TRACK << STRETCH(_floppy);
      DR_SELECT = UNIT(current_drive) + PH_HEAD(_floppy, HEAD);
      GAP = _floppy->gap;
      CODE2SIZE;
      SECT_PER_TRACK = _floppy->sect << 2 >> SIZECODE;
      SECTOR = ((fsector_t % _floppy->sect) << 2 >> SIZECODE) +
          ((_floppy->stretch & FD_ZEROBASED) ? 0 : 1);

      /* tracksize describes the size which can be filled up with sectors
       * of size ssize.
       */
      tracksize = _floppy->sect - _floppy->sect % ssize;
      if (tracksize < _floppy->sect) {
            SECT_PER_TRACK++;
            if (tracksize <= fsector_t % _floppy->sect)
                  SECTOR--;

            /* if we are beyond tracksize, fill up using smaller sectors */
            while (tracksize <= fsector_t % _floppy->sect) {
                  while (tracksize + ssize > _floppy->sect) {
                        SIZECODE--;
                        ssize >>= 1;
                  }
                  SECTOR++;
                  SECT_PER_TRACK++;
                  tracksize += ssize;
            }
            max_sector = HEAD * _floppy->sect + tracksize;
      } else if (!TRACK && !HEAD && !(_floppy->rate & FD_2M) && probing) {
            max_sector = _floppy->sect;
      } else if (!HEAD && CT(COMMAND) == FD_WRITE) {
            /* for virtual DMA bug workaround */
            max_sector = _floppy->sect;
      }

      in_sector_offset = (fsector_t % _floppy->sect) % ssize;
      aligned_sector_t = fsector_t - in_sector_offset;
      max_size = current_req->nr_sectors;
      if ((raw_cmd->track == buffer_track) &&
          (current_drive == buffer_drive) &&
          (fsector_t >= buffer_min) && (fsector_t < buffer_max)) {
            /* data already in track buffer */
            if (CT(COMMAND) == FD_READ) {
                  copy_buffer(1, max_sector, buffer_max);
                  return 1;
            }
      } else if (in_sector_offset || current_req->nr_sectors < ssize) {
            if (CT(COMMAND) == FD_WRITE) {
                  if (fsector_t + current_req->nr_sectors > ssize &&
                      fsector_t + current_req->nr_sectors < ssize + ssize)
                        max_size = ssize + ssize;
                  else
                        max_size = ssize;
            }
            raw_cmd->flags &= ~FD_RAW_WRITE;
            raw_cmd->flags |= FD_RAW_READ;
            COMMAND = FM_MODE(_floppy, FD_READ);
      } else if ((unsigned long)current_req->buffer < MAX_DMA_ADDRESS) {
            unsigned long dma_limit;
            int direct, indirect;

            indirect =
                transfer_size(ssize, max_sector,
                          max_buffer_sectors * 2) - fsector_t;

            /*
             * Do NOT use minimum() here---MAX_DMA_ADDRESS is 64 bits wide
             * on a 64 bit machine!
             */
            max_size = buffer_chain_size();
            dma_limit =
                (MAX_DMA_ADDRESS -
                 ((unsigned long)current_req->buffer)) >> 9;
            if ((unsigned long)max_size > dma_limit) {
                  max_size = dma_limit;
            }
            /* 64 kb boundaries */
            if (CROSS_64KB(current_req->buffer, max_size << 9))
                  max_size = (K_64 -
                            ((unsigned long)current_req->buffer) %
                            K_64) >> 9;
            direct = transfer_size(ssize, max_sector, max_size) - fsector_t;
            /*
             * We try to read tracks, but if we get too many errors, we
             * go back to reading just one sector at a time.
             *
             * This means we should be able to read a sector even if there
             * are other bad sectors on this track.
             */
            if (!direct ||
                (indirect * 2 > direct * 3 &&
                 *errors < DP->max_errors.read_track &&
                 /*!TESTF(FD_NEED_TWADDLE) && */
                 ((!probing
                   || (DP->read_track & (1 << DRS->probed_format)))))) {
                  max_size = current_req->nr_sectors;
            } else {
                  raw_cmd->kernel_data = current_req->buffer;
                  raw_cmd->length = current_count_sectors << 9;
                  if (raw_cmd->length == 0) {
                        DPRINT
                            ("zero dma transfer attempted from make_raw_request\n");
                        DPRINT("indirect=%d direct=%d fsector_t=%d",
                               indirect, direct, fsector_t);
                        return 0;
                  }
/*                check_dma_crossing(raw_cmd->kernel_data, 
                                 raw_cmd->length, 
                                 "end of make_raw_request [1]");*/

                  virtualdmabug_workaround();
                  return 2;
            }
      }

      if (CT(COMMAND) == FD_READ)
            max_size = max_sector;  /* unbounded */

      /* claim buffer track if needed */
      if (buffer_track != raw_cmd->track ||     /* bad track */
          buffer_drive != current_drive ||      /* bad drive */
          fsector_t > buffer_max ||
          fsector_t < buffer_min ||
          ((CT(COMMAND) == FD_READ ||
            (!in_sector_offset && current_req->nr_sectors >= ssize)) &&
           max_sector > 2 * max_buffer_sectors + buffer_min &&
           max_size + fsector_t > 2 * max_buffer_sectors + buffer_min)
          /* not enough space */
          ) {
            buffer_track = -1;
            buffer_drive = current_drive;
            buffer_max = buffer_min = aligned_sector_t;
      }
      raw_cmd->kernel_data = floppy_track_buffer +
          ((aligned_sector_t - buffer_min) << 9);

      if (CT(COMMAND) == FD_WRITE) {
            /* copy write buffer to track buffer.
             * if we get here, we know that the write
             * is either aligned or the data already in the buffer
             * (buffer will be overwritten) */
#ifdef FLOPPY_SANITY_CHECK
            if (in_sector_offset && buffer_track == -1)
                  DPRINT("internal error offset !=0 on write\n");
#endif
            buffer_track = raw_cmd->track;
            buffer_drive = current_drive;
            copy_buffer(ssize, max_sector,
                      2 * max_buffer_sectors + buffer_min);
      } else
            transfer_size(ssize, max_sector,
                        2 * max_buffer_sectors + buffer_min -
                        aligned_sector_t);

      /* round up current_count_sectors to get dma xfer size */
      raw_cmd->length = in_sector_offset + current_count_sectors;
      raw_cmd->length = ((raw_cmd->length - 1) | (ssize - 1)) + 1;
      raw_cmd->length <<= 9;
#ifdef FLOPPY_SANITY_CHECK
      /*check_dma_crossing(raw_cmd->kernel_data, raw_cmd->length, 
         "end of make_raw_request"); */
      if ((raw_cmd->length < current_count_sectors << 9) ||
          (raw_cmd->kernel_data != current_req->buffer &&
           CT(COMMAND) == FD_WRITE &&
           (aligned_sector_t + (raw_cmd->length >> 9) > buffer_max ||
            aligned_sector_t < buffer_min)) ||
          raw_cmd->length % (128 << SIZECODE) ||
          raw_cmd->length <= 0 || current_count_sectors <= 0) {
            DPRINT("fractionary current count b=%lx s=%lx\n",
                   raw_cmd->length, current_count_sectors);
            if (raw_cmd->kernel_data != current_req->buffer)
                  printk("addr=%d, length=%ld\n",
                         (int)((raw_cmd->kernel_data -
                              floppy_track_buffer) >> 9),
                         current_count_sectors);
            printk("st=%d ast=%d mse=%d msi=%d\n",
                   fsector_t, aligned_sector_t, max_sector, max_size);
            printk("ssize=%x SIZECODE=%d\n", ssize, SIZECODE);
            printk("command=%x SECTOR=%d HEAD=%d, TRACK=%d\n",
                   COMMAND, SECTOR, HEAD, TRACK);
            printk("buffer drive=%d\n", buffer_drive);
            printk("buffer track=%d\n", buffer_track);
            printk("buffer_min=%d\n", buffer_min);
            printk("buffer_max=%d\n", buffer_max);
            return 0;
      }

      if (raw_cmd->kernel_data != current_req->buffer) {
            if (raw_cmd->kernel_data < floppy_track_buffer ||
                current_count_sectors < 0 ||
                raw_cmd->length < 0 ||
                raw_cmd->kernel_data + raw_cmd->length >
                floppy_track_buffer + (max_buffer_sectors << 10)) {
                  DPRINT("buffer overrun in schedule dma\n");
                  printk("fsector_t=%d buffer_min=%d current_count=%ld\n",
                         fsector_t, buffer_min, raw_cmd->length >> 9);
                  printk("current_count_sectors=%ld\n",
                         current_count_sectors);
                  if (CT(COMMAND) == FD_READ)
                        printk("read\n");
                  if (CT(COMMAND) == FD_WRITE)
                        printk("write\n");
                  return 0;
            }
      } else if (raw_cmd->length > current_req->nr_sectors << 9 ||
               current_count_sectors > current_req->nr_sectors) {
            DPRINT("buffer overrun in direct transfer\n");
            return 0;
      } else if (raw_cmd->length < current_count_sectors << 9) {
            DPRINT("more sectors than bytes\n");
            printk("bytes=%ld\n", raw_cmd->length >> 9);
            printk("sectors=%ld\n", current_count_sectors);
      }
      if (raw_cmd->length == 0) {
            DPRINT("zero dma transfer attempted from make_raw_request\n");
            return 0;
      }
#endif

      virtualdmabug_workaround();
      return 2;
}

static void redo_fd_request(void)
{
#define REPEAT {request_done(0); continue; }
      int drive;
      int tmp;

      lastredo = jiffies;
      if (current_drive < N_DRIVE)
            floppy_off(current_drive);

      for (;;) {
            if (!current_req) {
                  struct request *req;

                  spin_lock_irq(floppy_queue->queue_lock);
                  req = elv_next_request(floppy_queue);
                  spin_unlock_irq(floppy_queue->queue_lock);
                  if (!req) {
                        do_floppy = NULL;
                        unlock_fdc();
                        return;
                  }
                  current_req = req;
            }
            drive = (long)current_req->rq_disk->private_data;
            set_fdc(drive);
            reschedule_timeout(current_reqD, "redo fd request", 0);

            set_floppy(drive);
            raw_cmd = &default_raw_cmd;
            raw_cmd->flags = 0;
            if (start_motor(redo_fd_request))
                  return;
            disk_change(current_drive);
            if (test_bit(current_drive, &fake_change) ||
                TESTF(FD_DISK_CHANGED)) {
                  DPRINT("disk absent or changed during operation\n");
                  REPEAT;
            }
            if (!_floppy) {   /* Autodetection */
                  if (!probing) {
                        DRS->probed_format = 0;
                        if (next_valid_format()) {
                              DPRINT("no autodetectable formats\n");
                              _floppy = NULL;
                              REPEAT;
                        }
                  }
                  probing = 1;
                  _floppy =
                      floppy_type + DP->autodetect[DRS->probed_format];
            } else
                  probing = 0;
            errors = &(current_req->errors);
            tmp = make_raw_rw_request();
            if (tmp < 2) {
                  request_done(tmp);
                  continue;
            }

            if (TESTF(FD_NEED_TWADDLE))
                  twaddle();
            schedule_bh(floppy_start);
            debugt("queue fd request");
            return;
      }
#undef REPEAT
}

static struct cont_t rw_cont = {
      .interrupt  = rw_interrupt,
      .redo       = redo_fd_request,
      .error            = bad_flp_intr,
      .done       = request_done
};

static void process_fd_request(void)
{
      cont = &rw_cont;
      schedule_bh(redo_fd_request);
}

static void do_fd_request(request_queue_t * q)
{
      if (max_buffer_sectors == 0) {
            printk("VFS: do_fd_request called on non-open device\n");
            return;
      }

      if (usage_count == 0) {
            printk("warning: usage count=0, current_req=%p exiting\n",
                   current_req);
            printk("sect=%ld flags=%lx\n", (long)current_req->sector,
                   current_req->flags);
            return;
      }
      if (test_bit(0, &fdc_busy)) {
            /* fdc busy, this new request will be treated when the
               current one is done */
            is_alive("do fd request, old request running");
            return;
      }
      lock_fdc(MAXTIMEOUT, 0);
      process_fd_request();
      is_alive("do fd request");
}

static struct cont_t poll_cont = {
      .interrupt  = success_and_wakeup,
      .redo       = floppy_ready,
      .error            = generic_failure,
      .done       = generic_done
};

static int poll_drive(int interruptible, int flag)
{
      int ret;
      /* no auto-sense, just clear dcl */
      raw_cmd = &default_raw_cmd;
      raw_cmd->flags = flag;
      raw_cmd->track = 0;
      raw_cmd->cmd_count = 0;
      cont = &poll_cont;
#ifdef DCL_DEBUG
      if (DP->flags & FD_DEBUG) {
            DPRINT("setting NEWCHANGE in poll_drive\n");
      }
#endif
      SETF(FD_DISK_NEWCHANGE);
      WAIT(floppy_ready);
      return ret;
}

/*
 * User triggered reset
 * ====================
 */

static void reset_intr(void)
{
      printk("weird, reset interrupt called\n");
}

static struct cont_t reset_cont = {
      .interrupt  = reset_intr,
      .redo       = success_and_wakeup,
      .error            = generic_failure,
      .done       = generic_done
};

static int user_reset_fdc(int drive, int arg, int interruptible)
{
      int ret;

      ret = 0;
      LOCK_FDC(drive, interruptible);
      if (arg == FD_RESET_ALWAYS)
            FDCS->reset = 1;
      if (FDCS->reset) {
            cont = &reset_cont;
            WAIT(reset_fdc);
      }
      process_fd_request();
      return ret;
}

/*
 * Misc Ioctl's and support
 * ========================
 */
static inline int fd_copyout(void __user *param, const void *address,
                       unsigned long size)
{
      return copy_to_user(param, address, size) ? -EFAULT : 0;
}

static inline int fd_copyin(void __user *param, void *address, unsigned long size)
{
      return copy_from_user(address, param, size) ? -EFAULT : 0;
}

#define _COPYOUT(x) (copy_to_user((void __user *)param, &(x), sizeof(x)) ? -EFAULT : 0)
#define _COPYIN(x) (copy_from_user(&(x), (void __user *)param, sizeof(x)) ? -EFAULT : 0)

#define COPYOUT(x) ECALL(_COPYOUT(x))
#define COPYIN(x) ECALL(_COPYIN(x))

static inline const char *drive_name(int type, int drive)
{
      struct floppy_struct *floppy;

      if (type)
            floppy = floppy_type + type;
      else {
            if (UDP->native_format)
                  floppy = floppy_type + UDP->native_format;
            else
                  return "(null)";
      }
      if (floppy->name)
            return floppy->name;
      else
            return "(null)";
}

/* raw commands */
static void raw_cmd_done(int flag)
{
      int i;

      if (!flag) {
            raw_cmd->flags |= FD_RAW_FAILURE;
            raw_cmd->flags |= FD_RAW_HARDFAILURE;
      } else {
            raw_cmd->reply_count = inr;
            if (raw_cmd->reply_count > MAX_REPLIES)
                  raw_cmd->reply_count = 0;
            for (i = 0; i < raw_cmd->reply_count; i++)
                  raw_cmd->reply[i] = reply_buffer[i];

            if (raw_cmd->flags & (FD_RAW_READ | FD_RAW_WRITE)) {
                  unsigned long flags;
                  flags = claim_dma_lock();
                  raw_cmd->length = fd_get_dma_residue();
                  release_dma_lock(flags);
            }

            if ((raw_cmd->flags & FD_RAW_SOFTFAILURE) &&
                (!raw_cmd->reply_count || (raw_cmd->reply[0] & 0xc0)))
                  raw_cmd->flags |= FD_RAW_FAILURE;

            if (disk_change(current_drive))
                  raw_cmd->flags |= FD_RAW_DISK_CHANGE;
            else
                  raw_cmd->flags &= ~FD_RAW_DISK_CHANGE;
            if (raw_cmd->flags & FD_RAW_NO_MOTOR_AFTER)
                  motor_off_callback(current_drive);

            if (raw_cmd->next &&
                (!(raw_cmd->flags & FD_RAW_FAILURE) ||
                 !(raw_cmd->flags & FD_RAW_STOP_IF_FAILURE)) &&
                ((raw_cmd->flags & FD_RAW_FAILURE) ||
                 !(raw_cmd->flags & FD_RAW_STOP_IF_SUCCESS))) {
                  raw_cmd = raw_cmd->next;
                  return;
            }
      }
      generic_done(flag);
}

static struct cont_t raw_cmd_cont = {
      .interrupt  = success_and_wakeup,
      .redo       = floppy_start,
      .error            = generic_failure,
      .done       = raw_cmd_done
};

static inline int raw_cmd_copyout(int cmd, char __user *param,
                          struct floppy_raw_cmd *ptr)
{
      int ret;

      while (ptr) {
            COPYOUT(*ptr);
            param += sizeof(struct floppy_raw_cmd);
            if ((ptr->flags & FD_RAW_READ) && ptr->buffer_length) {
                  if (ptr->length >= 0
                      && ptr->length <= ptr->buffer_length)
                        ECALL(fd_copyout
                              (ptr->data, ptr->kernel_data,
                               ptr->buffer_length - ptr->length));
            }
            ptr = ptr->next;
      }
      return 0;
}

static void raw_cmd_free(struct floppy_raw_cmd **ptr)
{
      struct floppy_raw_cmd *next, *this;

      this = *ptr;
      *ptr = NULL;
      while (this) {
            if (this->buffer_length) {
                  fd_dma_mem_free((unsigned long)this->kernel_data,
                              this->buffer_length);
                  this->buffer_length = 0;
            }
            next = this->next;
            kfree(this);
            this = next;
      }
}

static inline int raw_cmd_copyin(int cmd, char __user *param,
                         struct floppy_raw_cmd **rcmd)
{
      struct floppy_raw_cmd *ptr;
      int ret;
      int i;

      *rcmd = NULL;
      while (1) {
            ptr = (struct floppy_raw_cmd *)
                kmalloc(sizeof(struct floppy_raw_cmd), GFP_USER);
            if (!ptr)
                  return -ENOMEM;
            *rcmd = ptr;
            COPYIN(*ptr);
            ptr->next = NULL;
            ptr->buffer_length = 0;
            param += sizeof(struct floppy_raw_cmd);
            if (ptr->cmd_count > 33)
                  /* the command may now also take up the space
                   * initially intended for the reply & the
                   * reply count. Needed for long 82078 commands
                   * such as RESTORE, which takes ... 17 command
                   * bytes. Murphy's law #137: When you reserve
                   * 16 bytes for a structure, you'll one day
                   * discover that you really need 17...
                   */
                  return -EINVAL;

            for (i = 0; i < 16; i++)
                  ptr->reply[i] = 0;
            ptr->resultcode = 0;
            ptr->kernel_data = NULL;

            if (ptr->flags & (FD_RAW_READ | FD_RAW_WRITE)) {
                  if (ptr->length <= 0)
                        return -EINVAL;
                  ptr->kernel_data =
                      (char *)fd_dma_mem_alloc(ptr->length);
                  fallback_on_nodma_alloc(&ptr->kernel_data, ptr->length);
                  if (!ptr->kernel_data)
                        return -ENOMEM;
                  ptr->buffer_length = ptr->length;
            }
            if (ptr->flags & FD_RAW_WRITE)
                  ECALL(fd_copyin(ptr->data, ptr->kernel_data,
                              ptr->length));
            rcmd = &(ptr->next);
            if (!(ptr->flags & FD_RAW_MORE))
                  return 0;
            ptr->rate &= 0x43;
      }
}

static int raw_cmd_ioctl(int cmd, void __user *param)
{
      int drive, ret, ret2;
      struct floppy_raw_cmd *my_raw_cmd;

      if (FDCS->rawcmd <= 1)
            FDCS->rawcmd = 1;
      for (drive = 0; drive < N_DRIVE; drive++) {
            if (FDC(drive) != fdc)
                  continue;
            if (drive == current_drive) {
                  if (UDRS->fd_ref > 1) {
                        FDCS->rawcmd = 2;
                        break;
                  }
            } else if (UDRS->fd_ref) {
                  FDCS->rawcmd = 2;
                  break;
            }
      }

      if (FDCS->reset)
            return -EIO;

      ret = raw_cmd_copyin(cmd, param, &my_raw_cmd);
      if (ret) {
            raw_cmd_free(&my_raw_cmd);
            return ret;
      }

      raw_cmd = my_raw_cmd;
      cont = &raw_cmd_cont;
      ret = wait_til_done(floppy_start, 1);
#ifdef DCL_DEBUG
      if (DP->flags & FD_DEBUG) {
            DPRINT("calling disk change from raw_cmd ioctl\n");
      }
#endif

      if (ret != -EINTR && FDCS->reset)
            ret = -EIO;

      DRS->track = NO_TRACK;

      ret2 = raw_cmd_copyout(cmd, param, my_raw_cmd);
      if (!ret)
            ret = ret2;
      raw_cmd_free(&my_raw_cmd);
      return ret;
}

static int invalidate_drive(struct block_device *bdev)
{
      /* invalidate the buffer track to force a reread */
      set_bit((long)bdev->bd_disk->private_data, &fake_change);
      process_fd_request();
      check_disk_change(bdev);
      return 0;
}

static inline int set_geometry(unsigned int cmd, struct floppy_struct *g,
                         int drive, int type, struct block_device *bdev)
{
      int cnt;

      /* sanity checking for parameters. */
      if (g->sect <= 0 ||
          g->head <= 0 ||
          g->track <= 0 || g->track > UDP->tracks >> STRETCH(g) ||
          /* check if reserved bits are set */
          (g->stretch & ~(FD_STRETCH | FD_SWAPSIDES | FD_ZEROBASED)) != 0)
            return -EINVAL;
      if (type) {
            if (!capable(CAP_SYS_ADMIN))
                  return -EPERM;
            mutex_lock(&open_lock);
            LOCK_FDC(drive, 1);
            floppy_type[type] = *g;
            floppy_type[type].name = "user format";
            for (cnt = type << 2; cnt < (type << 2) + 4; cnt++)
                  floppy_sizes[cnt] = floppy_sizes[cnt + 0x80] =
                      floppy_type[type].size + 1;
            process_fd_request();
            for (cnt = 0; cnt < N_DRIVE; cnt++) {
                  struct block_device *bdev = opened_bdev[cnt];
                  if (!bdev || ITYPE(drive_state[cnt].fd_device) != type)
                        continue;
                  __invalidate_device(bdev);
            }
            mutex_unlock(&open_lock);
      } else {
            int oldStretch;
            LOCK_FDC(drive, 1);
            if (cmd != FDDEFPRM)
                  /* notice a disk change immediately, else
                   * we lose our settings immediately*/
                  CALL(poll_drive(1, FD_RAW_NEED_DISK));
            oldStretch = g->stretch;
            user_params[drive] = *g;
            if (buffer_drive == drive)
                  SUPBOUND(buffer_max, user_params[drive].sect);
            current_type[drive] = &user_params[drive];
            floppy_sizes[drive] = user_params[drive].size;
            if (cmd == FDDEFPRM)
                  DRS->keep_data = -1;
            else
                  DRS->keep_data = 1;
            /* invalidation. Invalidate only when needed, i.e.
             * when there are already sectors in the buffer cache
             * whose number will change. This is useful, because
             * mtools often changes the geometry of the disk after
             * looking at the boot block */
            if (DRS->maxblock > user_params[drive].sect ||
                DRS->maxtrack ||
                ((user_params[drive].sect ^ oldStretch) &
                 (FD_SWAPSIDES | FD_ZEROBASED)))
                  invalidate_drive(bdev);
            else
                  process_fd_request();
      }
      return 0;
}

/* handle obsolete ioctl's */
static int ioctl_table[] = {
      FDCLRPRM,
      FDSETPRM,
      FDDEFPRM,
      FDGETPRM,
      FDMSGON,
      FDMSGOFF,
      FDFMTBEG,
      FDFMTTRK,
      FDFMTEND,
      FDSETEMSGTRESH,
      FDFLUSH,
      FDSETMAXERRS,
      FDGETMAXERRS,
      FDGETDRVTYP,
      FDSETDRVPRM,
      FDGETDRVPRM,
      FDGETDRVSTAT,
      FDPOLLDRVSTAT,
      FDRESET,
      FDGETFDCSTAT,
      FDWERRORCLR,
      FDWERRORGET,
      FDRAWCMD,
      FDEJECT,
      FDTWADDLE
};

static inline int normalize_ioctl(int *cmd, int *size)
{
      int i;

      for (i = 0; i < ARRAY_SIZE(ioctl_table); i++) {
            if ((*cmd & 0xffff) == (ioctl_table[i] & 0xffff)) {
                  *size = _IOC_SIZE(*cmd);
                  *cmd = ioctl_table[i];
                  if (*size > _IOC_SIZE(*cmd)) {
                        printk("ioctl not yet supported\n");
                        return -EFAULT;
                  }
                  return 0;
            }
      }
      return -EINVAL;
}

static int get_floppy_geometry(int drive, int type, struct floppy_struct **g)
{
      if (type)
            *g = &floppy_type[type];
      else {
            LOCK_FDC(drive, 0);
            CALL(poll_drive(0, 0));
            process_fd_request();
            *g = current_type[drive];
      }
      if (!*g)
            return -ENODEV;
      return 0;
}

static int fd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
{
      int drive = (long)bdev->bd_disk->private_data;
      int type = ITYPE(drive_state[drive].fd_device);
      struct floppy_struct *g;
      int ret;

      ret = get_floppy_geometry(drive, type, &g);
      if (ret)
            return ret;

      geo->heads = g->head;
      geo->sectors = g->sect;
      geo->cylinders = g->track;
      return 0;
}

static int fd_ioctl(struct inode *inode, struct file *filp, unsigned int cmd,
                unsigned long param)
{
#define FD_IOCTL_ALLOWED ((filp) && (filp)->private_data)
#define OUT(c,x) case c: outparam = (const char *) (x); break
#define IN(c,x,tag) case c: *(x) = inparam. tag ; return 0

      int drive = (long)inode->i_bdev->bd_disk->private_data;
      int i, type = ITYPE(UDRS->fd_device);
      int ret;
      int size;
      union inparam {
            struct floppy_struct g; /* geometry */
            struct format_descr f;
            struct floppy_max_errors max_errors;
            struct floppy_drive_params dp;
      } inparam;        /* parameters coming from user space */
      const char *outparam;   /* parameters passed back to user space */

      /* convert compatibility eject ioctls into floppy eject ioctl.
       * We do this in order to provide a means to eject floppy disks before
       * installing the new fdutils package */
      if (cmd == CDROMEJECT ||      /* CD-ROM eject */
          cmd == 0x6470 /* SunOS floppy eject */ ) {
            DPRINT("obsolete eject ioctl\n");
            DPRINT("please use floppycontrol --eject\n");
            cmd = FDEJECT;
      }

      /* convert the old style command into a new style command */
      if ((cmd & 0xff00) == 0x0200) {
            ECALL(normalize_ioctl(&cmd, &size));
      } else
            return -EINVAL;

      /* permission checks */
      if (((cmd & 0x40) && !FD_IOCTL_ALLOWED) ||
          ((cmd & 0x80) && !capable(CAP_SYS_ADMIN)))
            return -EPERM;

      /* copyin */
      CLEARSTRUCT(&inparam);
      if (_IOC_DIR(cmd) & _IOC_WRITE)
          ECALL(fd_copyin((void __user *)param, &inparam, size))

            switch (cmd) {
            case FDEJECT:
                  if (UDRS->fd_ref != 1)
                        /* somebody else has this drive open */
                        return -EBUSY;
                  LOCK_FDC(drive, 1);

                  /* do the actual eject. Fails on
                   * non-Sparc architectures */
                  ret = fd_eject(UNIT(drive));

                  USETF(FD_DISK_CHANGED);
                  USETF(FD_VERIFY);
                  process_fd_request();
                  return ret;
            case FDCLRPRM:
                  LOCK_FDC(drive, 1);
                  current_type[drive] = NULL;
                  floppy_sizes[drive] = MAX_DISK_SIZE << 1;
                  UDRS->keep_data = 0;
                  return invalidate_drive(inode->i_bdev);
            case FDSETPRM:
            case FDDEFPRM:
                  return set_geometry(cmd, &inparam.g,
                                  drive, type, inode->i_bdev);
            case FDGETPRM:
                  ECALL(get_floppy_geometry(drive, type,
                                      (struct floppy_struct **)
                                      &outparam));
                  break;

            case FDMSGON:
                  UDP->flags |= FTD_MSG;
                  return 0;
            case FDMSGOFF:
                  UDP->flags &= ~FTD_MSG;
                  return 0;

            case FDFMTBEG:
                  LOCK_FDC(drive, 1);
                  CALL(poll_drive(1, FD_RAW_NEED_DISK));
                  ret = UDRS->flags;
                  process_fd_request();
                  if (ret & FD_VERIFY)
                        return -ENODEV;
                  if (!(ret & FD_DISK_WRITABLE))
                        return -EROFS;
                  return 0;
            case FDFMTTRK:
                  if (UDRS->fd_ref != 1)
                        return -EBUSY;
                  return do_format(drive, &inparam.f);
            case FDFMTEND:
            case FDFLUSH:
                  LOCK_FDC(drive, 1);
                  return invalidate_drive(inode->i_bdev);

            case FDSETEMSGTRESH:
                  UDP->max_errors.reporting =
                      (unsigned short)(param & 0x0f);
                  return 0;
                  OUT(FDGETMAXERRS, &UDP->max_errors);
                  IN(FDSETMAXERRS, &UDP->max_errors, max_errors);

            case FDGETDRVTYP:
                  outparam = drive_name(type, drive);
                  SUPBOUND(size, strlen(outparam) + 1);
                  break;

                  IN(FDSETDRVPRM, UDP, dp);
                  OUT(FDGETDRVPRM, UDP);

            case FDPOLLDRVSTAT:
                  LOCK_FDC(drive, 1);
                  CALL(poll_drive(1, FD_RAW_NEED_DISK));
                  process_fd_request();
                  /* fall through */
                  OUT(FDGETDRVSTAT, UDRS);

            case FDRESET:
                  return user_reset_fdc(drive, (int)param, 1);

                  OUT(FDGETFDCSTAT, UFDCS);

            case FDWERRORCLR:
                  CLEARSTRUCT(UDRWE);
                  return 0;
                  OUT(FDWERRORGET, UDRWE);

            case FDRAWCMD:
                  if (type)
                        return -EINVAL;
                  LOCK_FDC(drive, 1);
                  set_floppy(drive);
                  CALL(i = raw_cmd_ioctl(cmd, (void __user *)param));
                  process_fd_request();
                  return i;

            case FDTWADDLE:
                  LOCK_FDC(drive, 1);
                  twaddle();
                  process_fd_request();
                  return 0;

            default:
                  return -EINVAL;
            }

      if (_IOC_DIR(cmd) & _IOC_READ)
            return fd_copyout((void __user *)param, outparam, size);
      else
            return 0;
#undef OUT
#undef IN
}

static void __init config_types(void)
{
      int first = 1;
      int drive;

      /* read drive info out of physical CMOS */
      drive = 0;
      if (!UDP->cmos)
            UDP->cmos = FLOPPY0_TYPE;
      drive = 1;
      if (!UDP->cmos && FLOPPY1_TYPE)
            UDP->cmos = FLOPPY1_TYPE;

      /* XXX */
      /* additional physical CMOS drive detection should go here */

      for (drive = 0; drive < N_DRIVE; drive++) {
            unsigned int type = UDP->cmos;
            struct floppy_drive_params *params;
            const char *name = NULL;
            static char temparea[32];

            if (type < ARRAY_SIZE(default_drive_params)) {
                  params = &default_drive_params[type].params;
                  if (type) {
                        name = default_drive_params[type].name;
                        allowed_drive_mask |= 1 << drive;
                  } else
                        allowed_drive_mask &= ~(1 << drive);
            } else {
                  params = &default_drive_params[0].params;
                  sprintf(temparea, "unknown type %d (usb?)", type);
                  name = temparea;
            }
            if (name) {
                  const char *prepend = ",";
                  if (first) {
                        prepend = KERN_INFO "Floppy drive(s):";
                        first = 0;
                  }
                  printk("%s fd%d is %s", prepend, drive, name);
            }
            *UDP = *params;
      }
      if (!first)
            printk("\n");
}

static int floppy_release(struct inode *inode, struct file *filp)
{
      int drive = (long)inode->i_bdev->bd_disk->private_data;

      mutex_lock(&open_lock);
      if (UDRS->fd_ref < 0)
            UDRS->fd_ref = 0;
      else if (!UDRS->fd_ref--) {
            DPRINT("floppy_release with fd_ref == 0");
            UDRS->fd_ref = 0;
      }
      if (!UDRS->fd_ref)
            opened_bdev[drive] = NULL;
      mutex_unlock(&open_lock);

      return 0;
}

/*
 * floppy_open check for aliasing (/dev/fd0 can be the same as
 * /dev/PS0 etc), and disallows simultaneous access to the same
 * drive with different device numbers.
 */
static int floppy_open(struct inode *inode, struct file *filp)
{
      int drive = (long)inode->i_bdev->bd_disk->private_data;
      int old_dev;
      int try;
      int res = -EBUSY;
      char *tmp;

      filp->private_data = (void *)0;
      mutex_lock(&open_lock);
      old_dev = UDRS->fd_device;
      if (opened_bdev[drive] && opened_bdev[drive] != inode->i_bdev)
            goto out2;

      if (!UDRS->fd_ref && (UDP->flags & FD_BROKEN_DCL)) {
            USETF(FD_DISK_CHANGED);
            USETF(FD_VERIFY);
      }

      if (UDRS->fd_ref == -1 || (UDRS->fd_ref && (filp->f_flags & O_EXCL)))
            goto out2;

      if (filp->f_flags & O_EXCL)
            UDRS->fd_ref = -1;
      else
            UDRS->fd_ref++;

      opened_bdev[drive] = inode->i_bdev;

      res = -ENXIO;

      if (!floppy_track_buffer) {
            /* if opening an ED drive, reserve a big buffer,
             * else reserve a small one */
            if ((UDP->cmos == 6) || (UDP->cmos == 5))
                  try = 64;   /* Only 48 actually useful */
            else
                  try = 32;   /* Only 24 actually useful */

            tmp = (char *)fd_dma_mem_alloc(1024 * try);
            if (!tmp && !floppy_track_buffer) {
                  try >>= 1;  /* buffer only one side */
                  INFBOUND(try, 16);
                  tmp = (char *)fd_dma_mem_alloc(1024 * try);
            }
            if (!tmp && !floppy_track_buffer) {
                  fallback_on_nodma_alloc(&tmp, 2048 * try);
            }
            if (!tmp && !floppy_track_buffer) {
                  DPRINT("Unable to allocate DMA memory\n");
                  goto out;
            }
            if (floppy_track_buffer) {
                  if (tmp)
                        fd_dma_mem_free((unsigned long)tmp, try * 1024);
            } else {
                  buffer_min = buffer_max = -1;
                  floppy_track_buffer = tmp;
                  max_buffer_sectors = try;
            }
      }

      UDRS->fd_device = iminor(inode);
      set_capacity(disks[drive], floppy_sizes[iminor(inode)]);
      if (old_dev != -1 && old_dev != iminor(inode)) {
            if (buffer_drive == drive)
                  buffer_track = -1;
      }

      /* Allow ioctls if we have write-permissions even if read-only open.
       * Needed so that programs such as fdrawcmd still can work on write
       * protected disks */
      if ((filp->f_mode & FMODE_WRITE) || !file_permission(filp, MAY_WRITE))
            filp->private_data = (void *)8;

      if (UFDCS->rawcmd == 1)
            UFDCS->rawcmd = 2;

      if (!(filp->f_flags & O_NDELAY)) {
            if (filp->f_mode & 3) {
                  UDRS->last_checked = 0;
                  check_disk_change(inode->i_bdev);
                  if (UTESTF(FD_DISK_CHANGED))
                        goto out;
            }
            res = -EROFS;
            if ((filp->f_mode & 2) && !(UTESTF(FD_DISK_WRITABLE)))
                  goto out;
      }
      mutex_unlock(&open_lock);
      return 0;
out:
      if (UDRS->fd_ref < 0)
            UDRS->fd_ref = 0;
      else
            UDRS->fd_ref--;
      if (!UDRS->fd_ref)
            opened_bdev[drive] = NULL;
out2:
      mutex_unlock(&open_lock);
      return res;
}

/*
 * Check if the disk has been changed or if a change has been faked.
 */
static int check_floppy_change(struct gendisk *disk)
{
      int drive = (long)disk->private_data;

      if (UTESTF(FD_DISK_CHANGED) || UTESTF(FD_VERIFY))
            return 1;

      if (time_after(jiffies, UDRS->last_checked + UDP->checkfreq)) {
            lock_fdc(drive, 0);
            poll_drive(0, 0);
            process_fd_request();
      }

      if (UTESTF(FD_DISK_CHANGED) ||
          UTESTF(FD_VERIFY) ||
          test_bit(drive, &fake_change) ||
          (!ITYPE(UDRS->fd_device) && !current_type[drive]))
            return 1;
      return 0;
}

/*
 * This implements "read block 0" for floppy_revalidate().
 * Needed for format autodetection, checking whether there is
 * a disk in the drive, and whether that disk is writable.
 */

static int floppy_rb0_complete(struct bio *bio, unsigned int bytes_done,
                         int err)
{
      if (bio->bi_size)
            return 1;

      complete((struct completion *)bio->bi_private);
      return 0;
}

static int __floppy_read_block_0(struct block_device *bdev)
{
      struct bio bio;
      struct bio_vec bio_vec;
      struct completion complete;
      struct page *page;
      size_t size;

      page = alloc_page(GFP_NOIO);
      if (!page) {
            process_fd_request();
            return -ENOMEM;
      }

      size = bdev->bd_block_size;
      if (!size)
            size = 1024;

      bio_init(&bio);
      bio.bi_io_vec = &bio_vec;
      bio_vec.bv_page = page;
      bio_vec.bv_len = size;
      bio_vec.bv_offset = 0;
      bio.bi_vcnt = 1;
      bio.bi_idx = 0;
      bio.bi_size = size;
      bio.bi_bdev = bdev;
      bio.bi_sector = 0;
      init_completion(&complete);
      bio.bi_private = &complete;
      bio.bi_end_io = floppy_rb0_complete;

      submit_bio(READ, &bio);
      generic_unplug_device(bdev_get_queue(bdev));
      process_fd_request();
      wait_for_completion(&complete);

      __free_page(page);

      return 0;
}

/* revalidate the floppy disk, i.e. trigger format autodetection by reading
 * the bootblock (block 0). "Autodetection" is also needed to check whether
 * there is a disk in the drive at all... Thus we also do it for fixed
 * geometry formats */
static int floppy_revalidate(struct gendisk *disk)
{
      int drive = (long)disk->private_data;
#define NO_GEOM (!current_type[drive] && !ITYPE(UDRS->fd_device))
      int cf;
      int res = 0;

      if (UTESTF(FD_DISK_CHANGED) ||
          UTESTF(FD_VERIFY) || test_bit(drive, &fake_change) || NO_GEOM) {
            if (usage_count == 0) {
                  printk("VFS: revalidate called on non-open device.\n");
                  return -EFAULT;
            }
            lock_fdc(drive, 0);
            cf = UTESTF(FD_DISK_CHANGED) || UTESTF(FD_VERIFY);
            if (!(cf || test_bit(drive, &fake_change) || NO_GEOM)) {
                  process_fd_request();   /*already done by another thread */
                  return 0;
            }
            UDRS->maxblock = 0;
            UDRS->maxtrack = 0;
            if (buffer_drive == drive)
                  buffer_track = -1;
            clear_bit(drive, &fake_change);
            UCLEARF(FD_DISK_CHANGED);
            if (cf)
                  UDRS->generation++;
            if (NO_GEOM) {
                  /* auto-sensing */
                  res = __floppy_read_block_0(opened_bdev[drive]);
            } else {
                  if (cf)
                        poll_drive(0, FD_RAW_NEED_DISK);
                  process_fd_request();
            }
      }
      set_capacity(disk, floppy_sizes[UDRS->fd_device]);
      return res;
}

static struct block_device_operations floppy_fops = {
      .owner            = THIS_MODULE,
      .open       = floppy_open,
      .release    = floppy_release,
      .ioctl            = fd_ioctl,
      .getgeo           = fd_getgeo,
      .media_changed    = check_floppy_change,
      .revalidate_disk = floppy_revalidate,
};

/*
 * Floppy Driver initialization
 * =============================
 */

/* Determine the floppy disk controller type */
/* This routine was written by David C. Niemi */
static char __init get_fdc_version(void)
{
      int r;

      output_byte(FD_DUMPREGS);     /* 82072 and better know DUMPREGS */
      if (FDCS->reset)
            return FDC_NONE;
      if ((r = result()) <= 0x00)
            return FDC_NONE;  /* No FDC present ??? */
      if ((r == 1) && (reply_buffer[0] == 0x80)) {
            printk(KERN_INFO "FDC %d is an 8272A\n", fdc);
            return FDC_8272A; /* 8272a/765 don't know DUMPREGS */
      }
      if (r != 10) {
            printk
                ("FDC %d init: DUMPREGS: unexpected return of %d bytes.\n",
                 fdc, r);
            return FDC_UNKNOWN;
      }

      if (!fdc_configure()) {
            printk(KERN_INFO "FDC %d is an 82072\n", fdc);
            return FDC_82072; /* 82072 doesn't know CONFIGURE */
      }

      output_byte(FD_PERPENDICULAR);
      if (need_more_output() == MORE_OUTPUT) {
            output_byte(0);
      } else {
            printk(KERN_INFO "FDC %d is an 82072A\n", fdc);
            return FDC_82072A;      /* 82072A as found on Sparcs. */
      }

      output_byte(FD_UNLOCK);
      r = result();
      if ((r == 1) && (reply_buffer[0] == 0x80)) {
            printk(KERN_INFO "FDC %d is a pre-1991 82077\n", fdc);
            return FDC_82077_ORIG;  /* Pre-1991 82077, doesn't know 
                               * LOCK/UNLOCK */
      }
      if ((r != 1) || (reply_buffer[0] != 0x00)) {
            printk("FDC %d init: UNLOCK: unexpected return of %d bytes.\n",
                   fdc, r);
            return FDC_UNKNOWN;
      }
      output_byte(FD_PARTID);
      r = result();
      if (r != 1) {
            printk("FDC %d init: PARTID: unexpected return of %d bytes.\n",
                   fdc, r);
            return FDC_UNKNOWN;
      }
      if (reply_buffer[0] == 0x80) {
            printk(KERN_INFO "FDC %d is a post-1991 82077\n", fdc);
            return FDC_82077; /* Revised 82077AA passes all the tests */
      }
      switch (reply_buffer[0] >> 5) {
      case 0x0:
            /* Either a 82078-1 or a 82078SL running at 5Volt */
            printk(KERN_INFO "FDC %d is an 82078.\n", fdc);
            return FDC_82078;
      case 0x1:
            printk(KERN_INFO "FDC %d is a 44pin 82078\n", fdc);
            return FDC_82078;
      case 0x2:
            printk(KERN_INFO "FDC %d is a S82078B\n", fdc);
            return FDC_S82078B;
      case 0x3:
            printk(KERN_INFO "FDC %d is a National Semiconductor PC87306\n",
                   fdc);
            return FDC_87306;
      default:
            printk(KERN_INFO
                   "FDC %d init: 82078 variant with unknown PARTID=%d.\n",
                   fdc, reply_buffer[0] >> 5);
            return FDC_82078_UNKN;
      }
}                       /* get_fdc_version */

/* lilo configuration */

static void __init floppy_set_flags(int *ints, int param, int param2)
{
      int i;

      for (i = 0; i < ARRAY_SIZE(default_drive_params); i++) {
            if (param)
                  default_drive_params[i].params.flags |= param2;
            else
                  default_drive_params[i].params.flags &= ~param2;
      }
      DPRINT("%s flag 0x%x\n", param2 ? "Setting" : "Clearing", param);
}

static void __init daring(int *ints, int param, int param2)
{
      int i;

      for (i = 0; i < ARRAY_SIZE(default_drive_params); i++) {
            if (param) {
                  default_drive_params[i].params.select_delay = 0;
                  default_drive_params[i].params.flags |=
                      FD_SILENT_DCL_CLEAR;
            } else {
                  default_drive_params[i].params.select_delay =
                      2 * HZ / 100;
                  default_drive_params[i].params.flags &=
                      ~FD_SILENT_DCL_CLEAR;
            }
      }
      DPRINT("Assuming %s floppy hardware\n", param ? "standard" : "broken");
}

static void __init set_cmos(int *ints, int dummy, int dummy2)
{
      int current_drive = 0;

      if (ints[0] != 2) {
            DPRINT("wrong number of parameters for CMOS\n");
            return;
      }
      current_drive = ints[1];
      if (current_drive < 0 || current_drive >= 8) {
            DPRINT("bad drive for set_cmos\n");
            return;
      }
#if N_FDC > 1
      if (current_drive >= 4 && !FDC2)
            FDC2 = 0x370;
#endif
      DP->cmos = ints[2];
      DPRINT("setting CMOS code to %d\n", ints[2]);
}

static struct param_table {
      const char *name;
      void (*fn) (int *ints, int param, int param2);
      int *var;
      int def_param;
      int param2;
} config_params[] __initdata = {
      {"allowed_drive_mask", NULL, &allowed_drive_mask, 0xff, 0}, /* obsolete */
      {"all_drives", NULL, &allowed_drive_mask, 0xff, 0},   /* obsolete */
      {"asus_pci", NULL, &allowed_drive_mask, 0x33, 0},
      {"irq", NULL, &FLOPPY_IRQ, 6, 0},
      {"dma", NULL, &FLOPPY_DMA, 2, 0},
      {"daring", daring, NULL, 1, 0},
#if N_FDC > 1
      {"two_fdc", NULL, &FDC2, 0x370, 0},
      {"one_fdc", NULL, &FDC2, 0, 0},
#endif
      {"thinkpad", floppy_set_flags, NULL, 1, FD_INVERTED_DCL},
      {"broken_dcl", floppy_set_flags, NULL, 1, FD_BROKEN_DCL},
      {"messages", floppy_set_flags, NULL, 1, FTD_MSG},
      {"silent_dcl_clear", floppy_set_flags, NULL, 1, FD_SILENT_DCL_CLEAR},
      {"debug", floppy_set_flags, NULL, 1, FD_DEBUG},
      {"nodma", NULL, &can_use_virtual_dma, 1, 0},
      {"omnibook", NULL, &can_use_virtual_dma, 1, 0},
      {"yesdma", NULL, &can_use_virtual_dma, 0, 0},
      {"fifo_depth", NULL, &fifo_depth, 0xa, 0},
      {"nofifo", NULL, &no_fifo, 0x20, 0},
      {"usefifo", NULL, &no_fifo, 0, 0},
      {"cmos", set_cmos, NULL, 0, 0},
      {"slow", NULL, &slow_floppy, 1, 0},
      {"unexpected_interrupts", NULL, &print_unex, 1, 0},
      {"no_unexpected_interrupts", NULL, &print_unex, 0, 0},
      {"L40SX", NULL, &print_unex, 0, 0}

      EXTRA_FLOPPY_PARAMS
};

static int __init floppy_setup(char *str)
{
      int i;
      int param;
      int ints[11];

      str = get_options(str, ARRAY_SIZE(ints), ints);
      if (str) {
            for (i = 0; i < ARRAY_SIZE(config_params); i++) {
                  if (strcmp(str, config_params[i].name) == 0) {
                        if (ints[0])
                              param = ints[1];
                        else
                              param = config_params[i].def_param;
                        if (config_params[i].fn)
                              config_params[i].
                                  fn(ints, param,
                                     config_params[i].param2);
                        if (config_params[i].var) {
                              DPRINT("%s=%d\n", str, param);
                              *config_params[i].var = param;
                        }
                        return 1;
                  }
            }
      }
      if (str) {
            DPRINT("unknown floppy option [%s]\n", str);

            DPRINT("allowed options are:");
            for (i = 0; i < ARRAY_SIZE(config_params); i++)
                  printk(" %s", config_params[i].name);
            printk("\n");
      } else
            DPRINT("botched floppy option\n");
      DPRINT("Read Documentation/floppy.txt\n");
      return 0;
}

static int have_no_fdc = -ENODEV;

static ssize_t floppy_cmos_show(struct device *dev,
                        struct device_attribute *attr, char *buf)
{
      struct platform_device *p;
      int drive;

      p = container_of(dev, struct platform_device,dev);
      drive = p->id;
      return sprintf(buf, "%X\n", UDP->cmos);
}
DEVICE_ATTR(cmos,S_IRUGO,floppy_cmos_show,NULL);

static void floppy_device_release(struct device *dev)
{
      complete(&device_release);
}

static struct platform_device floppy_device[N_DRIVE];

static struct kobject *floppy_find(dev_t dev, int *part, void *data)
{
      int drive = (*part & 3) | ((*part & 0x80) >> 5);
      if (drive >= N_DRIVE ||
          !(allowed_drive_mask & (1 << drive)) ||
          fdc_state[FDC(drive)].version == FDC_NONE)
            return NULL;
      if (((*part >> 2) & 0x1f) >= ARRAY_SIZE(floppy_type))
            return NULL;
      *part = 0;
      return get_disk(disks[drive]);
}

static int __init floppy_init(void)
{
      int i, unit, drive;
      int err, dr;

#if defined(CONFIG_PPC_MERGE)
      if (check_legacy_ioport(FDC1))
            return -ENODEV;
#endif

      raw_cmd = NULL;

      for (dr = 0; dr < N_DRIVE; dr++) {
            disks[dr] = alloc_disk(1);
            if (!disks[dr]) {
                  err = -ENOMEM;
                  goto out_put_disk;
            }

            disks[dr]->major = FLOPPY_MAJOR;
            disks[dr]->first_minor = TOMINOR(dr);
            disks[dr]->fops = &floppy_fops;
            sprintf(disks[dr]->disk_name, "fd%d", dr);

            init_timer(&motor_off_timer[dr]);
            motor_off_timer[dr].data = dr;
            motor_off_timer[dr].function = motor_off_callback;
      }

      err = register_blkdev(FLOPPY_MAJOR, "fd");
      if (err)
            goto out_put_disk;

      floppy_queue = blk_init_queue(do_fd_request, &floppy_lock);
      if (!floppy_queue) {
            err = -ENOMEM;
            goto out_unreg_blkdev;
      }
      blk_queue_max_sectors(floppy_queue, 64);

      blk_register_region(MKDEV(FLOPPY_MAJOR, 0), 256, THIS_MODULE,
                      floppy_find, NULL, NULL);

      for (i = 0; i < 256; i++)
            if (ITYPE(i))
                  floppy_sizes[i] = floppy_type[ITYPE(i)].size;
            else
                  floppy_sizes[i] = MAX_DISK_SIZE << 1;

      reschedule_timeout(MAXTIMEOUT, "floppy init", MAXTIMEOUT);
      config_types();

      for (i = 0; i < N_FDC; i++) {
            fdc = i;
            CLEARSTRUCT(FDCS);
            FDCS->dtr = -1;
            FDCS->dor = 0x4;
#if defined(__sparc__) || defined(__mc68000__)
            /*sparcs/sun3x don't have a DOR reset which we can fall back on to */
#ifdef __mc68000__
            if (MACH_IS_SUN3X)
#endif
                  FDCS->version = FDC_82072A;
#endif
      }

      use_virtual_dma = can_use_virtual_dma & 1;
      fdc_state[0].address = FDC1;
      if (fdc_state[0].address == -1) {
            del_timer(&fd_timeout);
            err = -ENODEV;
            goto out_unreg_region;
      }
#if N_FDC > 1
      fdc_state[1].address = FDC2;
#endif

      fdc = 0;          /* reset fdc in case of unexpected interrupt */
      err = floppy_grab_irq_and_dma();
      if (err) {
            del_timer(&fd_timeout);
            err = -EBUSY;
            goto out_unreg_region;
      }

      /* initialise drive state */
      for (drive = 0; drive < N_DRIVE; drive++) {
            CLEARSTRUCT(UDRS);
            CLEARSTRUCT(UDRWE);
            USETF(FD_DISK_NEWCHANGE);
            USETF(FD_DISK_CHANGED);
            USETF(FD_VERIFY);
            UDRS->fd_device = -1;
            floppy_track_buffer = NULL;
            max_buffer_sectors = 0;
      }
      /*
       * Small 10 msec delay to let through any interrupt that
       * initialization might have triggered, to not
       * confuse detection:
       */
      msleep(10);

      for (i = 0; i < N_FDC; i++) {
            fdc = i;
            FDCS->driver_version = FD_DRIVER_VERSION;
            for (unit = 0; unit < 4; unit++)
                  FDCS->track[unit] = 0;
            if (FDCS->address == -1)
                  continue;
            FDCS->rawcmd = 2;
            if (user_reset_fdc(-1, FD_RESET_ALWAYS, 0)) {
                  /* free ioports reserved by floppy_grab_irq_and_dma() */
                  release_region(FDCS->address + 2, 4);
                  release_region(FDCS->address + 7, 1);
                  FDCS->address = -1;
                  FDCS->version = FDC_NONE;
                  continue;
            }
            /* Try to determine the floppy controller type */
            FDCS->version = get_fdc_version();
            if (FDCS->version == FDC_NONE) {
                  /* free ioports reserved by floppy_grab_irq_and_dma() */
                  release_region(FDCS->address + 2, 4);
                  release_region(FDCS->address + 7, 1);
                  FDCS->address = -1;
                  continue;
            }
            if (can_use_virtual_dma == 2 && FDCS->version < FDC_82072A)
                  can_use_virtual_dma = 0;

            have_no_fdc = 0;
            /* Not all FDCs seem to be able to handle the version command
             * properly, so force a reset for the standard FDC clones,
             * to avoid interrupt garbage.
             */
            user_reset_fdc(-1, FD_RESET_ALWAYS, 0);
      }
      fdc = 0;
      del_timer(&fd_timeout);
      current_drive = 0;
      initialising = 0;
      if (have_no_fdc) {
            DPRINT("no floppy controllers found\n");
            err = have_no_fdc;
            goto out_flush_work;
      }

      for (drive = 0; drive < N_DRIVE; drive++) {
            if (!(allowed_drive_mask & (1 << drive)))
                  continue;
            if (fdc_state[FDC(drive)].version == FDC_NONE)
                  continue;

            floppy_device[drive].name = floppy_device_name;
            floppy_device[drive].id = drive;
            floppy_device[drive].dev.release = floppy_device_release;

            err = platform_device_register(&floppy_device[drive]);
            if (err)
                  goto out_flush_work;

            device_create_file(&floppy_device[drive].dev,&dev_attr_cmos);
            /* to be cleaned up... */
            disks[drive]->private_data = (void *)(long)drive;
            disks[drive]->queue = floppy_queue;
            disks[drive]->flags |= GENHD_FL_REMOVABLE;
            disks[drive]->driverfs_dev = &floppy_device[drive].dev;
            add_disk(disks[drive]);
      }

      return 0;

out_flush_work:
      flush_scheduled_work();
      if (usage_count)
            floppy_release_irq_and_dma();
out_unreg_region:
      blk_unregister_region(MKDEV(FLOPPY_MAJOR, 0), 256);
      blk_cleanup_queue(floppy_queue);
out_unreg_blkdev:
      unregister_blkdev(FLOPPY_MAJOR, "fd");
out_put_disk:
      while (dr--) {
            del_timer(&motor_off_timer[dr]);
            put_disk(disks[dr]);
      }
      return err;
}

static DEFINE_SPINLOCK(floppy_usage_lock);

static int floppy_grab_irq_and_dma(void)
{
      unsigned long flags;

      spin_lock_irqsave(&floppy_usage_lock, flags);
      if (usage_count++) {
            spin_unlock_irqrestore(&floppy_usage_lock, flags);
            return 0;
      }
      spin_unlock_irqrestore(&floppy_usage_lock, flags);

      /*
       * We might have scheduled a free_irq(), wait it to
       * drain first:
       */
      flush_scheduled_work();

      if (fd_request_irq()) {
            DPRINT("Unable to grab IRQ%d for the floppy driver\n",
                   FLOPPY_IRQ);
            spin_lock_irqsave(&floppy_usage_lock, flags);
            usage_count--;
            spin_unlock_irqrestore(&floppy_usage_lock, flags);
            return -1;
      }
      if (fd_request_dma()) {
            DPRINT("Unable to grab DMA%d for the floppy driver\n",
                   FLOPPY_DMA);
            fd_free_irq();
            spin_lock_irqsave(&floppy_usage_lock, flags);
            usage_count--;
            spin_unlock_irqrestore(&floppy_usage_lock, flags);
            return -1;
      }

      for (fdc = 0; fdc < N_FDC; fdc++) {
            if (FDCS->address != -1) {
                  if (!request_region(FDCS->address + 2, 4, "floppy")) {
                        DPRINT("Floppy io-port 0x%04lx in use\n",
                               FDCS->address + 2);
                        goto cleanup1;
                  }
                  if (!request_region(FDCS->address + 7, 1, "floppy DIR")) {
                        DPRINT("Floppy io-port 0x%04lx in use\n",
                               FDCS->address + 7);
                        goto cleanup2;
                  }
                  /* address + 6 is reserved, and may be taken by IDE.
                   * Unfortunately, Adaptec doesn't know this :-(, */
            }
      }
      for (fdc = 0; fdc < N_FDC; fdc++) {
            if (FDCS->address != -1) {
                  reset_fdc_info(1);
                  fd_outb(FDCS->dor, FD_DOR);
            }
      }
      fdc = 0;
      set_dor(0, ~0, 8);      /* avoid immediate interrupt */

      for (fdc = 0; fdc < N_FDC; fdc++)
            if (FDCS->address != -1)
                  fd_outb(FDCS->dor, FD_DOR);
      /*
       *      The driver will try and free resources and relies on us
       *      to know if they were allocated or not.
       */
      fdc = 0;
      irqdma_allocated = 1;
      return 0;
cleanup2:
      release_region(FDCS->address + 2, 4);
cleanup1:
      fd_free_irq();
      fd_free_dma();
      while (--fdc >= 0) {
            release_region(FDCS->address + 2, 4);
            release_region(FDCS->address + 7, 1);
      }
      spin_lock_irqsave(&floppy_usage_lock, flags);
      usage_count--;
      spin_unlock_irqrestore(&floppy_usage_lock, flags);
      return -1;
}

static void floppy_release_irq_and_dma(void)
{
      int old_fdc;
#ifdef FLOPPY_SANITY_CHECK
#ifndef __sparc__
      int drive;
#endif
#endif
      long tmpsize;
      unsigned long tmpaddr;
      unsigned long flags;

      spin_lock_irqsave(&floppy_usage_lock, flags);
      if (--usage_count) {
            spin_unlock_irqrestore(&floppy_usage_lock, flags);
            return;
      }
      spin_unlock_irqrestore(&floppy_usage_lock, flags);
      if (irqdma_allocated) {
            fd_disable_dma();
            fd_free_dma();
            fd_free_irq();
            irqdma_allocated = 0;
      }
      set_dor(0, ~0, 8);
#if N_FDC > 1
      set_dor(1, ~8, 0);
#endif
      floppy_enable_hlt();

      if (floppy_track_buffer && max_buffer_sectors) {
            tmpsize = max_buffer_sectors * 1024;
            tmpaddr = (unsigned long)floppy_track_buffer;
            floppy_track_buffer = NULL;
            max_buffer_sectors = 0;
            buffer_min = buffer_max = -1;
            fd_dma_mem_free(tmpaddr, tmpsize);
      }
#ifdef FLOPPY_SANITY_CHECK
#ifndef __sparc__
      for (drive = 0; drive < N_FDC * 4; drive++)
            if (timer_pending(motor_off_timer + drive))
                  printk("motor off timer %d still active\n", drive);
#endif

      if (timer_pending(&fd_timeout))
            printk("floppy timer still active:%s\n", timeout_message);
      if (timer_pending(&fd_timer))
            printk("auxiliary floppy timer still active\n");
      if (floppy_work.pending)
            printk("work still pending\n");
#endif
      old_fdc = fdc;
      for (fdc = 0; fdc < N_FDC; fdc++)
            if (FDCS->address != -1) {
                  release_region(FDCS->address + 2, 4);
                  release_region(FDCS->address + 7, 1);
            }
      fdc = old_fdc;
}

#ifdef MODULE

static char *floppy;

static void __init parse_floppy_cfg_string(char *cfg)
{
      char *ptr;

      while (*cfg) {
            for (ptr = cfg; *cfg && *cfg != ' ' && *cfg != '\t'; cfg++) ;
            if (*cfg) {
                  *cfg = '\0';
                  cfg++;
            }
            if (*ptr)
                  floppy_setup(ptr);
      }
}

int __init init_module(void)
{
      if (floppy)
            parse_floppy_cfg_string(floppy);
      return floppy_init();
}

void cleanup_module(void)
{
      int drive;

      init_completion(&device_release);
      blk_unregister_region(MKDEV(FLOPPY_MAJOR, 0), 256);
      unregister_blkdev(FLOPPY_MAJOR, "fd");

      for (drive = 0; drive < N_DRIVE; drive++) {
            del_timer_sync(&motor_off_timer[drive]);

            if ((allowed_drive_mask & (1 << drive)) &&
                fdc_state[FDC(drive)].version != FDC_NONE) {
                  del_gendisk(disks[drive]);
                  device_remove_file(&floppy_device[drive].dev, &dev_attr_cmos);
                  platform_device_unregister(&floppy_device[drive]);
            }
            put_disk(disks[drive]);
      }

      del_timer_sync(&fd_timeout);
      del_timer_sync(&fd_timer);
      blk_cleanup_queue(floppy_queue);

      if (usage_count)
            floppy_release_irq_and_dma();

      /* eject disk, if any */
      fd_eject(0);

      wait_for_completion(&device_release);
}

module_param(floppy, charp, 0);
module_param(FLOPPY_IRQ, int, 0);
module_param(FLOPPY_DMA, int, 0);
MODULE_AUTHOR("Alain L. Knaff");
MODULE_SUPPORTED_DEVICE("fd");
MODULE_LICENSE("GPL");

#else

__setup("floppy=", floppy_setup);
module_init(floppy_init)
#endif

MODULE_ALIAS_BLOCKDEV_MAJOR(FLOPPY_MAJOR);

Generated by  Doxygen 1.6.0   Back to index