Logo Search packages:      
Sourcecode: linux-2.6 version File versions  Download package

istallion.c

/*****************************************************************************/

/*
 *    istallion.c  -- stallion intelligent multiport serial driver.
 *
 *    Copyright (C) 1996-1999  Stallion Technologies
 *    Copyright (C) 1994-1996  Greg Ungerer.
 *
 *    This code is loosely based on the Linux serial driver, written by
 *    Linus Torvalds, Theodore T'so and others.
 *
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*****************************************************************************/

#include <linux/module.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/tty.h>
#include <linux/tty_flip.h>
#include <linux/serial.h>
#include <linux/cdk.h>
#include <linux/comstats.h>
#include <linux/istallion.h>
#include <linux/ioport.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/wait.h>
#include <linux/eisa.h>

#include <asm/io.h>
#include <asm/uaccess.h>

#include <linux/pci.h>

/*****************************************************************************/

/*
 *    Define different board types. Not all of the following board types
 *    are supported by this driver. But I will use the standard "assigned"
 *    board numbers. Currently supported boards are abbreviated as:
 *    ECP = EasyConnection 8/64, ONB = ONboard, BBY = Brumby and
 *    STAL = Stallion.
 */
#define     BRD_UNKNOWN 0
#define     BRD_STALLION      1
#define     BRD_BRUMBY4 2
#define     BRD_ONBOARD2      3
#define     BRD_ONBOARD 4
#define     BRD_BRUMBY8 5
#define     BRD_BRUMBY16      6
#define     BRD_ONBOARDE      7
#define     BRD_ONBOARD32     9
#define     BRD_ONBOARD2_32   10
#define     BRD_ONBOARDRS     11
#define     BRD_EASYIO  20
#define     BRD_ECH           21
#define     BRD_ECHMC   22
#define     BRD_ECP           23
#define BRD_ECPE  24
#define     BRD_ECPMC   25
#define     BRD_ECHPCI  26
#define     BRD_ECH64PCI      27
#define     BRD_EASYIOPCI     28
#define     BRD_ECPPCI  29

#define     BRD_BRUMBY  BRD_BRUMBY4

/*
 *    Define a configuration structure to hold the board configuration.
 *    Need to set this up in the code (for now) with the boards that are
 *    to be configured into the system. This is what needs to be modified
 *    when adding/removing/modifying boards. Each line entry in the
 *    stli_brdconf[] array is a board. Each line contains io/irq/memory
 *    ranges for that board (as well as what type of board it is).
 *    Some examples:
 *          { BRD_ECP, 0x2a0, 0, 0xcc000, 0, 0 },
 *    This line will configure an EasyConnection 8/64 at io address 2a0,
 *    and shared memory address of cc000. Multiple EasyConnection 8/64
 *    boards can share the same shared memory address space. No interrupt
 *    is required for this board type.
 *    Another example:
 *          { BRD_ECPE, 0x5000, 0, 0x80000000, 0, 0 },
 *    This line will configure an EasyConnection 8/64 EISA in slot 5 and
 *    shared memory address of 0x80000000 (2 GByte). Multiple
 *    EasyConnection 8/64 EISA boards can share the same shared memory
 *    address space. No interrupt is required for this board type.
 *    Another example:
 *          { BRD_ONBOARD, 0x240, 0, 0xd0000, 0, 0 },
 *    This line will configure an ONboard (ISA type) at io address 240,
 *    and shared memory address of d0000. Multiple ONboards can share
 *    the same shared memory address space. No interrupt required.
 *    Another example:
 *          { BRD_BRUMBY4, 0x360, 0, 0xc8000, 0, 0 },
 *    This line will configure a Brumby board (any number of ports!) at
 *    io address 360 and shared memory address of c8000. All Brumby boards
 *    configured into a system must have their own separate io and memory
 *    addresses. No interrupt is required.
 *    Another example:
 *          { BRD_STALLION, 0x330, 0, 0xd0000, 0, 0 },
 *    This line will configure an original Stallion board at io address 330
 *    and shared memory address d0000 (this would only be valid for a "V4.0"
 *    or Rev.O Stallion board). All Stallion boards configured into the
 *    system must have their own separate io and memory addresses. No
 *    interrupt is required.
 */

typedef struct {
      int         brdtype;
      int         ioaddr1;
      int         ioaddr2;
      unsigned long     memaddr;
      int         irq;
      int         irqtype;
} stlconf_t;

static stlconf_t  stli_brdconf[] = {
      /*{ BRD_ECP, 0x2a0, 0, 0xcc000, 0, 0 },*/
};

static int  stli_nrbrds = ARRAY_SIZE(stli_brdconf);

/* stli_lock must NOT be taken holding brd_lock */
static spinlock_t stli_lock;  /* TTY logic lock */
static spinlock_t brd_lock;   /* Board logic lock */

/*
 *    There is some experimental EISA board detection code in this driver.
 *    By default it is disabled, but for those that want to try it out,
 *    then set the define below to be 1.
 */
#define     STLI_EISAPROBE    0

/*****************************************************************************/

/*
 *    Define some important driver characteristics. Device major numbers
 *    allocated as per Linux Device Registry.
 */
#ifndef     STL_SIOMEMMAJOR
#define     STL_SIOMEMMAJOR         28
#endif
#ifndef     STL_SERIALMAJOR
#define     STL_SERIALMAJOR         24
#endif
#ifndef     STL_CALLOUTMAJOR
#define     STL_CALLOUTMAJOR  25
#endif

/*****************************************************************************/

/*
 *    Define our local driver identity first. Set up stuff to deal with
 *    all the local structures required by a serial tty driver.
 */
static char *stli_drvtitle = "Stallion Intelligent Multiport Serial Driver";
static char *stli_drvname = "istallion";
static char *stli_drvversion = "5.6.0";
static char *stli_serialname = "ttyE";

static struct tty_driver      *stli_serial;


#define     STLI_TXBUFSIZE          4096

/*
 *    Use a fast local buffer for cooked characters. Typically a whole
 *    bunch of cooked characters come in for a port, 1 at a time. So we
 *    save those up into a local buffer, then write out the whole lot
 *    with a large memcpy. Just use 1 buffer for all ports, since its
 *    use it is only need for short periods of time by each port.
 */
static char             *stli_txcookbuf;
static int              stli_txcooksize;
static int              stli_txcookrealsize;
static struct tty_struct      *stli_txcooktty;

/*
 *    Define a local default termios struct. All ports will be created
 *    with this termios initially. Basically all it defines is a raw port
 *    at 9600 baud, 8 data bits, no parity, 1 stop bit.
 */
static struct termios         stli_deftermios = {
      .c_cflag    = (B9600 | CS8 | CREAD | HUPCL | CLOCAL),
      .c_cc       = INIT_C_CC,
};

/*
 *    Define global stats structures. Not used often, and can be
 *    re-used for each stats call.
 */
static comstats_t stli_comstats;
static combrd_t         stli_brdstats;
static asystats_t stli_cdkstats;
static stlibrd_t  stli_dummybrd;
static stliport_t stli_dummyport;

/*****************************************************************************/

static stlibrd_t  *stli_brds[STL_MAXBRDS];

static int        stli_shared;

/*
 *    Per board state flags. Used with the state field of the board struct.
 *    Not really much here... All we need to do is keep track of whether
 *    the board has been detected, and whether it is actually running a slave
 *    or not.
 */
#define     BST_FOUND   0x1
#define     BST_STARTED 0x2

/*
 *    Define the set of port state flags. These are marked for internal
 *    state purposes only, usually to do with the state of communications
 *    with the slave. Most of them need to be updated atomically, so always
 *    use the bit setting operations (unless protected by cli/sti).
 */
#define     ST_INITIALIZING   1
#define     ST_OPENING  2
#define     ST_CLOSING  3
#define     ST_CMDING   4
#define     ST_TXBUSY   5
#define     ST_RXING    6
#define     ST_DOFLUSHRX      7
#define     ST_DOFLUSHTX      8
#define     ST_DOSIGS   9
#define     ST_RXSTOP   10
#define     ST_GETSIGS  11

/*
 *    Define an array of board names as printable strings. Handy for
 *    referencing boards when printing trace and stuff.
 */
static char *stli_brdnames[] = {
      "Unknown",
      "Stallion",
      "Brumby",
      "ONboard-MC",
      "ONboard",
      "Brumby",
      "Brumby",
      "ONboard-EI",
      (char *) NULL,
      "ONboard",
      "ONboard-MC",
      "ONboard-MC",
      (char *) NULL,
      (char *) NULL,
      (char *) NULL,
      (char *) NULL,
      (char *) NULL,
      (char *) NULL,
      (char *) NULL,
      (char *) NULL,
      "EasyIO",
      "EC8/32-AT",
      "EC8/32-MC",
      "EC8/64-AT",
      "EC8/64-EI",
      "EC8/64-MC",
      "EC8/32-PCI",
      "EC8/64-PCI",
      "EasyIO-PCI",
      "EC/RA-PCI",
};

/*****************************************************************************/

/*
 *    Define some string labels for arguments passed from the module
 *    load line. These allow for easy board definitions, and easy
 *    modification of the io, memory and irq resoucres.
 */

static char *board0[8];
static char *board1[8];
static char *board2[8];
static char *board3[8];

static char **stli_brdsp[] = {
      (char **) &board0,
      (char **) &board1,
      (char **) &board2,
      (char **) &board3
};

/*
 *    Define a set of common board names, and types. This is used to
 *    parse any module arguments.
 */

typedef struct stlibrdtype {
      char  *name;
      int   type;
} stlibrdtype_t;

static stlibrdtype_t    stli_brdstr[] = {
      { "stallion", BRD_STALLION },
      { "1", BRD_STALLION },
      { "brumby", BRD_BRUMBY },
      { "brumby4", BRD_BRUMBY },
      { "brumby/4", BRD_BRUMBY },
      { "brumby-4", BRD_BRUMBY },
      { "brumby8", BRD_BRUMBY },
      { "brumby/8", BRD_BRUMBY },
      { "brumby-8", BRD_BRUMBY },
      { "brumby16", BRD_BRUMBY },
      { "brumby/16", BRD_BRUMBY },
      { "brumby-16", BRD_BRUMBY },
      { "2", BRD_BRUMBY },
      { "onboard2", BRD_ONBOARD2 },
      { "onboard-2", BRD_ONBOARD2 },
      { "onboard/2", BRD_ONBOARD2 },
      { "onboard-mc", BRD_ONBOARD2 },
      { "onboard/mc", BRD_ONBOARD2 },
      { "onboard-mca", BRD_ONBOARD2 },
      { "onboard/mca", BRD_ONBOARD2 },
      { "3", BRD_ONBOARD2 },
      { "onboard", BRD_ONBOARD },
      { "onboardat", BRD_ONBOARD },
      { "4", BRD_ONBOARD },
      { "onboarde", BRD_ONBOARDE },
      { "onboard-e", BRD_ONBOARDE },
      { "onboard/e", BRD_ONBOARDE },
      { "onboard-ei", BRD_ONBOARDE },
      { "onboard/ei", BRD_ONBOARDE },
      { "7", BRD_ONBOARDE },
      { "ecp", BRD_ECP },
      { "ecpat", BRD_ECP },
      { "ec8/64", BRD_ECP },
      { "ec8/64-at", BRD_ECP },
      { "ec8/64-isa", BRD_ECP },
      { "23", BRD_ECP },
      { "ecpe", BRD_ECPE },
      { "ecpei", BRD_ECPE },
      { "ec8/64-e", BRD_ECPE },
      { "ec8/64-ei", BRD_ECPE },
      { "24", BRD_ECPE },
      { "ecpmc", BRD_ECPMC },
      { "ec8/64-mc", BRD_ECPMC },
      { "ec8/64-mca", BRD_ECPMC },
      { "25", BRD_ECPMC },
      { "ecppci", BRD_ECPPCI },
      { "ec/ra", BRD_ECPPCI },
      { "ec/ra-pc", BRD_ECPPCI },
      { "ec/ra-pci", BRD_ECPPCI },
      { "29", BRD_ECPPCI },
};

/*
 *    Define the module agruments.
 */
MODULE_AUTHOR("Greg Ungerer");
MODULE_DESCRIPTION("Stallion Intelligent Multiport Serial Driver");
MODULE_LICENSE("GPL");


module_param_array(board0, charp, NULL, 0);
MODULE_PARM_DESC(board0, "Board 0 config -> name[,ioaddr[,memaddr]");
module_param_array(board1, charp, NULL, 0);
MODULE_PARM_DESC(board1, "Board 1 config -> name[,ioaddr[,memaddr]");
module_param_array(board2, charp, NULL, 0);
MODULE_PARM_DESC(board2, "Board 2 config -> name[,ioaddr[,memaddr]");
module_param_array(board3, charp, NULL, 0);
MODULE_PARM_DESC(board3, "Board 3 config -> name[,ioaddr[,memaddr]");

/*
 *    Set up a default memory address table for EISA board probing.
 *    The default addresses are all bellow 1Mbyte, which has to be the
 *    case anyway. They should be safe, since we only read values from
 *    them, and interrupts are disabled while we do it. If the higher
 *    memory support is compiled in then we also try probing around
 *    the 1Gb, 2Gb and 3Gb areas as well...
 */
static unsigned long    stli_eisamemprobeaddrs[] = {
      0xc0000,    0xd0000,    0xe0000,    0xf0000,
      0x80000000, 0x80010000, 0x80020000, 0x80030000,
      0x40000000, 0x40010000, 0x40020000, 0x40030000,
      0xc0000000, 0xc0010000, 0xc0020000, 0xc0030000,
      0xff000000, 0xff010000, 0xff020000, 0xff030000,
};

static int  stli_eisamempsize = ARRAY_SIZE(stli_eisamemprobeaddrs);

/*
 *    Define the Stallion PCI vendor and device IDs.
 */
#ifdef CONFIG_PCI
#ifndef     PCI_VENDOR_ID_STALLION
#define     PCI_VENDOR_ID_STALLION        0x124d
#endif
#ifndef PCI_DEVICE_ID_ECRA
#define     PCI_DEVICE_ID_ECRA            0x0004
#endif

static struct pci_device_id istallion_pci_tbl[] = {
      { PCI_DEVICE(PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_ECRA), },
      { 0 }
};
MODULE_DEVICE_TABLE(pci, istallion_pci_tbl);

#endif /* CONFIG_PCI */

/*****************************************************************************/

/*
 *    Hardware configuration info for ECP boards. These defines apply
 *    to the directly accessible io ports of the ECP. There is a set of
 *    defines for each ECP board type, ISA, EISA, MCA and PCI.
 */
#define     ECP_IOSIZE  4

#define     ECP_MEMSIZE (128 * 1024)
#define     ECP_PCIMEMSIZE    (256 * 1024)

#define     ECP_ATPAGESIZE    (4 * 1024)
#define     ECP_MCPAGESIZE    (4 * 1024)
#define     ECP_EIPAGESIZE    (64 * 1024)
#define     ECP_PCIPAGESIZE   (64 * 1024)

#define     STL_EISAID  0x8c4e

/*
 *    Important defines for the ISA class of ECP board.
 */
#define     ECP_ATIREG  0
#define     ECP_ATCONFR 1
#define     ECP_ATMEMAR 2
#define     ECP_ATMEMPR 3
#define     ECP_ATSTOP  0x1
#define     ECP_ATINTENAB     0x10
#define     ECP_ATENABLE      0x20
#define     ECP_ATDISABLE     0x00
#define     ECP_ATADDRMASK    0x3f000
#define     ECP_ATADDRSHFT    12

/*
 *    Important defines for the EISA class of ECP board.
 */
#define     ECP_EIIREG  0
#define     ECP_EIMEMARL      1
#define     ECP_EICONFR 2
#define     ECP_EIMEMARH      3
#define     ECP_EIENABLE      0x1
#define     ECP_EIDISABLE     0x0
#define     ECP_EISTOP  0x4
#define     ECP_EIEDGE  0x00
#define     ECP_EILEVEL 0x80
#define     ECP_EIADDRMASKL   0x00ff0000
#define     ECP_EIADDRSHFTL   16
#define     ECP_EIADDRMASKH   0xff000000
#define     ECP_EIADDRSHFTH   24
#define     ECP_EIBRDENAB     0xc84

#define     ECP_EISAID  0x4

/*
 *    Important defines for the Micro-channel class of ECP board.
 *    (It has a lot in common with the ISA boards.)
 */
#define     ECP_MCIREG  0
#define     ECP_MCCONFR 1
#define     ECP_MCSTOP  0x20
#define     ECP_MCENABLE      0x80
#define     ECP_MCDISABLE     0x00

/*
 *    Important defines for the PCI class of ECP board.
 *    (It has a lot in common with the other ECP boards.)
 */
#define     ECP_PCIIREG 0
#define     ECP_PCICONFR      1
#define     ECP_PCISTOP 0x01

/*
 *    Hardware configuration info for ONboard and Brumby boards. These
 *    defines apply to the directly accessible io ports of these boards.
 */
#define     ONB_IOSIZE  16
#define     ONB_MEMSIZE (64 * 1024)
#define     ONB_ATPAGESIZE    (64 * 1024)
#define     ONB_MCPAGESIZE    (64 * 1024)
#define     ONB_EIMEMSIZE     (128 * 1024)
#define     ONB_EIPAGESIZE    (64 * 1024)

/*
 *    Important defines for the ISA class of ONboard board.
 */
#define     ONB_ATIREG  0
#define     ONB_ATMEMAR 1
#define     ONB_ATCONFR 2
#define     ONB_ATSTOP  0x4
#define     ONB_ATENABLE      0x01
#define     ONB_ATDISABLE     0x00
#define     ONB_ATADDRMASK    0xff0000
#define     ONB_ATADDRSHFT    16

#define     ONB_MEMENABLO     0
#define     ONB_MEMENABHI     0x02

/*
 *    Important defines for the EISA class of ONboard board.
 */
#define     ONB_EIIREG  0
#define     ONB_EIMEMARL      1
#define     ONB_EICONFR 2
#define     ONB_EIMEMARH      3
#define     ONB_EIENABLE      0x1
#define     ONB_EIDISABLE     0x0
#define     ONB_EISTOP  0x4
#define     ONB_EIEDGE  0x00
#define     ONB_EILEVEL 0x80
#define     ONB_EIADDRMASKL   0x00ff0000
#define     ONB_EIADDRSHFTL   16
#define     ONB_EIADDRMASKH   0xff000000
#define     ONB_EIADDRSHFTH   24
#define     ONB_EIBRDENAB     0xc84

#define     ONB_EISAID  0x1

/*
 *    Important defines for the Brumby boards. They are pretty simple,
 *    there is not much that is programmably configurable.
 */
#define     BBY_IOSIZE  16
#define     BBY_MEMSIZE (64 * 1024)
#define     BBY_PAGESIZE      (16 * 1024)

#define     BBY_ATIREG  0
#define     BBY_ATCONFR 1
#define     BBY_ATSTOP  0x4

/*
 *    Important defines for the Stallion boards. They are pretty simple,
 *    there is not much that is programmably configurable.
 */
#define     STAL_IOSIZE 16
#define     STAL_MEMSIZE      (64 * 1024)
#define     STAL_PAGESIZE     (64 * 1024)

/*
 *    Define the set of status register values for EasyConnection panels.
 *    The signature will return with the status value for each panel. From
 *    this we can determine what is attached to the board - before we have
 *    actually down loaded any code to it.
 */
#define     ECH_PNLSTATUS     2
#define     ECH_PNL16PORT     0x20
#define     ECH_PNLIDMASK     0x07
#define     ECH_PNLXPID 0x40
#define     ECH_PNLINTRPEND   0x80

/*
 *    Define some macros to do things to the board. Even those these boards
 *    are somewhat related there is often significantly different ways of
 *    doing some operation on it (like enable, paging, reset, etc). So each
 *    board class has a set of functions which do the commonly required
 *    operations. The macros below basically just call these functions,
 *    generally checking for a NULL function - which means that the board
 *    needs nothing done to it to achieve this operation!
 */
#define     EBRDINIT(brdp)                                  \
      if (brdp->init != NULL)                         \
            (* brdp->init)(brdp)

#define     EBRDENABLE(brdp)                          \
      if (brdp->enable != NULL)                       \
            (* brdp->enable)(brdp);

#define     EBRDDISABLE(brdp)                         \
      if (brdp->disable != NULL)                      \
            (* brdp->disable)(brdp);

#define     EBRDINTR(brdp)                                  \
      if (brdp->intr != NULL)                         \
            (* brdp->intr)(brdp);

#define     EBRDRESET(brdp)                                 \
      if (brdp->reset != NULL)                        \
            (* brdp->reset)(brdp);

#define     EBRDGETMEMPTR(brdp,offset)                      \
      (* brdp->getmemptr)(brdp, offset, __LINE__)

/*
 *    Define the maximal baud rate, and the default baud base for ports.
 */
#define     STL_MAXBAUD 460800
#define     STL_BAUDBASE      115200
#define     STL_CLOSEDELAY    (5 * HZ / 10)

/*****************************************************************************/

/*
 *    Define macros to extract a brd or port number from a minor number.
 */
#define     MINOR2BRD(min)          (((min) & 0xc0) >> 6)
#define     MINOR2PORT(min)         ((min) & 0x3f)

/*
 *    Define a baud rate table that converts termios baud rate selector
 *    into the actual baud rate value. All baud rate calculations are based
 *    on the actual baud rate required.
 */
static unsigned int     stli_baudrates[] = {
      0, 50, 75, 110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800,
      9600, 19200, 38400, 57600, 115200, 230400, 460800, 921600
};

/*****************************************************************************/

/*
 *    Define some handy local macros...
 */
#undef MIN
#define     MIN(a,b)    (((a) <= (b)) ? (a) : (b))

#undef      TOLOWER
#define     TOLOWER(x)  ((((x) >= 'A') && ((x) <= 'Z')) ? ((x) + 0x20) : (x))

/*****************************************************************************/

/*
 *    Prototype all functions in this driver!
 */

static int  stli_parsebrd(stlconf_t *confp, char **argp);
static int  stli_init(void);
static int  stli_open(struct tty_struct *tty, struct file *filp);
static void stli_close(struct tty_struct *tty, struct file *filp);
static int  stli_write(struct tty_struct *tty, const unsigned char *buf, int count);
static void stli_putchar(struct tty_struct *tty, unsigned char ch);
static void stli_flushchars(struct tty_struct *tty);
static int  stli_writeroom(struct tty_struct *tty);
static int  stli_charsinbuffer(struct tty_struct *tty);
static int  stli_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg);
static void stli_settermios(struct tty_struct *tty, struct termios *old);
static void stli_throttle(struct tty_struct *tty);
static void stli_unthrottle(struct tty_struct *tty);
static void stli_stop(struct tty_struct *tty);
static void stli_start(struct tty_struct *tty);
static void stli_flushbuffer(struct tty_struct *tty);
static void stli_breakctl(struct tty_struct *tty, int state);
static void stli_waituntilsent(struct tty_struct *tty, int timeout);
static void stli_sendxchar(struct tty_struct *tty, char ch);
static void stli_hangup(struct tty_struct *tty);
static int  stli_portinfo(stlibrd_t *brdp, stliport_t *portp, int portnr, char *pos);

static int  stli_brdinit(stlibrd_t *brdp);
static int  stli_startbrd(stlibrd_t *brdp);
static ssize_t    stli_memread(struct file *fp, char __user *buf, size_t count, loff_t *offp);
static ssize_t    stli_memwrite(struct file *fp, const char __user *buf, size_t count, loff_t *offp);
static int  stli_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg);
static void stli_brdpoll(stlibrd_t *brdp, cdkhdr_t __iomem *hdrp);
static void stli_poll(unsigned long arg);
static int  stli_hostcmd(stlibrd_t *brdp, stliport_t *portp);
static int  stli_initopen(stlibrd_t *brdp, stliport_t *portp);
static int  stli_rawopen(stlibrd_t *brdp, stliport_t *portp, unsigned long arg, int wait);
static int  stli_rawclose(stlibrd_t *brdp, stliport_t *portp, unsigned long arg, int wait);
static int  stli_waitcarrier(stlibrd_t *brdp, stliport_t *portp, struct file *filp);
static void stli_dohangup(void *arg);
static int  stli_setport(stliport_t *portp);
static int  stli_cmdwait(stlibrd_t *brdp, stliport_t *portp, unsigned long cmd, void *arg, int size, int copyback);
static void stli_sendcmd(stlibrd_t *brdp, stliport_t *portp, unsigned long cmd, void *arg, int size, int copyback);
static void __stli_sendcmd(stlibrd_t *brdp, stliport_t *portp, unsigned long cmd, void *arg, int size, int copyback);
static void stli_dodelaycmd(stliport_t *portp, cdkctrl_t __iomem *cp);
static void stli_mkasyport(stliport_t *portp, asyport_t *pp, struct termios *tiosp);
static void stli_mkasysigs(asysigs_t *sp, int dtr, int rts);
static long stli_mktiocm(unsigned long sigvalue);
static void stli_read(stlibrd_t *brdp, stliport_t *portp);
static int  stli_getserial(stliport_t *portp, struct serial_struct __user *sp);
static int  stli_setserial(stliport_t *portp, struct serial_struct __user *sp);
static int  stli_getbrdstats(combrd_t __user *bp);
static int  stli_getportstats(stliport_t *portp, comstats_t __user *cp);
static int  stli_portcmdstats(stliport_t *portp);
static int  stli_clrportstats(stliport_t *portp, comstats_t __user *cp);
static int  stli_getportstruct(stliport_t __user *arg);
static int  stli_getbrdstruct(stlibrd_t __user *arg);
static stlibrd_t *stli_allocbrd(void);

static void stli_ecpinit(stlibrd_t *brdp);
static void stli_ecpenable(stlibrd_t *brdp);
static void stli_ecpdisable(stlibrd_t *brdp);
static char *stli_ecpgetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
static void stli_ecpreset(stlibrd_t *brdp);
static void stli_ecpintr(stlibrd_t *brdp);
static void stli_ecpeiinit(stlibrd_t *brdp);
static void stli_ecpeienable(stlibrd_t *brdp);
static void stli_ecpeidisable(stlibrd_t *brdp);
static char *stli_ecpeigetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
static void stli_ecpeireset(stlibrd_t *brdp);
static void stli_ecpmcenable(stlibrd_t *brdp);
static void stli_ecpmcdisable(stlibrd_t *brdp);
static char *stli_ecpmcgetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
static void stli_ecpmcreset(stlibrd_t *brdp);
static void stli_ecppciinit(stlibrd_t *brdp);
static char *stli_ecppcigetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
static void stli_ecppcireset(stlibrd_t *brdp);

static void stli_onbinit(stlibrd_t *brdp);
static void stli_onbenable(stlibrd_t *brdp);
static void stli_onbdisable(stlibrd_t *brdp);
static char *stli_onbgetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
static void stli_onbreset(stlibrd_t *brdp);
static void stli_onbeinit(stlibrd_t *brdp);
static void stli_onbeenable(stlibrd_t *brdp);
static void stli_onbedisable(stlibrd_t *brdp);
static char *stli_onbegetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
static void stli_onbereset(stlibrd_t *brdp);
static void stli_bbyinit(stlibrd_t *brdp);
static char *stli_bbygetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
static void stli_bbyreset(stlibrd_t *brdp);
static void stli_stalinit(stlibrd_t *brdp);
static char *stli_stalgetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
static void stli_stalreset(stlibrd_t *brdp);

static stliport_t *stli_getport(int brdnr, int panelnr, int portnr);

static int  stli_initecp(stlibrd_t *brdp);
static int  stli_initonb(stlibrd_t *brdp);
static int  stli_eisamemprobe(stlibrd_t *brdp);
static int  stli_initports(stlibrd_t *brdp);

#ifdef      CONFIG_PCI
static int  stli_initpcibrd(int brdtype, struct pci_dev *devp);
#endif

/*****************************************************************************/

/*
 *    Define the driver info for a user level shared memory device. This
 *    device will work sort of like the /dev/kmem device - except that it
 *    will give access to the shared memory on the Stallion intelligent
 *    board. This is also a very useful debugging tool.
 */
static const struct file_operations stli_fsiomem = {
      .owner            = THIS_MODULE,
      .read       = stli_memread,
      .write            = stli_memwrite,
      .ioctl            = stli_memioctl,
};

/*****************************************************************************/

/*
 *    Define a timer_list entry for our poll routine. The slave board
 *    is polled every so often to see if anything needs doing. This is
 *    much cheaper on host cpu than using interrupts. It turns out to
 *    not increase character latency by much either...
 */
static DEFINE_TIMER(stli_timerlist, stli_poll, 0, 0);

static int  stli_timeron;

/*
 *    Define the calculation for the timeout routine.
 */
#define     STLI_TIMEOUT      (jiffies + 1)

/*****************************************************************************/

static struct class *istallion_class;

/*
 *    Loadable module initialization stuff.
 */

static int __init istallion_module_init(void)
{
      stli_init();
      return 0;
}

/*****************************************************************************/

static void __exit istallion_module_exit(void)
{
      stlibrd_t   *brdp;
      stliport_t  *portp;
      int         i, j;

      printk(KERN_INFO "Unloading %s: version %s\n", stli_drvtitle,
            stli_drvversion);

      /*
       *    Free up all allocated resources used by the ports. This includes
       *    memory and interrupts.
       */
      if (stli_timeron) {
            stli_timeron = 0;
            del_timer_sync(&stli_timerlist);
      }

      i = tty_unregister_driver(stli_serial);
      if (i) {
            printk("STALLION: failed to un-register tty driver, "
                  "errno=%d\n", -i);
            return;
      }
      put_tty_driver(stli_serial);
      for (i = 0; i < 4; i++)
            class_device_destroy(istallion_class, MKDEV(STL_SIOMEMMAJOR, i));
      class_destroy(istallion_class);
      if ((i = unregister_chrdev(STL_SIOMEMMAJOR, "staliomem")))
            printk("STALLION: failed to un-register serial memory device, "
                  "errno=%d\n", -i);

      kfree(stli_txcookbuf);

      for (i = 0; (i < stli_nrbrds); i++) {
            if ((brdp = stli_brds[i]) == NULL)
                  continue;
            for (j = 0; (j < STL_MAXPORTS); j++) {
                  portp = brdp->ports[j];
                  if (portp != NULL) {
                        if (portp->tty != NULL)
                              tty_hangup(portp->tty);
                        kfree(portp);
                  }
            }

            iounmap(brdp->membase);
            if (brdp->iosize > 0)
                  release_region(brdp->iobase, brdp->iosize);
            kfree(brdp);
            stli_brds[i] = NULL;
      }
}

module_init(istallion_module_init);
module_exit(istallion_module_exit);

/*****************************************************************************/

/*
 *    Check for any arguments passed in on the module load command line.
 */

static void stli_argbrds(void)
{
      stlconf_t conf;
      stlibrd_t *brdp;
      int i;

      for (i = stli_nrbrds; i < ARRAY_SIZE(stli_brdsp); i++) {
            memset(&conf, 0, sizeof(conf));
            if (stli_parsebrd(&conf, stli_brdsp[i]) == 0)
                  continue;
            if ((brdp = stli_allocbrd()) == NULL)
                  continue;
            stli_nrbrds = i + 1;
            brdp->brdnr = i;
            brdp->brdtype = conf.brdtype;
            brdp->iobase = conf.ioaddr1;
            brdp->memaddr = conf.memaddr;
            stli_brdinit(brdp);
      }
}

/*****************************************************************************/

/*
 *    Convert an ascii string number into an unsigned long.
 */

static unsigned long stli_atol(char *str)
{
      unsigned long val;
      int base, c;
      char *sp;

      val = 0;
      sp = str;
      if ((*sp == '0') && (*(sp+1) == 'x')) {
            base = 16;
            sp += 2;
      } else if (*sp == '0') {
            base = 8;
            sp++;
      } else {
            base = 10;
      }

      for (; (*sp != 0); sp++) {
            c = (*sp > '9') ? (TOLOWER(*sp) - 'a' + 10) : (*sp - '0');
            if ((c < 0) || (c >= base)) {
                  printk("STALLION: invalid argument %s\n", str);
                  val = 0;
                  break;
            }
            val = (val * base) + c;
      }
      return(val);
}

/*****************************************************************************/

/*
 *    Parse the supplied argument string, into the board conf struct.
 */

static int stli_parsebrd(stlconf_t *confp, char **argp)
{
      char *sp;
      int i;

      if (argp[0] == NULL || *argp[0] == 0)
            return 0;

      for (sp = argp[0], i = 0; ((*sp != 0) && (i < 25)); sp++, i++)
            *sp = TOLOWER(*sp);

      for (i = 0; i < ARRAY_SIZE(stli_brdstr); i++) {
            if (strcmp(stli_brdstr[i].name, argp[0]) == 0)
                  break;
      }
      if (i == ARRAY_SIZE(stli_brdstr)) {
            printk("STALLION: unknown board name, %s?\n", argp[0]);
            return 0;
      }

      confp->brdtype = stli_brdstr[i].type;
      if (argp[1] != NULL && *argp[1] != 0)
            confp->ioaddr1 = stli_atol(argp[1]);
      if (argp[2] !=  NULL && *argp[2] != 0)
            confp->memaddr = stli_atol(argp[2]);
      return(1);
}

/*****************************************************************************/

static int stli_open(struct tty_struct *tty, struct file *filp)
{
      stlibrd_t *brdp;
      stliport_t *portp;
      unsigned int minordev;
      int brdnr, portnr, rc;

      minordev = tty->index;
      brdnr = MINOR2BRD(minordev);
      if (brdnr >= stli_nrbrds)
            return -ENODEV;
      brdp = stli_brds[brdnr];
      if (brdp == NULL)
            return -ENODEV;
      if ((brdp->state & BST_STARTED) == 0)
            return -ENODEV;
      portnr = MINOR2PORT(minordev);
      if ((portnr < 0) || (portnr > brdp->nrports))
            return -ENODEV;

      portp = brdp->ports[portnr];
      if (portp == NULL)
            return -ENODEV;
      if (portp->devnr < 1)
            return -ENODEV;


/*
 *    Check if this port is in the middle of closing. If so then wait
 *    until it is closed then return error status based on flag settings.
 *    The sleep here does not need interrupt protection since the wakeup
 *    for it is done with the same context.
 */
      if (portp->flags & ASYNC_CLOSING) {
            interruptible_sleep_on(&portp->close_wait);
            if (portp->flags & ASYNC_HUP_NOTIFY)
                  return -EAGAIN;
            return -ERESTARTSYS;
      }

/*
 *    On the first open of the device setup the port hardware, and
 *    initialize the per port data structure. Since initializing the port
 *    requires several commands to the board we will need to wait for any
 *    other open that is already initializing the port.
 */
      portp->tty = tty;
      tty->driver_data = portp;
      portp->refcount++;

      wait_event_interruptible(portp->raw_wait,
                  !test_bit(ST_INITIALIZING, &portp->state));
      if (signal_pending(current))
            return -ERESTARTSYS;

      if ((portp->flags & ASYNC_INITIALIZED) == 0) {
            set_bit(ST_INITIALIZING, &portp->state);
            if ((rc = stli_initopen(brdp, portp)) >= 0) {
                  portp->flags |= ASYNC_INITIALIZED;
                  clear_bit(TTY_IO_ERROR, &tty->flags);
            }
            clear_bit(ST_INITIALIZING, &portp->state);
            wake_up_interruptible(&portp->raw_wait);
            if (rc < 0)
                  return rc;
      }

/*
 *    Check if this port is in the middle of closing. If so then wait
 *    until it is closed then return error status, based on flag settings.
 *    The sleep here does not need interrupt protection since the wakeup
 *    for it is done with the same context.
 */
      if (portp->flags & ASYNC_CLOSING) {
            interruptible_sleep_on(&portp->close_wait);
            if (portp->flags & ASYNC_HUP_NOTIFY)
                  return -EAGAIN;
            return -ERESTARTSYS;
      }

/*
 *    Based on type of open being done check if it can overlap with any
 *    previous opens still in effect. If we are a normal serial device
 *    then also we might have to wait for carrier.
 */
      if (!(filp->f_flags & O_NONBLOCK)) {
            if ((rc = stli_waitcarrier(brdp, portp, filp)) != 0)
                  return rc;
      }
      portp->flags |= ASYNC_NORMAL_ACTIVE;
      return 0;
}

/*****************************************************************************/

static void stli_close(struct tty_struct *tty, struct file *filp)
{
      stlibrd_t *brdp;
      stliport_t *portp;
      unsigned long flags;

      portp = tty->driver_data;
      if (portp == NULL)
            return;

      spin_lock_irqsave(&stli_lock, flags);
      if (tty_hung_up_p(filp)) {
            spin_unlock_irqrestore(&stli_lock, flags);
            return;
      }
      if ((tty->count == 1) && (portp->refcount != 1))
            portp->refcount = 1;
      if (portp->refcount-- > 1) {
            spin_unlock_irqrestore(&stli_lock, flags);
            return;
      }

      portp->flags |= ASYNC_CLOSING;

/*
 *    May want to wait for data to drain before closing. The BUSY flag
 *    keeps track of whether we are still transmitting or not. It is
 *    updated by messages from the slave - indicating when all chars
 *    really have drained.
 */
      if (tty == stli_txcooktty)
            stli_flushchars(tty);
      tty->closing = 1;
      spin_unlock_irqrestore(&stli_lock, flags);

      if (portp->closing_wait != ASYNC_CLOSING_WAIT_NONE)
            tty_wait_until_sent(tty, portp->closing_wait);

      portp->flags &= ~ASYNC_INITIALIZED;
      brdp = stli_brds[portp->brdnr];
      stli_rawclose(brdp, portp, 0, 0);
      if (tty->termios->c_cflag & HUPCL) {
            stli_mkasysigs(&portp->asig, 0, 0);
            if (test_bit(ST_CMDING, &portp->state))
                  set_bit(ST_DOSIGS, &portp->state);
            else
                  stli_sendcmd(brdp, portp, A_SETSIGNALS, &portp->asig,
                        sizeof(asysigs_t), 0);
      }
      clear_bit(ST_TXBUSY, &portp->state);
      clear_bit(ST_RXSTOP, &portp->state);
      set_bit(TTY_IO_ERROR, &tty->flags);
      if (tty->ldisc.flush_buffer)
            (tty->ldisc.flush_buffer)(tty);
      set_bit(ST_DOFLUSHRX, &portp->state);
      stli_flushbuffer(tty);

      tty->closing = 0;
      portp->tty = NULL;

      if (portp->openwaitcnt) {
            if (portp->close_delay)
                  msleep_interruptible(jiffies_to_msecs(portp->close_delay));
            wake_up_interruptible(&portp->open_wait);
      }

      portp->flags &= ~(ASYNC_NORMAL_ACTIVE|ASYNC_CLOSING);
      wake_up_interruptible(&portp->close_wait);
}

/*****************************************************************************/

/*
 *    Carry out first open operations on a port. This involves a number of
 *    commands to be sent to the slave. We need to open the port, set the
 *    notification events, set the initial port settings, get and set the
 *    initial signal values. We sleep and wait in between each one. But
 *    this still all happens pretty quickly.
 */

static int stli_initopen(stlibrd_t *brdp, stliport_t *portp)
{
      struct tty_struct *tty;
      asynotify_t nt;
      asyport_t aport;
      int rc;

      if ((rc = stli_rawopen(brdp, portp, 0, 1)) < 0)
            return rc;

      memset(&nt, 0, sizeof(asynotify_t));
      nt.data = (DT_TXLOW | DT_TXEMPTY | DT_RXBUSY | DT_RXBREAK);
      nt.signal = SG_DCD;
      if ((rc = stli_cmdwait(brdp, portp, A_SETNOTIFY, &nt,
          sizeof(asynotify_t), 0)) < 0)
            return rc;

      tty = portp->tty;
      if (tty == NULL)
            return -ENODEV;
      stli_mkasyport(portp, &aport, tty->termios);
      if ((rc = stli_cmdwait(brdp, portp, A_SETPORT, &aport,
          sizeof(asyport_t), 0)) < 0)
            return rc;

      set_bit(ST_GETSIGS, &portp->state);
      if ((rc = stli_cmdwait(brdp, portp, A_GETSIGNALS, &portp->asig,
          sizeof(asysigs_t), 1)) < 0)
            return rc;
      if (test_and_clear_bit(ST_GETSIGS, &portp->state))
            portp->sigs = stli_mktiocm(portp->asig.sigvalue);
      stli_mkasysigs(&portp->asig, 1, 1);
      if ((rc = stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
          sizeof(asysigs_t), 0)) < 0)
            return rc;

      return 0;
}

/*****************************************************************************/

/*
 *    Send an open message to the slave. This will sleep waiting for the
 *    acknowledgement, so must have user context. We need to co-ordinate
 *    with close events here, since we don't want open and close events
 *    to overlap.
 */

static int stli_rawopen(stlibrd_t *brdp, stliport_t *portp, unsigned long arg, int wait)
{
      cdkhdr_t __iomem *hdrp;
      cdkctrl_t __iomem *cp;
      unsigned char __iomem *bits;
      unsigned long flags;
      int rc;

/*
 *    Send a message to the slave to open this port.
 */

/*
 *    Slave is already closing this port. This can happen if a hangup
 *    occurs on this port. So we must wait until it is complete. The
 *    order of opens and closes may not be preserved across shared
 *    memory, so we must wait until it is complete.
 */
      wait_event_interruptible(portp->raw_wait,
                  !test_bit(ST_CLOSING, &portp->state));
      if (signal_pending(current)) {
            return -ERESTARTSYS;
      }

/*
 *    Everything is ready now, so write the open message into shared
 *    memory. Once the message is in set the service bits to say that
 *    this port wants service.
 */
      spin_lock_irqsave(&brd_lock, flags);
      EBRDENABLE(brdp);
      cp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
      writel(arg, &cp->openarg);
      writeb(1, &cp->open);
      hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
      bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
            portp->portidx;
      writeb(readb(bits) | portp->portbit, bits);
      EBRDDISABLE(brdp);

      if (wait == 0) {
            spin_unlock_irqrestore(&brd_lock, flags);
            return 0;
      }

/*
 *    Slave is in action, so now we must wait for the open acknowledgment
 *    to come back.
 */
      rc = 0;
      set_bit(ST_OPENING, &portp->state);
      spin_unlock_irqrestore(&brd_lock, flags);

      wait_event_interruptible(portp->raw_wait,
                  !test_bit(ST_OPENING, &portp->state));
      if (signal_pending(current))
            rc = -ERESTARTSYS;

      if ((rc == 0) && (portp->rc != 0))
            rc = -EIO;
      return rc;
}

/*****************************************************************************/

/*
 *    Send a close message to the slave. Normally this will sleep waiting
 *    for the acknowledgement, but if wait parameter is 0 it will not. If
 *    wait is true then must have user context (to sleep).
 */

static int stli_rawclose(stlibrd_t *brdp, stliport_t *portp, unsigned long arg, int wait)
{
      cdkhdr_t __iomem *hdrp;
      cdkctrl_t __iomem *cp;
      unsigned char __iomem *bits;
      unsigned long flags;
      int rc;

/*
 *    Slave is already closing this port. This can happen if a hangup
 *    occurs on this port.
 */
      if (wait) {
            wait_event_interruptible(portp->raw_wait,
                        !test_bit(ST_CLOSING, &portp->state));
            if (signal_pending(current)) {
                  return -ERESTARTSYS;
            }
      }

/*
 *    Write the close command into shared memory.
 */
      spin_lock_irqsave(&brd_lock, flags);
      EBRDENABLE(brdp);
      cp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
      writel(arg, &cp->closearg);
      writeb(1, &cp->close);
      hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
      bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
            portp->portidx;
      writeb(readb(bits) |portp->portbit, bits);
      EBRDDISABLE(brdp);

      set_bit(ST_CLOSING, &portp->state);
      spin_unlock_irqrestore(&brd_lock, flags);

      if (wait == 0)
            return 0;

/*
 *    Slave is in action, so now we must wait for the open acknowledgment
 *    to come back.
 */
      rc = 0;
      wait_event_interruptible(portp->raw_wait,
                  !test_bit(ST_CLOSING, &portp->state));
      if (signal_pending(current))
            rc = -ERESTARTSYS;

      if ((rc == 0) && (portp->rc != 0))
            rc = -EIO;
      return rc;
}

/*****************************************************************************/

/*
 *    Send a command to the slave and wait for the response. This must
 *    have user context (it sleeps). This routine is generic in that it
 *    can send any type of command. Its purpose is to wait for that command
 *    to complete (as opposed to initiating the command then returning).
 */

static int stli_cmdwait(stlibrd_t *brdp, stliport_t *portp, unsigned long cmd, void *arg, int size, int copyback)
{
      wait_event_interruptible(portp->raw_wait,
                  !test_bit(ST_CMDING, &portp->state));
      if (signal_pending(current))
            return -ERESTARTSYS;

      stli_sendcmd(brdp, portp, cmd, arg, size, copyback);

      wait_event_interruptible(portp->raw_wait,
                  !test_bit(ST_CMDING, &portp->state));
      if (signal_pending(current))
            return -ERESTARTSYS;

      if (portp->rc != 0)
            return -EIO;
      return 0;
}

/*****************************************************************************/

/*
 *    Send the termios settings for this port to the slave. This sleeps
 *    waiting for the command to complete - so must have user context.
 */

static int stli_setport(stliport_t *portp)
{
      stlibrd_t *brdp;
      asyport_t aport;

      if (portp == NULL)
            return -ENODEV;
      if (portp->tty == NULL)
            return -ENODEV;
      if (portp->brdnr < 0 && portp->brdnr >= stli_nrbrds)
            return -ENODEV;
      brdp = stli_brds[portp->brdnr];
      if (brdp == NULL)
            return -ENODEV;

      stli_mkasyport(portp, &aport, portp->tty->termios);
      return(stli_cmdwait(brdp, portp, A_SETPORT, &aport, sizeof(asyport_t), 0));
}

/*****************************************************************************/

/*
 *    Possibly need to wait for carrier (DCD signal) to come high. Say
 *    maybe because if we are clocal then we don't need to wait...
 */

static int stli_waitcarrier(stlibrd_t *brdp, stliport_t *portp, struct file *filp)
{
      unsigned long flags;
      int rc, doclocal;

      rc = 0;
      doclocal = 0;

      if (portp->tty->termios->c_cflag & CLOCAL)
            doclocal++;

      spin_lock_irqsave(&stli_lock, flags);
      portp->openwaitcnt++;
      if (! tty_hung_up_p(filp))
            portp->refcount--;
      spin_unlock_irqrestore(&stli_lock, flags);

      for (;;) {
            stli_mkasysigs(&portp->asig, 1, 1);
            if ((rc = stli_cmdwait(brdp, portp, A_SETSIGNALS,
                &portp->asig, sizeof(asysigs_t), 0)) < 0)
                  break;
            if (tty_hung_up_p(filp) ||
                ((portp->flags & ASYNC_INITIALIZED) == 0)) {
                  if (portp->flags & ASYNC_HUP_NOTIFY)
                        rc = -EBUSY;
                  else
                        rc = -ERESTARTSYS;
                  break;
            }
            if (((portp->flags & ASYNC_CLOSING) == 0) &&
                (doclocal || (portp->sigs & TIOCM_CD))) {
                  break;
            }
            if (signal_pending(current)) {
                  rc = -ERESTARTSYS;
                  break;
            }
            interruptible_sleep_on(&portp->open_wait);
      }

      spin_lock_irqsave(&stli_lock, flags);
      if (! tty_hung_up_p(filp))
            portp->refcount++;
      portp->openwaitcnt--;
      spin_unlock_irqrestore(&stli_lock, flags);

      return rc;
}

/*****************************************************************************/

/*
 *    Write routine. Take the data and put it in the shared memory ring
 *    queue. If port is not already sending chars then need to mark the
 *    service bits for this port.
 */

static int stli_write(struct tty_struct *tty, const unsigned char *buf, int count)
{
      cdkasy_t __iomem *ap;
      cdkhdr_t __iomem *hdrp;
      unsigned char __iomem *bits;
      unsigned char __iomem *shbuf;
      unsigned char *chbuf;
      stliport_t *portp;
      stlibrd_t *brdp;
      unsigned int len, stlen, head, tail, size;
      unsigned long flags;

      if (tty == stli_txcooktty)
            stli_flushchars(tty);
      portp = tty->driver_data;
      if (portp == NULL)
            return 0;
      if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
            return 0;
      brdp = stli_brds[portp->brdnr];
      if (brdp == NULL)
            return 0;
      chbuf = (unsigned char *) buf;

/*
 *    All data is now local, shove as much as possible into shared memory.
 */
      spin_lock_irqsave(&brd_lock, flags);
      EBRDENABLE(brdp);
      ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
      head = (unsigned int) readw(&ap->txq.head);
      tail = (unsigned int) readw(&ap->txq.tail);
      if (tail != ((unsigned int) readw(&ap->txq.tail)))
            tail = (unsigned int) readw(&ap->txq.tail);
      size = portp->txsize;
      if (head >= tail) {
            len = size - (head - tail) - 1;
            stlen = size - head;
      } else {
            len = tail - head - 1;
            stlen = len;
      }

      len = MIN(len, count);
      count = 0;
      shbuf = (char __iomem *) EBRDGETMEMPTR(brdp, portp->txoffset);

      while (len > 0) {
            stlen = MIN(len, stlen);
            memcpy_toio(shbuf + head, chbuf, stlen);
            chbuf += stlen;
            len -= stlen;
            count += stlen;
            head += stlen;
            if (head >= size) {
                  head = 0;
                  stlen = tail;
            }
      }

      ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
      writew(head, &ap->txq.head);
      if (test_bit(ST_TXBUSY, &portp->state)) {
            if (readl(&ap->changed.data) & DT_TXEMPTY)
                  writel(readl(&ap->changed.data) & ~DT_TXEMPTY, &ap->changed.data);
      }
      hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
      bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
            portp->portidx;
      writeb(readb(bits) | portp->portbit, bits);
      set_bit(ST_TXBUSY, &portp->state);
      EBRDDISABLE(brdp);
      spin_unlock_irqrestore(&brd_lock, flags);

      return(count);
}

/*****************************************************************************/

/*
 *    Output a single character. We put it into a temporary local buffer
 *    (for speed) then write out that buffer when the flushchars routine
 *    is called. There is a safety catch here so that if some other port
 *    writes chars before the current buffer has been, then we write them
 *    first them do the new ports.
 */

static void stli_putchar(struct tty_struct *tty, unsigned char ch)
{
      if (tty != stli_txcooktty) {
            if (stli_txcooktty != NULL)
                  stli_flushchars(stli_txcooktty);
            stli_txcooktty = tty;
      }

      stli_txcookbuf[stli_txcooksize++] = ch;
}

/*****************************************************************************/

/*
 *    Transfer characters from the local TX cooking buffer to the board.
 *    We sort of ignore the tty that gets passed in here. We rely on the
 *    info stored with the TX cook buffer to tell us which port to flush
 *    the data on. In any case we clean out the TX cook buffer, for re-use
 *    by someone else.
 */

static void stli_flushchars(struct tty_struct *tty)
{
      cdkhdr_t __iomem *hdrp;
      unsigned char __iomem *bits;
      cdkasy_t __iomem *ap;
      struct tty_struct *cooktty;
      stliport_t *portp;
      stlibrd_t *brdp;
      unsigned int len, stlen, head, tail, size, count, cooksize;
      unsigned char *buf;
      unsigned char __iomem *shbuf;
      unsigned long flags;

      cooksize = stli_txcooksize;
      cooktty = stli_txcooktty;
      stli_txcooksize = 0;
      stli_txcookrealsize = 0;
      stli_txcooktty = NULL;

      if (tty == NULL)
            return;
      if (cooktty == NULL)
            return;
      if (tty != cooktty)
            tty = cooktty;
      if (cooksize == 0)
            return;

      portp = tty->driver_data;
      if (portp == NULL)
            return;
      if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
            return;
      brdp = stli_brds[portp->brdnr];
      if (brdp == NULL)
            return;

      spin_lock_irqsave(&brd_lock, flags);
      EBRDENABLE(brdp);

      ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
      head = (unsigned int) readw(&ap->txq.head);
      tail = (unsigned int) readw(&ap->txq.tail);
      if (tail != ((unsigned int) readw(&ap->txq.tail)))
            tail = (unsigned int) readw(&ap->txq.tail);
      size = portp->txsize;
      if (head >= tail) {
            len = size - (head - tail) - 1;
            stlen = size - head;
      } else {
            len = tail - head - 1;
            stlen = len;
      }

      len = MIN(len, cooksize);
      count = 0;
      shbuf = (char *) EBRDGETMEMPTR(brdp, portp->txoffset);
      buf = stli_txcookbuf;

      while (len > 0) {
            stlen = MIN(len, stlen);
            memcpy_toio(shbuf + head, buf, stlen);
            buf += stlen;
            len -= stlen;
            count += stlen;
            head += stlen;
            if (head >= size) {
                  head = 0;
                  stlen = tail;
            }
      }

      ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
      writew(head, &ap->txq.head);

      if (test_bit(ST_TXBUSY, &portp->state)) {
            if (readl(&ap->changed.data) & DT_TXEMPTY)
                  writel(readl(&ap->changed.data) & ~DT_TXEMPTY, &ap->changed.data);
      }
      hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
      bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
            portp->portidx;
      writeb(readb(bits) | portp->portbit, bits);
      set_bit(ST_TXBUSY, &portp->state);

      EBRDDISABLE(brdp);
      spin_unlock_irqrestore(&brd_lock, flags);
}

/*****************************************************************************/

static int stli_writeroom(struct tty_struct *tty)
{
      cdkasyrq_t __iomem *rp;
      stliport_t *portp;
      stlibrd_t *brdp;
      unsigned int head, tail, len;
      unsigned long flags;

      if (tty == stli_txcooktty) {
            if (stli_txcookrealsize != 0) {
                  len = stli_txcookrealsize - stli_txcooksize;
                  return len;
            }
      }

      portp = tty->driver_data;
      if (portp == NULL)
            return 0;
      if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
            return 0;
      brdp = stli_brds[portp->brdnr];
      if (brdp == NULL)
            return 0;

      spin_lock_irqsave(&brd_lock, flags);
      EBRDENABLE(brdp);
      rp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->txq;
      head = (unsigned int) readw(&rp->head);
      tail = (unsigned int) readw(&rp->tail);
      if (tail != ((unsigned int) readw(&rp->tail)))
            tail = (unsigned int) readw(&rp->tail);
      len = (head >= tail) ? (portp->txsize - (head - tail)) : (tail - head);
      len--;
      EBRDDISABLE(brdp);
      spin_unlock_irqrestore(&brd_lock, flags);

      if (tty == stli_txcooktty) {
            stli_txcookrealsize = len;
            len -= stli_txcooksize;
      }
      return len;
}

/*****************************************************************************/

/*
 *    Return the number of characters in the transmit buffer. Normally we
 *    will return the number of chars in the shared memory ring queue.
 *    We need to kludge around the case where the shared memory buffer is
 *    empty but not all characters have drained yet, for this case just
 *    return that there is 1 character in the buffer!
 */

static int stli_charsinbuffer(struct tty_struct *tty)
{
      cdkasyrq_t __iomem *rp;
      stliport_t *portp;
      stlibrd_t *brdp;
      unsigned int head, tail, len;
      unsigned long flags;

      if (tty == stli_txcooktty)
            stli_flushchars(tty);
      portp = tty->driver_data;
      if (portp == NULL)
            return 0;
      if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
            return 0;
      brdp = stli_brds[portp->brdnr];
      if (brdp == NULL)
            return 0;

      spin_lock_irqsave(&brd_lock, flags);
      EBRDENABLE(brdp);
      rp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->txq;
      head = (unsigned int) readw(&rp->head);
      tail = (unsigned int) readw(&rp->tail);
      if (tail != ((unsigned int) readw(&rp->tail)))
            tail = (unsigned int) readw(&rp->tail);
      len = (head >= tail) ? (head - tail) : (portp->txsize - (tail - head));
      if ((len == 0) && test_bit(ST_TXBUSY, &portp->state))
            len = 1;
      EBRDDISABLE(brdp);
      spin_unlock_irqrestore(&brd_lock, flags);

      return len;
}

/*****************************************************************************/

/*
 *    Generate the serial struct info.
 */

static int stli_getserial(stliport_t *portp, struct serial_struct __user *sp)
{
      struct serial_struct sio;
      stlibrd_t *brdp;

      memset(&sio, 0, sizeof(struct serial_struct));
      sio.type = PORT_UNKNOWN;
      sio.line = portp->portnr;
      sio.irq = 0;
      sio.flags = portp->flags;
      sio.baud_base = portp->baud_base;
      sio.close_delay = portp->close_delay;
      sio.closing_wait = portp->closing_wait;
      sio.custom_divisor = portp->custom_divisor;
      sio.xmit_fifo_size = 0;
      sio.hub6 = 0;

      brdp = stli_brds[portp->brdnr];
      if (brdp != NULL)
            sio.port = brdp->iobase;
            
      return copy_to_user(sp, &sio, sizeof(struct serial_struct)) ?
                  -EFAULT : 0;
}

/*****************************************************************************/

/*
 *    Set port according to the serial struct info.
 *    At this point we do not do any auto-configure stuff, so we will
 *    just quietly ignore any requests to change irq, etc.
 */

static int stli_setserial(stliport_t *portp, struct serial_struct __user *sp)
{
      struct serial_struct sio;
      int rc;

      if (copy_from_user(&sio, sp, sizeof(struct serial_struct)))
            return -EFAULT;
      if (!capable(CAP_SYS_ADMIN)) {
            if ((sio.baud_base != portp->baud_base) ||
                (sio.close_delay != portp->close_delay) ||
                ((sio.flags & ~ASYNC_USR_MASK) !=
                (portp->flags & ~ASYNC_USR_MASK)))
                  return -EPERM;
      } 

      portp->flags = (portp->flags & ~ASYNC_USR_MASK) |
            (sio.flags & ASYNC_USR_MASK);
      portp->baud_base = sio.baud_base;
      portp->close_delay = sio.close_delay;
      portp->closing_wait = sio.closing_wait;
      portp->custom_divisor = sio.custom_divisor;

      if ((rc = stli_setport(portp)) < 0)
            return rc;
      return 0;
}

/*****************************************************************************/

static int stli_tiocmget(struct tty_struct *tty, struct file *file)
{
      stliport_t *portp = tty->driver_data;
      stlibrd_t *brdp;
      int rc;

      if (portp == NULL)
            return -ENODEV;
      if (portp->brdnr < 0 || portp->brdnr >= stli_nrbrds)
            return 0;
      brdp = stli_brds[portp->brdnr];
      if (brdp == NULL)
            return 0;
      if (tty->flags & (1 << TTY_IO_ERROR))
            return -EIO;

      if ((rc = stli_cmdwait(brdp, portp, A_GETSIGNALS,
                         &portp->asig, sizeof(asysigs_t), 1)) < 0)
            return rc;

      return stli_mktiocm(portp->asig.sigvalue);
}

static int stli_tiocmset(struct tty_struct *tty, struct file *file,
                   unsigned int set, unsigned int clear)
{
      stliport_t *portp = tty->driver_data;
      stlibrd_t *brdp;
      int rts = -1, dtr = -1;

      if (portp == NULL)
            return -ENODEV;
      if (portp->brdnr < 0 || portp->brdnr >= stli_nrbrds)
            return 0;
      brdp = stli_brds[portp->brdnr];
      if (brdp == NULL)
            return 0;
      if (tty->flags & (1 << TTY_IO_ERROR))
            return -EIO;

      if (set & TIOCM_RTS)
            rts = 1;
      if (set & TIOCM_DTR)
            dtr = 1;
      if (clear & TIOCM_RTS)
            rts = 0;
      if (clear & TIOCM_DTR)
            dtr = 0;

      stli_mkasysigs(&portp->asig, dtr, rts);

      return stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
                      sizeof(asysigs_t), 0);
}

static int stli_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg)
{
      stliport_t *portp;
      stlibrd_t *brdp;
      unsigned int ival;
      int rc;
      void __user *argp = (void __user *)arg;

      portp = tty->driver_data;
      if (portp == NULL)
            return -ENODEV;
      if (portp->brdnr < 0 || portp->brdnr >= stli_nrbrds)
            return 0;
      brdp = stli_brds[portp->brdnr];
      if (brdp == NULL)
            return 0;

      if ((cmd != TIOCGSERIAL) && (cmd != TIOCSSERIAL) &&
          (cmd != COM_GETPORTSTATS) && (cmd != COM_CLRPORTSTATS)) {
            if (tty->flags & (1 << TTY_IO_ERROR))
                  return -EIO;
      }

      rc = 0;

      switch (cmd) {
      case TIOCGSOFTCAR:
            rc = put_user(((tty->termios->c_cflag & CLOCAL) ? 1 : 0),
                  (unsigned __user *) arg);
            break;
      case TIOCSSOFTCAR:
            if ((rc = get_user(ival, (unsigned __user *) arg)) == 0)
                  tty->termios->c_cflag =
                        (tty->termios->c_cflag & ~CLOCAL) |
                        (ival ? CLOCAL : 0);
            break;
      case TIOCGSERIAL:
            rc = stli_getserial(portp, argp);
            break;
      case TIOCSSERIAL:
            rc = stli_setserial(portp, argp);
            break;
      case STL_GETPFLAG:
            rc = put_user(portp->pflag, (unsigned __user *)argp);
            break;
      case STL_SETPFLAG:
            if ((rc = get_user(portp->pflag, (unsigned __user *)argp)) == 0)
                  stli_setport(portp);
            break;
      case COM_GETPORTSTATS:
            rc = stli_getportstats(portp, argp);
            break;
      case COM_CLRPORTSTATS:
            rc = stli_clrportstats(portp, argp);
            break;
      case TIOCSERCONFIG:
      case TIOCSERGWILD:
      case TIOCSERSWILD:
      case TIOCSERGETLSR:
      case TIOCSERGSTRUCT:
      case TIOCSERGETMULTI:
      case TIOCSERSETMULTI:
      default:
            rc = -ENOIOCTLCMD;
            break;
      }

      return rc;
}

/*****************************************************************************/

/*
 *    This routine assumes that we have user context and can sleep.
 *    Looks like it is true for the current ttys implementation..!!
 */

static void stli_settermios(struct tty_struct *tty, struct termios *old)
{
      stliport_t *portp;
      stlibrd_t *brdp;
      struct termios *tiosp;
      asyport_t aport;

      if (tty == NULL)
            return;
      portp = tty->driver_data;
      if (portp == NULL)
            return;
      if (portp->brdnr < 0 || portp->brdnr >= stli_nrbrds)
            return;
      brdp = stli_brds[portp->brdnr];
      if (brdp == NULL)
            return;

      tiosp = tty->termios;
      if ((tiosp->c_cflag == old->c_cflag) &&
          (tiosp->c_iflag == old->c_iflag))
            return;

      stli_mkasyport(portp, &aport, tiosp);
      stli_cmdwait(brdp, portp, A_SETPORT, &aport, sizeof(asyport_t), 0);
      stli_mkasysigs(&portp->asig, ((tiosp->c_cflag & CBAUD) ? 1 : 0), -1);
      stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
            sizeof(asysigs_t), 0);
      if ((old->c_cflag & CRTSCTS) && ((tiosp->c_cflag & CRTSCTS) == 0))
            tty->hw_stopped = 0;
      if (((old->c_cflag & CLOCAL) == 0) && (tiosp->c_cflag & CLOCAL))
            wake_up_interruptible(&portp->open_wait);
}

/*****************************************************************************/

/*
 *    Attempt to flow control who ever is sending us data. We won't really
 *    do any flow control action here. We can't directly, and even if we
 *    wanted to we would have to send a command to the slave. The slave
 *    knows how to flow control, and will do so when its buffers reach its
 *    internal high water marks. So what we will do is set a local state
 *    bit that will stop us sending any RX data up from the poll routine
 *    (which is the place where RX data from the slave is handled).
 */

static void stli_throttle(struct tty_struct *tty)
{
      stliport_t  *portp = tty->driver_data;
      if (portp == NULL)
            return;
      set_bit(ST_RXSTOP, &portp->state);
}

/*****************************************************************************/

/*
 *    Unflow control the device sending us data... That means that all
 *    we have to do is clear the RXSTOP state bit. The next poll call
 *    will then be able to pass the RX data back up.
 */

static void stli_unthrottle(struct tty_struct *tty)
{
      stliport_t  *portp = tty->driver_data;
      if (portp == NULL)
            return;
      clear_bit(ST_RXSTOP, &portp->state);
}

/*****************************************************************************/

/*
 *    Stop the transmitter.
 */

static void stli_stop(struct tty_struct *tty)
{
}

/*****************************************************************************/

/*
 *    Start the transmitter again.
 */

static void stli_start(struct tty_struct *tty)
{
}

/*****************************************************************************/

/*
 *    Scheduler called hang up routine. This is called from the scheduler,
 *    not direct from the driver "poll" routine. We can't call it there
 *    since the real local hangup code will enable/disable the board and
 *    other things that we can't do while handling the poll. Much easier
 *    to deal with it some time later (don't really care when, hangups
 *    aren't that time critical).
 */

static void stli_dohangup(void *arg)
{
      stliport_t *portp = (stliport_t *) arg;
      if (portp->tty != NULL) {
            tty_hangup(portp->tty);
      }
}

/*****************************************************************************/

/*
 *    Hangup this port. This is pretty much like closing the port, only
 *    a little more brutal. No waiting for data to drain. Shutdown the
 *    port and maybe drop signals. This is rather tricky really. We want
 *    to close the port as well.
 */

static void stli_hangup(struct tty_struct *tty)
{
      stliport_t *portp;
      stlibrd_t *brdp;
      unsigned long flags;

      portp = tty->driver_data;
      if (portp == NULL)
            return;
      if (portp->brdnr < 0 || portp->brdnr >= stli_nrbrds)
            return;
      brdp = stli_brds[portp->brdnr];
      if (brdp == NULL)
            return;

      portp->flags &= ~ASYNC_INITIALIZED;

      if (!test_bit(ST_CLOSING, &portp->state))
            stli_rawclose(brdp, portp, 0, 0);

      spin_lock_irqsave(&stli_lock, flags);
      if (tty->termios->c_cflag & HUPCL) {
            stli_mkasysigs(&portp->asig, 0, 0);
            if (test_bit(ST_CMDING, &portp->state)) {
                  set_bit(ST_DOSIGS, &portp->state);
                  set_bit(ST_DOFLUSHTX, &portp->state);
                  set_bit(ST_DOFLUSHRX, &portp->state);
            } else {
                  stli_sendcmd(brdp, portp, A_SETSIGNALSF,
                        &portp->asig, sizeof(asysigs_t), 0);
            }
      }

      clear_bit(ST_TXBUSY, &portp->state);
      clear_bit(ST_RXSTOP, &portp->state);
      set_bit(TTY_IO_ERROR, &tty->flags);
      portp->tty = NULL;
      portp->flags &= ~ASYNC_NORMAL_ACTIVE;
      portp->refcount = 0;
      spin_unlock_irqrestore(&stli_lock, flags);

      wake_up_interruptible(&portp->open_wait);
}

/*****************************************************************************/

/*
 *    Flush characters from the lower buffer. We may not have user context
 *    so we cannot sleep waiting for it to complete. Also we need to check
 *    if there is chars for this port in the TX cook buffer, and flush them
 *    as well.
 */

static void stli_flushbuffer(struct tty_struct *tty)
{
      stliport_t *portp;
      stlibrd_t *brdp;
      unsigned long ftype, flags;

      portp = tty->driver_data;
      if (portp == NULL)
            return;
      if (portp->brdnr < 0 || portp->brdnr >= stli_nrbrds)
            return;
      brdp = stli_brds[portp->brdnr];
      if (brdp == NULL)
            return;

      spin_lock_irqsave(&brd_lock, flags);
      if (tty == stli_txcooktty) {
            stli_txcooktty = NULL;
            stli_txcooksize = 0;
            stli_txcookrealsize = 0;
      }
      if (test_bit(ST_CMDING, &portp->state)) {
            set_bit(ST_DOFLUSHTX, &portp->state);
      } else {
            ftype = FLUSHTX;
            if (test_bit(ST_DOFLUSHRX, &portp->state)) {
                  ftype |= FLUSHRX;
                  clear_bit(ST_DOFLUSHRX, &portp->state);
            }
            __stli_sendcmd(brdp, portp, A_FLUSH, &ftype, sizeof(u32), 0);
      }
      spin_unlock_irqrestore(&brd_lock, flags);
      tty_wakeup(tty);
}

/*****************************************************************************/

static void stli_breakctl(struct tty_struct *tty, int state)
{
      stlibrd_t   *brdp;
      stliport_t  *portp;
      long        arg;

      portp = tty->driver_data;
      if (portp == NULL)
            return;
      if (portp->brdnr < 0 || portp->brdnr >= stli_nrbrds)
            return;
      brdp = stli_brds[portp->brdnr];
      if (brdp == NULL)
            return;

      arg = (state == -1) ? BREAKON : BREAKOFF;
      stli_cmdwait(brdp, portp, A_BREAK, &arg, sizeof(long), 0);
}

/*****************************************************************************/

static void stli_waituntilsent(struct tty_struct *tty, int timeout)
{
      stliport_t *portp;
      unsigned long tend;

      if (tty == NULL)
            return;
      portp = tty->driver_data;
      if (portp == NULL)
            return;

      if (timeout == 0)
            timeout = HZ;
      tend = jiffies + timeout;

      while (test_bit(ST_TXBUSY, &portp->state)) {
            if (signal_pending(current))
                  break;
            msleep_interruptible(20);
            if (time_after_eq(jiffies, tend))
                  break;
      }
}

/*****************************************************************************/

static void stli_sendxchar(struct tty_struct *tty, char ch)
{
      stlibrd_t   *brdp;
      stliport_t  *portp;
      asyctrl_t   actrl;

      portp = tty->driver_data;
      if (portp == NULL)
            return;
      if (portp->brdnr < 0 || portp->brdnr >= stli_nrbrds)
            return;
      brdp = stli_brds[portp->brdnr];
      if (brdp == NULL)
            return;

      memset(&actrl, 0, sizeof(asyctrl_t));
      if (ch == STOP_CHAR(tty)) {
            actrl.rxctrl = CT_STOPFLOW;
      } else if (ch == START_CHAR(tty)) {
            actrl.rxctrl = CT_STARTFLOW;
      } else {
            actrl.txctrl = CT_SENDCHR;
            actrl.tximdch = ch;
      }
      stli_cmdwait(brdp, portp, A_PORTCTRL, &actrl, sizeof(asyctrl_t), 0);
}

/*****************************************************************************/

#define     MAXLINE           80

/*
 *    Format info for a specified port. The line is deliberately limited
 *    to 80 characters. (If it is too long it will be truncated, if too
 *    short then padded with spaces).
 */

static int stli_portinfo(stlibrd_t *brdp, stliport_t *portp, int portnr, char *pos)
{
      char *sp, *uart;
      int rc, cnt;

      rc = stli_portcmdstats(portp);

      uart = "UNKNOWN";
      if (brdp->state & BST_STARTED) {
            switch (stli_comstats.hwid) {
            case 0:     uart = "2681"; break;
            case 1:     uart = "SC26198"; break;
            default:uart = "CD1400"; break;
            }
      }

      sp = pos;
      sp += sprintf(sp, "%d: uart:%s ", portnr, uart);

      if ((brdp->state & BST_STARTED) && (rc >= 0)) {
            sp += sprintf(sp, "tx:%d rx:%d", (int) stli_comstats.txtotal,
                  (int) stli_comstats.rxtotal);

            if (stli_comstats.rxframing)
                  sp += sprintf(sp, " fe:%d",
                        (int) stli_comstats.rxframing);
            if (stli_comstats.rxparity)
                  sp += sprintf(sp, " pe:%d",
                        (int) stli_comstats.rxparity);
            if (stli_comstats.rxbreaks)
                  sp += sprintf(sp, " brk:%d",
                        (int) stli_comstats.rxbreaks);
            if (stli_comstats.rxoverrun)
                  sp += sprintf(sp, " oe:%d",
                        (int) stli_comstats.rxoverrun);

            cnt = sprintf(sp, "%s%s%s%s%s ",
                  (stli_comstats.signals & TIOCM_RTS) ? "|RTS" : "",
                  (stli_comstats.signals & TIOCM_CTS) ? "|CTS" : "",
                  (stli_comstats.signals & TIOCM_DTR) ? "|DTR" : "",
                  (stli_comstats.signals & TIOCM_CD) ? "|DCD" : "",
                  (stli_comstats.signals & TIOCM_DSR) ? "|DSR" : "");
            *sp = ' ';
            sp += cnt;
      }

      for (cnt = (sp - pos); (cnt < (MAXLINE - 1)); cnt++)
            *sp++ = ' ';
      if (cnt >= MAXLINE)
            pos[(MAXLINE - 2)] = '+';
      pos[(MAXLINE - 1)] = '\n';

      return(MAXLINE);
}

/*****************************************************************************/

/*
 *    Port info, read from the /proc file system.
 */

static int stli_readproc(char *page, char **start, off_t off, int count, int *eof, void *data)
{
      stlibrd_t *brdp;
      stliport_t *portp;
      int brdnr, portnr, totalport;
      int curoff, maxoff;
      char *pos;

      pos = page;
      totalport = 0;
      curoff = 0;

      if (off == 0) {
            pos += sprintf(pos, "%s: version %s", stli_drvtitle,
                  stli_drvversion);
            while (pos < (page + MAXLINE - 1))
                  *pos++ = ' ';
            *pos++ = '\n';
      }
      curoff =  MAXLINE;

/*
 *    We scan through for each board, panel and port. The offset is
 *    calculated on the fly, and irrelevant ports are skipped.
 */
      for (brdnr = 0; (brdnr < stli_nrbrds); brdnr++) {
            brdp = stli_brds[brdnr];
            if (brdp == NULL)
                  continue;
            if (brdp->state == 0)
                  continue;

            maxoff = curoff + (brdp->nrports * MAXLINE);
            if (off >= maxoff) {
                  curoff = maxoff;
                  continue;
            }

            totalport = brdnr * STL_MAXPORTS;
            for (portnr = 0; (portnr < brdp->nrports); portnr++,
                totalport++) {
                  portp = brdp->ports[portnr];
                  if (portp == NULL)
                        continue;
                  if (off >= (curoff += MAXLINE))
                        continue;
                  if ((pos - page + MAXLINE) > count)
                        goto stli_readdone;
                  pos += stli_portinfo(brdp, portp, totalport, pos);
            }
      }

      *eof = 1;

stli_readdone:
      *start = page;
      return(pos - page);
}

/*****************************************************************************/

/*
 *    Generic send command routine. This will send a message to the slave,
 *    of the specified type with the specified argument. Must be very
 *    careful of data that will be copied out from shared memory -
 *    containing command results. The command completion is all done from
 *    a poll routine that does not have user context. Therefore you cannot
 *    copy back directly into user space, or to the kernel stack of a
 *    process. This routine does not sleep, so can be called from anywhere.
 *
 *    The caller must hold the brd_lock (see also stli_sendcmd the usual
 *    entry point)
 */

static void __stli_sendcmd(stlibrd_t *brdp, stliport_t *portp, unsigned long cmd, void *arg, int size, int copyback)
{
      cdkhdr_t __iomem *hdrp;
      cdkctrl_t __iomem *cp;
      unsigned char __iomem *bits;
      unsigned long flags;

      spin_lock_irqsave(&brd_lock, flags);

      if (test_bit(ST_CMDING, &portp->state)) {
            printk(KERN_ERR "STALLION: command already busy, cmd=%x!\n",
                        (int) cmd);
            spin_unlock_irqrestore(&brd_lock, flags);
            return;
      }

      EBRDENABLE(brdp);
      cp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
      if (size > 0) {
            memcpy_toio((void __iomem *) &(cp->args[0]), arg, size);
            if (copyback) {
                  portp->argp = arg;
                  portp->argsize = size;
            }
      }
      writel(0, &cp->status);
      writel(cmd, &cp->cmd);
      hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
      bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
            portp->portidx;
      writeb(readb(bits) | portp->portbit, bits);
      set_bit(ST_CMDING, &portp->state);
      EBRDDISABLE(brdp);
      spin_unlock_irqrestore(&brd_lock, flags);
}

static void stli_sendcmd(stlibrd_t *brdp, stliport_t *portp, unsigned long cmd, void *arg, int size, int copyback)
{
      unsigned long           flags;

      spin_lock_irqsave(&brd_lock, flags);
      __stli_sendcmd(brdp, portp, cmd, arg, size, copyback);
      spin_unlock_irqrestore(&brd_lock, flags);
}

/*****************************************************************************/

/*
 *    Read data from shared memory. This assumes that the shared memory
 *    is enabled and that interrupts are off. Basically we just empty out
 *    the shared memory buffer into the tty buffer. Must be careful to
 *    handle the case where we fill up the tty buffer, but still have
 *    more chars to unload.
 */

static void stli_read(stlibrd_t *brdp, stliport_t *portp)
{
      cdkasyrq_t __iomem *rp;
      char __iomem *shbuf;
      struct tty_struct *tty;
      unsigned int head, tail, size;
      unsigned int len, stlen;

      if (test_bit(ST_RXSTOP, &portp->state))
            return;
      tty = portp->tty;
      if (tty == NULL)
            return;

      rp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->rxq;
      head = (unsigned int) readw(&rp->head);
      if (head != ((unsigned int) readw(&rp->head)))
            head = (unsigned int) readw(&rp->head);
      tail = (unsigned int) readw(&rp->tail);
      size = portp->rxsize;
      if (head >= tail) {
            len = head - tail;
            stlen = len;
      } else {
            len = size - (tail - head);
            stlen = size - tail;
      }

      len = tty_buffer_request_room(tty, len);

      shbuf = (char __iomem *) EBRDGETMEMPTR(brdp, portp->rxoffset);

      while (len > 0) {
            unsigned char *cptr;

            stlen = MIN(len, stlen);
            tty_prepare_flip_string(tty, &cptr, stlen);
            memcpy_fromio(cptr, shbuf + tail, stlen);
            len -= stlen;
            tail += stlen;
            if (tail >= size) {
                  tail = 0;
                  stlen = head;
            }
      }
      rp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->rxq;
      writew(tail, &rp->tail);

      if (head != tail)
            set_bit(ST_RXING, &portp->state);

      tty_schedule_flip(tty);
}

/*****************************************************************************/

/*
 *    Set up and carry out any delayed commands. There is only a small set
 *    of slave commands that can be done "off-level". So it is not too
 *    difficult to deal with them here.
 */

static void stli_dodelaycmd(stliport_t *portp, cdkctrl_t __iomem *cp)
{
      int cmd;

      if (test_bit(ST_DOSIGS, &portp->state)) {
            if (test_bit(ST_DOFLUSHTX, &portp->state) &&
                test_bit(ST_DOFLUSHRX, &portp->state))
                  cmd = A_SETSIGNALSF;
            else if (test_bit(ST_DOFLUSHTX, &portp->state))
                  cmd = A_SETSIGNALSFTX;
            else if (test_bit(ST_DOFLUSHRX, &portp->state))
                  cmd = A_SETSIGNALSFRX;
            else
                  cmd = A_SETSIGNALS;
            clear_bit(ST_DOFLUSHTX, &portp->state);
            clear_bit(ST_DOFLUSHRX, &portp->state);
            clear_bit(ST_DOSIGS, &portp->state);
            memcpy_toio((void __iomem *) &(cp->args[0]), (void *) &portp->asig,
                  sizeof(asysigs_t));
            writel(0, &cp->status);
            writel(cmd, &cp->cmd);
            set_bit(ST_CMDING, &portp->state);
      } else if (test_bit(ST_DOFLUSHTX, &portp->state) ||
          test_bit(ST_DOFLUSHRX, &portp->state)) {
            cmd = ((test_bit(ST_DOFLUSHTX, &portp->state)) ? FLUSHTX : 0);
            cmd |= ((test_bit(ST_DOFLUSHRX, &portp->state)) ? FLUSHRX : 0);
            clear_bit(ST_DOFLUSHTX, &portp->state);
            clear_bit(ST_DOFLUSHRX, &portp->state);
            memcpy_toio((void __iomem *) &(cp->args[0]), (void *) &cmd, sizeof(int));
            writel(0, &cp->status);
            writel(A_FLUSH, &cp->cmd);
            set_bit(ST_CMDING, &portp->state);
      }
}

/*****************************************************************************/

/*
 *    Host command service checking. This handles commands or messages
 *    coming from the slave to the host. Must have board shared memory
 *    enabled and interrupts off when called. Notice that by servicing the
 *    read data last we don't need to change the shared memory pointer
 *    during processing (which is a slow IO operation).
 *    Return value indicates if this port is still awaiting actions from
 *    the slave (like open, command, or even TX data being sent). If 0
 *    then port is still busy, otherwise no longer busy.
 */

static int stli_hostcmd(stlibrd_t *brdp, stliport_t *portp)
{
      cdkasy_t __iomem *ap;
      cdkctrl_t __iomem *cp;
      struct tty_struct *tty;
      asynotify_t nt;
      unsigned long oldsigs;
      int rc, donerx;

      ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
      cp = &ap->ctrl;

/*
 *    Check if we are waiting for an open completion message.
 */
      if (test_bit(ST_OPENING, &portp->state)) {
            rc = readl(&cp->openarg);
            if (readb(&cp->open) == 0 && rc != 0) {
                  if (rc > 0)
                        rc--;
                  writel(0, &cp->openarg);
                  portp->rc = rc;
                  clear_bit(ST_OPENING, &portp->state);
                  wake_up_interruptible(&portp->raw_wait);
            }
      }

/*
 *    Check if we are waiting for a close completion message.
 */
      if (test_bit(ST_CLOSING, &portp->state)) {
            rc = (int) readl(&cp->closearg);
            if (readb(&cp->close) == 0 && rc != 0) {
                  if (rc > 0)
                        rc--;
                  writel(0, &cp->closearg);
                  portp->rc = rc;
                  clear_bit(ST_CLOSING, &portp->state);
                  wake_up_interruptible(&portp->raw_wait);
            }
      }

/*
 *    Check if we are waiting for a command completion message. We may
 *    need to copy out the command results associated with this command.
 */
      if (test_bit(ST_CMDING, &portp->state)) {
            rc = readl(&cp->status);
            if (readl(&cp->cmd) == 0 && rc != 0) {
                  if (rc > 0)
                        rc--;
                  if (portp->argp != NULL) {
                        memcpy_fromio(portp->argp, (void __iomem *) &(cp->args[0]),
                              portp->argsize);
                        portp->argp = NULL;
                  }
                  writel(0, &cp->status);
                  portp->rc = rc;
                  clear_bit(ST_CMDING, &portp->state);
                  stli_dodelaycmd(portp, cp);
                  wake_up_interruptible(&portp->raw_wait);
            }
      }

/*
 *    Check for any notification messages ready. This includes lots of
 *    different types of events - RX chars ready, RX break received,
 *    TX data low or empty in the slave, modem signals changed state.
 */
      donerx = 0;

      if (ap->notify) {
            nt = ap->changed;
            ap->notify = 0;
            tty = portp->tty;

            if (nt.signal & SG_DCD) {
                  oldsigs = portp->sigs;
                  portp->sigs = stli_mktiocm(nt.sigvalue);
                  clear_bit(ST_GETSIGS, &portp->state);
                  if ((portp->sigs & TIOCM_CD) &&
                      ((oldsigs & TIOCM_CD) == 0))
                        wake_up_interruptible(&portp->open_wait);
                  if ((oldsigs & TIOCM_CD) &&
                      ((portp->sigs & TIOCM_CD) == 0)) {
                        if (portp->flags & ASYNC_CHECK_CD) {
                              if (tty)
                                    schedule_work(&portp->tqhangup);
                        }
                  }
            }

            if (nt.data & DT_TXEMPTY)
                  clear_bit(ST_TXBUSY, &portp->state);
            if (nt.data & (DT_TXEMPTY | DT_TXLOW)) {
                  if (tty != NULL) {
                        tty_wakeup(tty);
                        EBRDENABLE(brdp);
                        wake_up_interruptible(&tty->write_wait);
                  }
            }

            if ((nt.data & DT_RXBREAK) && (portp->rxmarkmsk & BRKINT)) {
                  if (tty != NULL) {
                        tty_insert_flip_char(tty, 0, TTY_BREAK);
                        if (portp->flags & ASYNC_SAK) {
                              do_SAK(tty);
                              EBRDENABLE(brdp);
                        }
                        tty_schedule_flip(tty);
                  }
            }

            if (nt.data & DT_RXBUSY) {
                  donerx++;
                  stli_read(brdp, portp);
            }
      }

/*
 *    It might seem odd that we are checking for more RX chars here.
 *    But, we need to handle the case where the tty buffer was previously
 *    filled, but we had more characters to pass up. The slave will not
 *    send any more RX notify messages until the RX buffer has been emptied.
 *    But it will leave the service bits on (since the buffer is not empty).
 *    So from here we can try to process more RX chars.
 */
      if ((!donerx) && test_bit(ST_RXING, &portp->state)) {
            clear_bit(ST_RXING, &portp->state);
            stli_read(brdp, portp);
      }

      return((test_bit(ST_OPENING, &portp->state) ||
            test_bit(ST_CLOSING, &portp->state) ||
            test_bit(ST_CMDING, &portp->state) ||
            test_bit(ST_TXBUSY, &portp->state) ||
            test_bit(ST_RXING, &portp->state)) ? 0 : 1);
}

/*****************************************************************************/

/*
 *    Service all ports on a particular board. Assumes that the boards
 *    shared memory is enabled, and that the page pointer is pointed
 *    at the cdk header structure.
 */

static void stli_brdpoll(stlibrd_t *brdp, cdkhdr_t __iomem *hdrp)
{
      stliport_t *portp;
      unsigned char hostbits[(STL_MAXCHANS / 8) + 1];
      unsigned char slavebits[(STL_MAXCHANS / 8) + 1];
      unsigned char __iomem *slavep;
      int bitpos, bitat, bitsize;
      int channr, nrdevs, slavebitchange;

      bitsize = brdp->bitsize;
      nrdevs = brdp->nrdevs;

/*
 *    Check if slave wants any service. Basically we try to do as
 *    little work as possible here. There are 2 levels of service
 *    bits. So if there is nothing to do we bail early. We check
 *    8 service bits at a time in the inner loop, so we can bypass
 *    the lot if none of them want service.
 */
      memcpy_fromio(&hostbits[0], (((unsigned char __iomem *) hdrp) + brdp->hostoffset),
            bitsize);

      memset(&slavebits[0], 0, bitsize);
      slavebitchange = 0;

      for (bitpos = 0; (bitpos < bitsize); bitpos++) {
            if (hostbits[bitpos] == 0)
                  continue;
            channr = bitpos * 8;
            for (bitat = 0x1; (channr < nrdevs); channr++, bitat <<= 1) {
                  if (hostbits[bitpos] & bitat) {
                        portp = brdp->ports[(channr - 1)];
                        if (stli_hostcmd(brdp, portp)) {
                              slavebitchange++;
                              slavebits[bitpos] |= bitat;
                        }
                  }
            }
      }

/*
 *    If any of the ports are no longer busy then update them in the
 *    slave request bits. We need to do this after, since a host port
 *    service may initiate more slave requests.
 */
      if (slavebitchange) {
            hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
            slavep = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset;
            for (bitpos = 0; (bitpos < bitsize); bitpos++) {
                  if (readb(slavebits + bitpos))
                        writeb(readb(slavep + bitpos) & ~slavebits[bitpos], slavebits + bitpos);
            }
      }
}

/*****************************************************************************/

/*
 *    Driver poll routine. This routine polls the boards in use and passes
 *    messages back up to host when necessary. This is actually very
 *    CPU efficient, since we will always have the kernel poll clock, it
 *    adds only a few cycles when idle (since board service can be
 *    determined very easily), but when loaded generates no interrupts
 *    (with their expensive associated context change).
 */

static void stli_poll(unsigned long arg)
{
      cdkhdr_t __iomem *hdrp;
      stlibrd_t *brdp;
      int brdnr;

      stli_timerlist.expires = STLI_TIMEOUT;
      add_timer(&stli_timerlist);

/*
 *    Check each board and do any servicing required.
 */
      for (brdnr = 0; (brdnr < stli_nrbrds); brdnr++) {
            brdp = stli_brds[brdnr];
            if (brdp == NULL)
                  continue;
            if ((brdp->state & BST_STARTED) == 0)
                  continue;

            spin_lock(&brd_lock);
            EBRDENABLE(brdp);
            hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
            if (readb(&hdrp->hostreq))
                  stli_brdpoll(brdp, hdrp);
            EBRDDISABLE(brdp);
            spin_unlock(&brd_lock);
      }
}

/*****************************************************************************/

/*
 *    Translate the termios settings into the port setting structure of
 *    the slave.
 */

static void stli_mkasyport(stliport_t *portp, asyport_t *pp, struct termios *tiosp)
{
      memset(pp, 0, sizeof(asyport_t));

/*
 *    Start of by setting the baud, char size, parity and stop bit info.
 */
      pp->baudout = tiosp->c_cflag & CBAUD;
      if (pp->baudout & CBAUDEX) {
            pp->baudout &= ~CBAUDEX;
            if ((pp->baudout < 1) || (pp->baudout > 4))
                  tiosp->c_cflag &= ~CBAUDEX;
            else
                  pp->baudout += 15;
      }
      pp->baudout = stli_baudrates[pp->baudout];
      if ((tiosp->c_cflag & CBAUD) == B38400) {
            if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI)
                  pp->baudout = 57600;
            else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI)
                  pp->baudout = 115200;
            else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_SHI)
                  pp->baudout = 230400;
            else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_WARP)
                  pp->baudout = 460800;
            else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_CUST)
                  pp->baudout = (portp->baud_base / portp->custom_divisor);
      }
      if (pp->baudout > STL_MAXBAUD)
            pp->baudout = STL_MAXBAUD;
      pp->baudin = pp->baudout;

      switch (tiosp->c_cflag & CSIZE) {
      case CS5:
            pp->csize = 5;
            break;
      case CS6:
            pp->csize = 6;
            break;
      case CS7:
            pp->csize = 7;
            break;
      default:
            pp->csize = 8;
            break;
      }

      if (tiosp->c_cflag & CSTOPB)
            pp->stopbs = PT_STOP2;
      else
            pp->stopbs = PT_STOP1;

      if (tiosp->c_cflag & PARENB) {
            if (tiosp->c_cflag & PARODD)
                  pp->parity = PT_ODDPARITY;
            else
                  pp->parity = PT_EVENPARITY;
      } else {
            pp->parity = PT_NOPARITY;
      }

/*
 *    Set up any flow control options enabled.
 */
      if (tiosp->c_iflag & IXON) {
            pp->flow |= F_IXON;
            if (tiosp->c_iflag & IXANY)
                  pp->flow |= F_IXANY;
      }
      if (tiosp->c_cflag & CRTSCTS)
            pp->flow |= (F_RTSFLOW | F_CTSFLOW);

      pp->startin = tiosp->c_cc[VSTART];
      pp->stopin = tiosp->c_cc[VSTOP];
      pp->startout = tiosp->c_cc[VSTART];
      pp->stopout = tiosp->c_cc[VSTOP];

/*
 *    Set up the RX char marking mask with those RX error types we must
 *    catch. We can get the slave to help us out a little here, it will
 *    ignore parity errors and breaks for us, and mark parity errors in
 *    the data stream.
 */
      if (tiosp->c_iflag & IGNPAR)
            pp->iflag |= FI_IGNRXERRS;
      if (tiosp->c_iflag & IGNBRK)
            pp->iflag |= FI_IGNBREAK;

      portp->rxmarkmsk = 0;
      if (tiosp->c_iflag & (INPCK | PARMRK))
            pp->iflag |= FI_1MARKRXERRS;
      if (tiosp->c_iflag & BRKINT)
            portp->rxmarkmsk |= BRKINT;

/*
 *    Set up clocal processing as required.
 */
      if (tiosp->c_cflag & CLOCAL)
            portp->flags &= ~ASYNC_CHECK_CD;
      else
            portp->flags |= ASYNC_CHECK_CD;

/*
 *    Transfer any persistent flags into the asyport structure.
 */
      pp->pflag = (portp->pflag & 0xffff);
      pp->vmin = (portp->pflag & P_RXIMIN) ? 1 : 0;
      pp->vtime = (portp->pflag & P_RXITIME) ? 1 : 0;
      pp->cc[1] = (portp->pflag & P_RXTHOLD) ? 1 : 0;
}

/*****************************************************************************/

/*
 *    Construct a slave signals structure for setting the DTR and RTS
 *    signals as specified.
 */

static void stli_mkasysigs(asysigs_t *sp, int dtr, int rts)
{
      memset(sp, 0, sizeof(asysigs_t));
      if (dtr >= 0) {
            sp->signal |= SG_DTR;
            sp->sigvalue |= ((dtr > 0) ? SG_DTR : 0);
      }
      if (rts >= 0) {
            sp->signal |= SG_RTS;
            sp->sigvalue |= ((rts > 0) ? SG_RTS : 0);
      }
}

/*****************************************************************************/

/*
 *    Convert the signals returned from the slave into a local TIOCM type
 *    signals value. We keep them locally in TIOCM format.
 */

static long stli_mktiocm(unsigned long sigvalue)
{
      long  tiocm = 0;
      tiocm |= ((sigvalue & SG_DCD) ? TIOCM_CD : 0);
      tiocm |= ((sigvalue & SG_CTS) ? TIOCM_CTS : 0);
      tiocm |= ((sigvalue & SG_RI) ? TIOCM_RI : 0);
      tiocm |= ((sigvalue & SG_DSR) ? TIOCM_DSR : 0);
      tiocm |= ((sigvalue & SG_DTR) ? TIOCM_DTR : 0);
      tiocm |= ((sigvalue & SG_RTS) ? TIOCM_RTS : 0);
      return(tiocm);
}

/*****************************************************************************/

/*
 *    All panels and ports actually attached have been worked out. All
 *    we need to do here is set up the appropriate per port data structures.
 */

static int stli_initports(stlibrd_t *brdp)
{
      stliport_t  *portp;
      int         i, panelnr, panelport;

      for (i = 0, panelnr = 0, panelport = 0; (i < brdp->nrports); i++) {
            portp = kzalloc(sizeof(stliport_t), GFP_KERNEL);
            if (!portp) {
                  printk("STALLION: failed to allocate port structure\n");
                  continue;
            }

            portp->magic = STLI_PORTMAGIC;
            portp->portnr = i;
            portp->brdnr = brdp->brdnr;
            portp->panelnr = panelnr;
            portp->baud_base = STL_BAUDBASE;
            portp->close_delay = STL_CLOSEDELAY;
            portp->closing_wait = 30 * HZ;
            INIT_WORK(&portp->tqhangup, stli_dohangup, portp);
            init_waitqueue_head(&portp->open_wait);
            init_waitqueue_head(&portp->close_wait);
            init_waitqueue_head(&portp->raw_wait);
            panelport++;
            if (panelport >= brdp->panels[panelnr]) {
                  panelport = 0;
                  panelnr++;
            }
            brdp->ports[i] = portp;
      }

      return 0;
}

/*****************************************************************************/

/*
 *    All the following routines are board specific hardware operations.
 */

static void stli_ecpinit(stlibrd_t *brdp)
{
      unsigned long     memconf;

      outb(ECP_ATSTOP, (brdp->iobase + ECP_ATCONFR));
      udelay(10);
      outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
      udelay(100);

      memconf = (brdp->memaddr & ECP_ATADDRMASK) >> ECP_ATADDRSHFT;
      outb(memconf, (brdp->iobase + ECP_ATMEMAR));
}

/*****************************************************************************/

static void stli_ecpenable(stlibrd_t *brdp)
{     
      outb(ECP_ATENABLE, (brdp->iobase + ECP_ATCONFR));
}

/*****************************************************************************/

static void stli_ecpdisable(stlibrd_t *brdp)
{     
      outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
}

/*****************************************************************************/

static char *stli_ecpgetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
{     
      void *ptr;
      unsigned char val;

      if (offset > brdp->memsize) {
            printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
                        "range at line=%d(%d), brd=%d\n",
                  (int) offset, line, __LINE__, brdp->brdnr);
            ptr = NULL;
            val = 0;
      } else {
            ptr = brdp->membase + (offset % ECP_ATPAGESIZE);
            val = (unsigned char) (offset / ECP_ATPAGESIZE);
      }
      outb(val, (brdp->iobase + ECP_ATMEMPR));
      return(ptr);
}

/*****************************************************************************/

static void stli_ecpreset(stlibrd_t *brdp)
{     
      outb(ECP_ATSTOP, (brdp->iobase + ECP_ATCONFR));
      udelay(10);
      outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
      udelay(500);
}

/*****************************************************************************/

static void stli_ecpintr(stlibrd_t *brdp)
{     
      outb(0x1, brdp->iobase);
}

/*****************************************************************************/

/*
 *    The following set of functions act on ECP EISA boards.
 */

static void stli_ecpeiinit(stlibrd_t *brdp)
{
      unsigned long     memconf;

      outb(0x1, (brdp->iobase + ECP_EIBRDENAB));
      outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
      udelay(10);
      outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
      udelay(500);

      memconf = (brdp->memaddr & ECP_EIADDRMASKL) >> ECP_EIADDRSHFTL;
      outb(memconf, (brdp->iobase + ECP_EIMEMARL));
      memconf = (brdp->memaddr & ECP_EIADDRMASKH) >> ECP_EIADDRSHFTH;
      outb(memconf, (brdp->iobase + ECP_EIMEMARH));
}

/*****************************************************************************/

static void stli_ecpeienable(stlibrd_t *brdp)
{     
      outb(ECP_EIENABLE, (brdp->iobase + ECP_EICONFR));
}

/*****************************************************************************/

static void stli_ecpeidisable(stlibrd_t *brdp)
{     
      outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
}

/*****************************************************************************/

static char *stli_ecpeigetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
{     
      void        *ptr;
      unsigned char     val;

      if (offset > brdp->memsize) {
            printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
                        "range at line=%d(%d), brd=%d\n",
                  (int) offset, line, __LINE__, brdp->brdnr);
            ptr = NULL;
            val = 0;
      } else {
            ptr = brdp->membase + (offset % ECP_EIPAGESIZE);
            if (offset < ECP_EIPAGESIZE)
                  val = ECP_EIENABLE;
            else
                  val = ECP_EIENABLE | 0x40;
      }
      outb(val, (brdp->iobase + ECP_EICONFR));
      return(ptr);
}

/*****************************************************************************/

static void stli_ecpeireset(stlibrd_t *brdp)
{     
      outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
      udelay(10);
      outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
      udelay(500);
}

/*****************************************************************************/

/*
 *    The following set of functions act on ECP MCA boards.
 */

static void stli_ecpmcenable(stlibrd_t *brdp)
{     
      outb(ECP_MCENABLE, (brdp->iobase + ECP_MCCONFR));
}

/*****************************************************************************/

static void stli_ecpmcdisable(stlibrd_t *brdp)
{     
      outb(ECP_MCDISABLE, (brdp->iobase + ECP_MCCONFR));
}

/*****************************************************************************/

static char *stli_ecpmcgetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
{     
      void *ptr;
      unsigned char val;

      if (offset > brdp->memsize) {
            printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
                        "range at line=%d(%d), brd=%d\n",
                  (int) offset, line, __LINE__, brdp->brdnr);
            ptr = NULL;
            val = 0;
      } else {
            ptr = brdp->membase + (offset % ECP_MCPAGESIZE);
            val = ((unsigned char) (offset / ECP_MCPAGESIZE)) | ECP_MCENABLE;
      }
      outb(val, (brdp->iobase + ECP_MCCONFR));
      return(ptr);
}

/*****************************************************************************/

static void stli_ecpmcreset(stlibrd_t *brdp)
{     
      outb(ECP_MCSTOP, (brdp->iobase + ECP_MCCONFR));
      udelay(10);
      outb(ECP_MCDISABLE, (brdp->iobase + ECP_MCCONFR));
      udelay(500);
}

/*****************************************************************************/

/*
 *    The following set of functions act on ECP PCI boards.
 */

static void stli_ecppciinit(stlibrd_t *brdp)
{
      outb(ECP_PCISTOP, (brdp->iobase + ECP_PCICONFR));
      udelay(10);
      outb(0, (brdp->iobase + ECP_PCICONFR));
      udelay(500);
}

/*****************************************************************************/

static char *stli_ecppcigetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
{     
      void        *ptr;
      unsigned char     val;

      if (offset > brdp->memsize) {
            printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
                        "range at line=%d(%d), board=%d\n",
                        (int) offset, line, __LINE__, brdp->brdnr);
            ptr = NULL;
            val = 0;
      } else {
            ptr = brdp->membase + (offset % ECP_PCIPAGESIZE);
            val = (offset / ECP_PCIPAGESIZE) << 1;
      }
      outb(val, (brdp->iobase + ECP_PCICONFR));
      return(ptr);
}

/*****************************************************************************/

static void stli_ecppcireset(stlibrd_t *brdp)
{     
      outb(ECP_PCISTOP, (brdp->iobase + ECP_PCICONFR));
      udelay(10);
      outb(0, (brdp->iobase + ECP_PCICONFR));
      udelay(500);
}

/*****************************************************************************/

/*
 *    The following routines act on ONboards.
 */

static void stli_onbinit(stlibrd_t *brdp)
{
      unsigned long     memconf;

      outb(ONB_ATSTOP, (brdp->iobase + ONB_ATCONFR));
      udelay(10);
      outb(ONB_ATDISABLE, (brdp->iobase + ONB_ATCONFR));
      mdelay(1000);

      memconf = (brdp->memaddr & ONB_ATADDRMASK) >> ONB_ATADDRSHFT;
      outb(memconf, (brdp->iobase + ONB_ATMEMAR));
      outb(0x1, brdp->iobase);
      mdelay(1);
}

/*****************************************************************************/

static void stli_onbenable(stlibrd_t *brdp)
{     
      outb((brdp->enabval | ONB_ATENABLE), (brdp->iobase + ONB_ATCONFR));
}

/*****************************************************************************/

static void stli_onbdisable(stlibrd_t *brdp)
{     
      outb((brdp->enabval | ONB_ATDISABLE), (brdp->iobase + ONB_ATCONFR));
}

/*****************************************************************************/

static char *stli_onbgetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
{     
      void  *ptr;

      if (offset > brdp->memsize) {
            printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
                        "range at line=%d(%d), brd=%d\n",
                        (int) offset, line, __LINE__, brdp->brdnr);
            ptr = NULL;
      } else {
            ptr = brdp->membase + (offset % ONB_ATPAGESIZE);
      }
      return(ptr);
}

/*****************************************************************************/

static void stli_onbreset(stlibrd_t *brdp)
{     
      outb(ONB_ATSTOP, (brdp->iobase + ONB_ATCONFR));
      udelay(10);
      outb(ONB_ATDISABLE, (brdp->iobase + ONB_ATCONFR));
      mdelay(1000);
}

/*****************************************************************************/

/*
 *    The following routines act on ONboard EISA.
 */

static void stli_onbeinit(stlibrd_t *brdp)
{
      unsigned long     memconf;

      outb(0x1, (brdp->iobase + ONB_EIBRDENAB));
      outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
      udelay(10);
      outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
      mdelay(1000);

      memconf = (brdp->memaddr & ONB_EIADDRMASKL) >> ONB_EIADDRSHFTL;
      outb(memconf, (brdp->iobase + ONB_EIMEMARL));
      memconf = (brdp->memaddr & ONB_EIADDRMASKH) >> ONB_EIADDRSHFTH;
      outb(memconf, (brdp->iobase + ONB_EIMEMARH));
      outb(0x1, brdp->iobase);
      mdelay(1);
}

/*****************************************************************************/

static void stli_onbeenable(stlibrd_t *brdp)
{     
      outb(ONB_EIENABLE, (brdp->iobase + ONB_EICONFR));
}

/*****************************************************************************/

static void stli_onbedisable(stlibrd_t *brdp)
{     
      outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
}

/*****************************************************************************/

static char *stli_onbegetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
{     
      void *ptr;
      unsigned char val;

      if (offset > brdp->memsize) {
            printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
                        "range at line=%d(%d), brd=%d\n",
                  (int) offset, line, __LINE__, brdp->brdnr);
            ptr = NULL;
            val = 0;
      } else {
            ptr = brdp->membase + (offset % ONB_EIPAGESIZE);
            if (offset < ONB_EIPAGESIZE)
                  val = ONB_EIENABLE;
            else
                  val = ONB_EIENABLE | 0x40;
      }
      outb(val, (brdp->iobase + ONB_EICONFR));
      return(ptr);
}

/*****************************************************************************/

static void stli_onbereset(stlibrd_t *brdp)
{     
      outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
      udelay(10);
      outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
      mdelay(1000);
}

/*****************************************************************************/

/*
 *    The following routines act on Brumby boards.
 */

static void stli_bbyinit(stlibrd_t *brdp)
{
      outb(BBY_ATSTOP, (brdp->iobase + BBY_ATCONFR));
      udelay(10);
      outb(0, (brdp->iobase + BBY_ATCONFR));
      mdelay(1000);
      outb(0x1, brdp->iobase);
      mdelay(1);
}

/*****************************************************************************/

static char *stli_bbygetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
{     
      void *ptr;
      unsigned char val;

      BUG_ON(offset > brdp->memsize);

      ptr = brdp->membase + (offset % BBY_PAGESIZE);
      val = (unsigned char) (offset / BBY_PAGESIZE);
      outb(val, (brdp->iobase + BBY_ATCONFR));
      return(ptr);
}

/*****************************************************************************/

static void stli_bbyreset(stlibrd_t *brdp)
{     
      outb(BBY_ATSTOP, (brdp->iobase + BBY_ATCONFR));
      udelay(10);
      outb(0, (brdp->iobase + BBY_ATCONFR));
      mdelay(1000);
}

/*****************************************************************************/

/*
 *    The following routines act on original old Stallion boards.
 */

static void stli_stalinit(stlibrd_t *brdp)
{
      outb(0x1, brdp->iobase);
      mdelay(1000);
}

/*****************************************************************************/

static char *stli_stalgetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
{     
      BUG_ON(offset > brdp->memsize);
      return brdp->membase + (offset % STAL_PAGESIZE);
}

/*****************************************************************************/

static void stli_stalreset(stlibrd_t *brdp)
{     
      u32 __iomem *vecp;

      vecp = (u32 __iomem *) (brdp->membase + 0x30);
      writel(0xffff0000, vecp);
      outb(0, brdp->iobase);
      mdelay(1000);
}

/*****************************************************************************/

/*
 *    Try to find an ECP board and initialize it. This handles only ECP
 *    board types.
 */

static int stli_initecp(stlibrd_t *brdp)
{
      cdkecpsig_t sig;
      cdkecpsig_t __iomem *sigsp;
      unsigned int status, nxtid;
      char *name;
      int panelnr, nrports;

      if (!request_region(brdp->iobase, brdp->iosize, "istallion"))
            return -EIO;
      
      if ((brdp->iobase == 0) || (brdp->memaddr == 0))
      {
            release_region(brdp->iobase, brdp->iosize);
            return -ENODEV;
      }

      brdp->iosize = ECP_IOSIZE;

/*
 *    Based on the specific board type setup the common vars to access
 *    and enable shared memory. Set all board specific information now
 *    as well.
 */
      switch (brdp->brdtype) {
      case BRD_ECP:
            brdp->membase = (void *) brdp->memaddr;
            brdp->memsize = ECP_MEMSIZE;
            brdp->pagesize = ECP_ATPAGESIZE;
            brdp->init = stli_ecpinit;
            brdp->enable = stli_ecpenable;
            brdp->reenable = stli_ecpenable;
            brdp->disable = stli_ecpdisable;
            brdp->getmemptr = stli_ecpgetmemptr;
            brdp->intr = stli_ecpintr;
            brdp->reset = stli_ecpreset;
            name = "serial(EC8/64)";
            break;

      case BRD_ECPE:
            brdp->membase = (void *) brdp->memaddr;
            brdp->memsize = ECP_MEMSIZE;
            brdp->pagesize = ECP_EIPAGESIZE;
            brdp->init = stli_ecpeiinit;
            brdp->enable = stli_ecpeienable;
            brdp->reenable = stli_ecpeienable;
            brdp->disable = stli_ecpeidisable;
            brdp->getmemptr = stli_ecpeigetmemptr;
            brdp->intr = stli_ecpintr;
            brdp->reset = stli_ecpeireset;
            name = "serial(EC8/64-EI)";
            break;

      case BRD_ECPMC:
            brdp->membase = (void *) brdp->memaddr;
            brdp->memsize = ECP_MEMSIZE;
            brdp->pagesize = ECP_MCPAGESIZE;
            brdp->init = NULL;
            brdp->enable = stli_ecpmcenable;
            brdp->reenable = stli_ecpmcenable;
            brdp->disable = stli_ecpmcdisable;
            brdp->getmemptr = stli_ecpmcgetmemptr;
            brdp->intr = stli_ecpintr;
            brdp->reset = stli_ecpmcreset;
            name = "serial(EC8/64-MCA)";
            break;

      case BRD_ECPPCI:
            brdp->membase = (void *) brdp->memaddr;
            brdp->memsize = ECP_PCIMEMSIZE;
            brdp->pagesize = ECP_PCIPAGESIZE;
            brdp->init = stli_ecppciinit;
            brdp->enable = NULL;
            brdp->reenable = NULL;
            brdp->disable = NULL;
            brdp->getmemptr = stli_ecppcigetmemptr;
            brdp->intr = stli_ecpintr;
            brdp->reset = stli_ecppcireset;
            name = "serial(EC/RA-PCI)";
            break;

      default:
            release_region(brdp->iobase, brdp->iosize);
            return -EINVAL;
      }

/*
 *    The per-board operations structure is all set up, so now let's go
 *    and get the board operational. Firstly initialize board configuration
 *    registers. Set the memory mapping info so we can get at the boards
 *    shared memory.
 */
      EBRDINIT(brdp);

      brdp->membase = ioremap(brdp->memaddr, brdp->memsize);
      if (brdp->membase == NULL)
      {
            release_region(brdp->iobase, brdp->iosize);
            return -ENOMEM;
      }

/*
 *    Now that all specific code is set up, enable the shared memory and
 *    look for the a signature area that will tell us exactly what board
 *    this is, and what it is connected to it.
 */
      EBRDENABLE(brdp);
      sigsp = (cdkecpsig_t __iomem *) EBRDGETMEMPTR(brdp, CDK_SIGADDR);
      memcpy(&sig, sigsp, sizeof(cdkecpsig_t));
      EBRDDISABLE(brdp);

      if (sig.magic != cpu_to_le32(ECP_MAGIC))
      {
            release_region(brdp->iobase, brdp->iosize);
            return -ENODEV;
      }

/*
 *    Scan through the signature looking at the panels connected to the
 *    board. Calculate the total number of ports as we go.
 */
      for (panelnr = 0, nxtid = 0; (panelnr < STL_MAXPANELS); panelnr++) {
            status = sig.panelid[nxtid];
            if ((status & ECH_PNLIDMASK) != nxtid)
                  break;

            brdp->panelids[panelnr] = status;
            nrports = (status & ECH_PNL16PORT) ? 16 : 8;
            if ((nrports == 16) && ((status & ECH_PNLXPID) == 0))
                  nxtid++;
            brdp->panels[panelnr] = nrports;
            brdp->nrports += nrports;
            nxtid++;
            brdp->nrpanels++;
      }


      brdp->state |= BST_FOUND;
      return 0;
}

/*****************************************************************************/

/*
 *    Try to find an ONboard, Brumby or Stallion board and initialize it.
 *    This handles only these board types.
 */

static int stli_initonb(stlibrd_t *brdp)
{
      cdkonbsig_t sig;
      cdkonbsig_t __iomem *sigsp;
      char *name;
      int i;

/*
 *    Do a basic sanity check on the IO and memory addresses.
 */
      if (brdp->iobase == 0 || brdp->memaddr == 0)
            return -ENODEV;

      brdp->iosize = ONB_IOSIZE;
      
      if (!request_region(brdp->iobase, brdp->iosize, "istallion"))
            return -EIO;

/*
 *    Based on the specific board type setup the common vars to access
 *    and enable shared memory. Set all board specific information now
 *    as well.
 */
      switch (brdp->brdtype) {
      case BRD_ONBOARD:
      case BRD_ONBOARD32:
      case BRD_ONBOARD2:
      case BRD_ONBOARD2_32:
      case BRD_ONBOARDRS:
            brdp->memsize = ONB_MEMSIZE;
            brdp->pagesize = ONB_ATPAGESIZE;
            brdp->init = stli_onbinit;
            brdp->enable = stli_onbenable;
            brdp->reenable = stli_onbenable;
            brdp->disable = stli_onbdisable;
            brdp->getmemptr = stli_onbgetmemptr;
            brdp->intr = stli_ecpintr;
            brdp->reset = stli_onbreset;
            if (brdp->memaddr > 0x100000)
                  brdp->enabval = ONB_MEMENABHI;
            else
                  brdp->enabval = ONB_MEMENABLO;
            name = "serial(ONBoard)";
            break;

      case BRD_ONBOARDE:
            brdp->memsize = ONB_EIMEMSIZE;
            brdp->pagesize = ONB_EIPAGESIZE;
            brdp->init = stli_onbeinit;
            brdp->enable = stli_onbeenable;
            brdp->reenable = stli_onbeenable;
            brdp->disable = stli_onbedisable;
            brdp->getmemptr = stli_onbegetmemptr;
            brdp->intr = stli_ecpintr;
            brdp->reset = stli_onbereset;
            name = "serial(ONBoard/E)";
            break;

      case BRD_BRUMBY4:
      case BRD_BRUMBY8:
      case BRD_BRUMBY16:
            brdp->memsize = BBY_MEMSIZE;
            brdp->pagesize = BBY_PAGESIZE;
            brdp->init = stli_bbyinit;
            brdp->enable = NULL;
            brdp->reenable = NULL;
            brdp->disable = NULL;
            brdp->getmemptr = stli_bbygetmemptr;
            brdp->intr = stli_ecpintr;
            brdp->reset = stli_bbyreset;
            name = "serial(Brumby)";
            break;

      case BRD_STALLION:
            brdp->memsize = STAL_MEMSIZE;
            brdp->pagesize = STAL_PAGESIZE;
            brdp->init = stli_stalinit;
            brdp->enable = NULL;
            brdp->reenable = NULL;
            brdp->disable = NULL;
            brdp->getmemptr = stli_stalgetmemptr;
            brdp->intr = stli_ecpintr;
            brdp->reset = stli_stalreset;
            name = "serial(Stallion)";
            break;

      default:
            release_region(brdp->iobase, brdp->iosize);
            return -EINVAL;
      }

/*
 *    The per-board operations structure is all set up, so now let's go
 *    and get the board operational. Firstly initialize board configuration
 *    registers. Set the memory mapping info so we can get at the boards
 *    shared memory.
 */
      EBRDINIT(brdp);

      brdp->membase = ioremap(brdp->memaddr, brdp->memsize);
      if (brdp->membase == NULL)
      {
            release_region(brdp->iobase, brdp->iosize);
            return -ENOMEM;
      }

/*
 *    Now that all specific code is set up, enable the shared memory and
 *    look for the a signature area that will tell us exactly what board
 *    this is, and how many ports.
 */
      EBRDENABLE(brdp);
      sigsp = (cdkonbsig_t __iomem *) EBRDGETMEMPTR(brdp, CDK_SIGADDR);
      memcpy_fromio(&sig, sigsp, sizeof(cdkonbsig_t));
      EBRDDISABLE(brdp);

      if (sig.magic0 != cpu_to_le16(ONB_MAGIC0) ||
          sig.magic1 != cpu_to_le16(ONB_MAGIC1) ||
          sig.magic2 != cpu_to_le16(ONB_MAGIC2) ||
          sig.magic3 != cpu_to_le16(ONB_MAGIC3))
      {
            release_region(brdp->iobase, brdp->iosize);
            return -ENODEV;
      }

/*
 *    Scan through the signature alive mask and calculate how many ports
 *    there are on this board.
 */
      brdp->nrpanels = 1;
      if (sig.amask1) {
            brdp->nrports = 32;
      } else {
            for (i = 0; (i < 16); i++) {
                  if (((sig.amask0 << i) & 0x8000) == 0)
                        break;
            }
            brdp->nrports = i;
      }
      brdp->panels[0] = brdp->nrports;


      brdp->state |= BST_FOUND;
      return 0;
}

/*****************************************************************************/

/*
 *    Start up a running board. This routine is only called after the
 *    code has been down loaded to the board and is operational. It will
 *    read in the memory map, and get the show on the road...
 */

static int stli_startbrd(stlibrd_t *brdp)
{
      cdkhdr_t __iomem *hdrp;
      cdkmem_t __iomem *memp;
      cdkasy_t __iomem *ap;
      unsigned long flags;
      stliport_t *portp;
      int portnr, nrdevs, i, rc = 0;
      u32 memoff;

      spin_lock_irqsave(&brd_lock, flags);
      EBRDENABLE(brdp);
      hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
      nrdevs = hdrp->nrdevs;

#if 0
      printk("%s(%d): CDK version %d.%d.%d --> "
            "nrdevs=%d memp=%x hostp=%x slavep=%x\n",
             __FILE__, __LINE__, readb(&hdrp->ver_release), readb(&hdrp->ver_modification),
             readb(&hdrp->ver_fix), nrdevs, (int) readl(&hdrp->memp), readl(&hdrp->hostp),
             readl(&hdrp->slavep));
#endif

      if (nrdevs < (brdp->nrports + 1)) {
            printk(KERN_ERR "STALLION: slave failed to allocate memory for "
                        "all devices, devices=%d\n", nrdevs);
            brdp->nrports = nrdevs - 1;
      }
      brdp->nrdevs = nrdevs;
      brdp->hostoffset = hdrp->hostp - CDK_CDKADDR;
      brdp->slaveoffset = hdrp->slavep - CDK_CDKADDR;
      brdp->bitsize = (nrdevs + 7) / 8;
      memoff = readl(&hdrp->memp);
      if (memoff > brdp->memsize) {
            printk(KERN_ERR "STALLION: corrupted shared memory region?\n");
            rc = -EIO;
            goto stli_donestartup;
      }
      memp = (cdkmem_t __iomem *) EBRDGETMEMPTR(brdp, memoff);
      if (readw(&memp->dtype) != TYP_ASYNCTRL) {
            printk(KERN_ERR "STALLION: no slave control device found\n");
            goto stli_donestartup;
      }
      memp++;

/*
 *    Cycle through memory allocation of each port. We are guaranteed to
 *    have all ports inside the first page of slave window, so no need to
 *    change pages while reading memory map.
 */
      for (i = 1, portnr = 0; (i < nrdevs); i++, portnr++, memp++) {
            if (readw(&memp->dtype) != TYP_ASYNC)
                  break;
            portp = brdp->ports[portnr];
            if (portp == NULL)
                  break;
            portp->devnr = i;
            portp->addr = readl(&memp->offset);
            portp->reqbit = (unsigned char) (0x1 << (i * 8 / nrdevs));
            portp->portidx = (unsigned char) (i / 8);
            portp->portbit = (unsigned char) (0x1 << (i % 8));
      }

      writeb(0xff, &hdrp->slavereq);

/*
 *    For each port setup a local copy of the RX and TX buffer offsets
 *    and sizes. We do this separate from the above, because we need to
 *    move the shared memory page...
 */
      for (i = 1, portnr = 0; (i < nrdevs); i++, portnr++) {
            portp = brdp->ports[portnr];
            if (portp == NULL)
                  break;
            if (portp->addr == 0)
                  break;
            ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
            if (ap != NULL) {
                  portp->rxsize = readw(&ap->rxq.size);
                  portp->txsize = readw(&ap->txq.size);
                  portp->rxoffset = readl(&ap->rxq.offset);
                  portp->txoffset = readl(&ap->txq.offset);
            }
      }

stli_donestartup:
      EBRDDISABLE(brdp);
      spin_unlock_irqrestore(&brd_lock, flags);

      if (rc == 0)
            brdp->state |= BST_STARTED;

      if (! stli_timeron) {
            stli_timeron++;
            stli_timerlist.expires = STLI_TIMEOUT;
            add_timer(&stli_timerlist);
      }

      return rc;
}

/*****************************************************************************/

/*
 *    Probe and initialize the specified board.
 */

static int __init stli_brdinit(stlibrd_t *brdp)
{
      stli_brds[brdp->brdnr] = brdp;

      switch (brdp->brdtype) {
      case BRD_ECP:
      case BRD_ECPE:
      case BRD_ECPMC:
      case BRD_ECPPCI:
            stli_initecp(brdp);
            break;
      case BRD_ONBOARD:
      case BRD_ONBOARDE:
      case BRD_ONBOARD2:
      case BRD_ONBOARD32:
      case BRD_ONBOARD2_32:
      case BRD_ONBOARDRS:
      case BRD_BRUMBY4:
      case BRD_BRUMBY8:
      case BRD_BRUMBY16:
      case BRD_STALLION:
            stli_initonb(brdp);
            break;
      case BRD_EASYIO:
      case BRD_ECH:
      case BRD_ECHMC:
      case BRD_ECHPCI:
            printk(KERN_ERR "STALLION: %s board type not supported in "
                        "this driver\n", stli_brdnames[brdp->brdtype]);
            return -ENODEV;
      default:
            printk(KERN_ERR "STALLION: board=%d is unknown board "
                        "type=%d\n", brdp->brdnr, brdp->brdtype);
            return -ENODEV;
      }

      if ((brdp->state & BST_FOUND) == 0) {
            printk(KERN_ERR "STALLION: %s board not found, board=%d "
                        "io=%x mem=%x\n",
                  stli_brdnames[brdp->brdtype], brdp->brdnr,
                  brdp->iobase, (int) brdp->memaddr);
            return -ENODEV;
      }

      stli_initports(brdp);
      printk(KERN_INFO "STALLION: %s found, board=%d io=%x mem=%x "
            "nrpanels=%d nrports=%d\n", stli_brdnames[brdp->brdtype],
            brdp->brdnr, brdp->iobase, (int) brdp->memaddr,
            brdp->nrpanels, brdp->nrports);
      return 0;
}

/*****************************************************************************/

/*
 *    Probe around trying to find where the EISA boards shared memory
 *    might be. This is a bit if hack, but it is the best we can do.
 */

static int stli_eisamemprobe(stlibrd_t *brdp)
{
      cdkecpsig_t ecpsig, __iomem *ecpsigp;
      cdkonbsig_t onbsig, __iomem *onbsigp;
      int         i, foundit;

/*
 *    First up we reset the board, to get it into a known state. There
 *    is only 2 board types here we need to worry about. Don;t use the
 *    standard board init routine here, it programs up the shared
 *    memory address, and we don't know it yet...
 */
      if (brdp->brdtype == BRD_ECPE) {
            outb(0x1, (brdp->iobase + ECP_EIBRDENAB));
            outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
            udelay(10);
            outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
            udelay(500);
            stli_ecpeienable(brdp);
      } else if (brdp->brdtype == BRD_ONBOARDE) {
            outb(0x1, (brdp->iobase + ONB_EIBRDENAB));
            outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
            udelay(10);
            outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
            mdelay(100);
            outb(0x1, brdp->iobase);
            mdelay(1);
            stli_onbeenable(brdp);
      } else {
            return -ENODEV;
      }

      foundit = 0;
      brdp->memsize = ECP_MEMSIZE;

/*
 *    Board shared memory is enabled, so now we have a poke around and
 *    see if we can find it.
 */
      for (i = 0; (i < stli_eisamempsize); i++) {
            brdp->memaddr = stli_eisamemprobeaddrs[i];
            brdp->membase = ioremap(brdp->memaddr, brdp->memsize);
            if (brdp->membase == NULL)
                  continue;

            if (brdp->brdtype == BRD_ECPE) {
                  ecpsigp = (cdkecpsig_t __iomem *) stli_ecpeigetmemptr(brdp,
                        CDK_SIGADDR, __LINE__);
                  memcpy_fromio(&ecpsig, ecpsigp, sizeof(cdkecpsig_t));
                  if (ecpsig.magic == cpu_to_le32(ECP_MAGIC))
                        foundit = 1;
            } else {
                  onbsigp = (cdkonbsig_t __iomem *) stli_onbegetmemptr(brdp,
                        CDK_SIGADDR, __LINE__);
                  memcpy_fromio(&onbsig, onbsigp, sizeof(cdkonbsig_t));
                  if ((onbsig.magic0 == cpu_to_le16(ONB_MAGIC0)) &&
                      (onbsig.magic1 == cpu_to_le16(ONB_MAGIC1)) &&
                      (onbsig.magic2 == cpu_to_le16(ONB_MAGIC2)) &&
                      (onbsig.magic3 == cpu_to_le16(ONB_MAGIC3)))
                        foundit = 1;
            }

            iounmap(brdp->membase);
            if (foundit)
                  break;
      }

/*
 *    Regardless of whether we found the shared memory or not we must
 *    disable the region. After that return success or failure.
 */
      if (brdp->brdtype == BRD_ECPE)
            stli_ecpeidisable(brdp);
      else
            stli_onbedisable(brdp);

      if (! foundit) {
            brdp->memaddr = 0;
            brdp->membase = NULL;
            printk(KERN_ERR "STALLION: failed to probe shared memory "
                        "region for %s in EISA slot=%d\n",
                  stli_brdnames[brdp->brdtype], (brdp->iobase >> 12));
            return -ENODEV;
      }
      return 0;
}

static int stli_getbrdnr(void)
{
      int i;

      for (i = 0; i < STL_MAXBRDS; i++) {
            if (!stli_brds[i]) {
                  if (i >= stli_nrbrds)
                        stli_nrbrds = i + 1;
                  return i;
            }
      }
      return -1;
}

/*****************************************************************************/

/*
 *    Probe around and try to find any EISA boards in system. The biggest
 *    problem here is finding out what memory address is associated with
 *    an EISA board after it is found. The registers of the ECPE and
 *    ONboardE are not readable - so we can't read them from there. We
 *    don't have access to the EISA CMOS (or EISA BIOS) so we don't
 *    actually have any way to find out the real value. The best we can
 *    do is go probing around in the usual places hoping we can find it.
 */

static int stli_findeisabrds(void)
{
      stlibrd_t *brdp;
      unsigned int iobase, eid;
      int i;

/*
 *    Firstly check if this is an EISA system.  If this is not an EISA system then
 *    don't bother going any further!
 */
      if (EISA_bus)
            return 0;

/*
 *    Looks like an EISA system, so go searching for EISA boards.
 */
      for (iobase = 0x1000; (iobase <= 0xc000); iobase += 0x1000) {
            outb(0xff, (iobase + 0xc80));
            eid = inb(iobase + 0xc80);
            eid |= inb(iobase + 0xc81) << 8;
            if (eid != STL_EISAID)
                  continue;

/*
 *          We have found a board. Need to check if this board was
 *          statically configured already (just in case!).
 */
            for (i = 0; (i < STL_MAXBRDS); i++) {
                  brdp = stli_brds[i];
                  if (brdp == NULL)
                        continue;
                  if (brdp->iobase == iobase)
                        break;
            }
            if (i < STL_MAXBRDS)
                  continue;

/*
 *          We have found a Stallion board and it is not configured already.
 *          Allocate a board structure and initialize it.
 */
            if ((brdp = stli_allocbrd()) == NULL)
                  return -ENOMEM;
            if ((brdp->brdnr = stli_getbrdnr()) < 0)
                  return -ENOMEM;
            eid = inb(iobase + 0xc82);
            if (eid == ECP_EISAID)
                  brdp->brdtype = BRD_ECPE;
            else if (eid == ONB_EISAID)
                  brdp->brdtype = BRD_ONBOARDE;
            else
                  brdp->brdtype = BRD_UNKNOWN;
            brdp->iobase = iobase;
            outb(0x1, (iobase + 0xc84));
            if (stli_eisamemprobe(brdp))
                  outb(0, (iobase + 0xc84));
            stli_brdinit(brdp);
      }

      return 0;
}

/*****************************************************************************/

/*
 *    Find the next available board number that is free.
 */

/*****************************************************************************/

#ifdef      CONFIG_PCI

/*
 *    We have a Stallion board. Allocate a board structure and
 *    initialize it. Read its IO and MEMORY resources from PCI
 *    configuration space.
 */

static int stli_initpcibrd(int brdtype, struct pci_dev *devp)
{
      stlibrd_t *brdp;

      if (pci_enable_device(devp))
            return -EIO;
      if ((brdp = stli_allocbrd()) == NULL)
            return -ENOMEM;
      if ((brdp->brdnr = stli_getbrdnr()) < 0) {
            printk(KERN_INFO "STALLION: too many boards found, "
                  "maximum supported %d\n", STL_MAXBRDS);
            return 0;
      }
      brdp->brdtype = brdtype;
/*
 *    We have all resources from the board, so lets setup the actual
 *    board structure now.
 */
      brdp->iobase = pci_resource_start(devp, 3);
      brdp->memaddr = pci_resource_start(devp, 2);
      stli_brdinit(brdp);

      return 0;
}

/*****************************************************************************/

/*
 *    Find all Stallion PCI boards that might be installed. Initialize each
 *    one as it is found.
 */

static int stli_findpcibrds(void)
{
      struct pci_dev *dev = NULL;

      while ((dev = pci_get_device(PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_ECRA, dev))) {
            stli_initpcibrd(BRD_ECPPCI, dev);
      }
      return 0;
}

#endif

/*****************************************************************************/

/*
 *    Allocate a new board structure. Fill out the basic info in it.
 */

static stlibrd_t *stli_allocbrd(void)
{
      stlibrd_t *brdp;

      brdp = kzalloc(sizeof(stlibrd_t), GFP_KERNEL);
      if (!brdp) {
            printk(KERN_ERR "STALLION: failed to allocate memory "
                        "(size=%Zd)\n", sizeof(stlibrd_t));
            return NULL;
      }
      brdp->magic = STLI_BOARDMAGIC;
      return brdp;
}

/*****************************************************************************/

/*
 *    Scan through all the boards in the configuration and see what we
 *    can find.
 */

static int stli_initbrds(void)
{
      stlibrd_t *brdp, *nxtbrdp;
      stlconf_t *confp;
      int i, j;

      if (stli_nrbrds > STL_MAXBRDS) {
            printk(KERN_INFO "STALLION: too many boards in configuration "
                  "table, truncating to %d\n", STL_MAXBRDS);
            stli_nrbrds = STL_MAXBRDS;
      }

/*
 *    Firstly scan the list of static boards configured. Allocate
 *    resources and initialize the boards as found. If this is a
 *    module then let the module args override static configuration.
 */
      for (i = 0; (i < stli_nrbrds); i++) {
            confp = &stli_brdconf[i];
            stli_parsebrd(confp, stli_brdsp[i]);
            if ((brdp = stli_allocbrd()) == NULL)
                  return -ENOMEM;
            brdp->brdnr = i;
            brdp->brdtype = confp->brdtype;
            brdp->iobase = confp->ioaddr1;
            brdp->memaddr = confp->memaddr;
            stli_brdinit(brdp);
      }

/*
 *    Static configuration table done, so now use dynamic methods to
 *    see if any more boards should be configured.
 */
      stli_argbrds();
      if (STLI_EISAPROBE)
            stli_findeisabrds();
#ifdef CONFIG_PCI
      stli_findpcibrds();
#endif

/*
 *    All found boards are initialized. Now for a little optimization, if
 *    no boards are sharing the "shared memory" regions then we can just
 *    leave them all enabled. This is in fact the usual case.
 */
      stli_shared = 0;
      if (stli_nrbrds > 1) {
            for (i = 0; (i < stli_nrbrds); i++) {
                  brdp = stli_brds[i];
                  if (brdp == NULL)
                        continue;
                  for (j = i + 1; (j < stli_nrbrds); j++) {
                        nxtbrdp = stli_brds[j];
                        if (nxtbrdp == NULL)
                              continue;
                        if ((brdp->membase >= nxtbrdp->membase) &&
                            (brdp->membase <= (nxtbrdp->membase +
                            nxtbrdp->memsize - 1))) {
                              stli_shared++;
                              break;
                        }
                  }
            }
      }

      if (stli_shared == 0) {
            for (i = 0; (i < stli_nrbrds); i++) {
                  brdp = stli_brds[i];
                  if (brdp == NULL)
                        continue;
                  if (brdp->state & BST_FOUND) {
                        EBRDENABLE(brdp);
                        brdp->enable = NULL;
                        brdp->disable = NULL;
                  }
            }
      }

      return 0;
}

/*****************************************************************************/

/*
 *    Code to handle an "staliomem" read operation. This device is the 
 *    contents of the board shared memory. It is used for down loading
 *    the slave image (and debugging :-)
 */

static ssize_t stli_memread(struct file *fp, char __user *buf, size_t count, loff_t *offp)
{
      unsigned long flags;
      void *memptr;
      stlibrd_t *brdp;
      int brdnr, size, n;
      void *p;
      loff_t off = *offp;

      brdnr = iminor(fp->f_dentry->d_inode);
      if (brdnr >= stli_nrbrds)
            return -ENODEV;
      brdp = stli_brds[brdnr];
      if (brdp == NULL)
            return -ENODEV;
      if (brdp->state == 0)
            return -ENODEV;
      if (off >= brdp->memsize || off + count < off)
            return 0;

      size = MIN(count, (brdp->memsize - off));

      /*
       *    Copy the data a page at a time
       */

      p = (void *)__get_free_page(GFP_KERNEL);
      if(p == NULL)
            return -ENOMEM;

      while (size > 0) {
            spin_lock_irqsave(&brd_lock, flags);
            EBRDENABLE(brdp);
            memptr = (void *) EBRDGETMEMPTR(brdp, off);
            n = MIN(size, (brdp->pagesize - (((unsigned long) off) % brdp->pagesize)));
            n = MIN(n, PAGE_SIZE);
            memcpy_fromio(p, memptr, n);
            EBRDDISABLE(brdp);
            spin_unlock_irqrestore(&brd_lock, flags);
            if (copy_to_user(buf, p, n)) {
                  count = -EFAULT;
                  goto out;
            }
            off += n;
            buf += n;
            size -= n;
      }
out:
      *offp = off;
      free_page((unsigned long)p);
      return count;
}

/*****************************************************************************/

/*
 *    Code to handle an "staliomem" write operation. This device is the 
 *    contents of the board shared memory. It is used for down loading
 *    the slave image (and debugging :-)
 *
 *    FIXME: copy under lock
 */

static ssize_t stli_memwrite(struct file *fp, const char __user *buf, size_t count, loff_t *offp)
{
      unsigned long flags;
      void *memptr;
      stlibrd_t *brdp;
      char __user *chbuf;
      int brdnr, size, n;
      void *p;
      loff_t off = *offp;

      brdnr = iminor(fp->f_dentry->d_inode);

      if (brdnr >= stli_nrbrds)
            return -ENODEV;
      brdp = stli_brds[brdnr];
      if (brdp == NULL)
            return -ENODEV;
      if (brdp->state == 0)
            return -ENODEV;
      if (off >= brdp->memsize || off + count < off)
            return 0;

      chbuf = (char __user *) buf;
      size = MIN(count, (brdp->memsize - off));

      /*
       *    Copy the data a page at a time
       */

      p = (void *)__get_free_page(GFP_KERNEL);
      if(p == NULL)
            return -ENOMEM;

      while (size > 0) {
            n = MIN(size, (brdp->pagesize - (((unsigned long) off) % brdp->pagesize)));
            n = MIN(n, PAGE_SIZE);
            if (copy_from_user(p, chbuf, n)) {
                  if (count == 0)
                        count = -EFAULT;
                  goto out;
            }
            spin_lock_irqsave(&brd_lock, flags);
            EBRDENABLE(brdp);
            memptr = (void *) EBRDGETMEMPTR(brdp, off);
            memcpy_toio(memptr, p, n);
            EBRDDISABLE(brdp);
            spin_unlock_irqrestore(&brd_lock, flags);
            off += n;
            chbuf += n;
            size -= n;
      }
out:
      free_page((unsigned long) p);
      *offp = off;
      return count;
}

/*****************************************************************************/

/*
 *    Return the board stats structure to user app.
 */

static int stli_getbrdstats(combrd_t __user *bp)
{
      stlibrd_t *brdp;
      int i;

      if (copy_from_user(&stli_brdstats, bp, sizeof(combrd_t)))
            return -EFAULT;
      if (stli_brdstats.brd >= STL_MAXBRDS)
            return -ENODEV;
      brdp = stli_brds[stli_brdstats.brd];
      if (brdp == NULL)
            return -ENODEV;

      memset(&stli_brdstats, 0, sizeof(combrd_t));
      stli_brdstats.brd = brdp->brdnr;
      stli_brdstats.type = brdp->brdtype;
      stli_brdstats.hwid = 0;
      stli_brdstats.state = brdp->state;
      stli_brdstats.ioaddr = brdp->iobase;
      stli_brdstats.memaddr = brdp->memaddr;
      stli_brdstats.nrpanels = brdp->nrpanels;
      stli_brdstats.nrports = brdp->nrports;
      for (i = 0; (i < brdp->nrpanels); i++) {
            stli_brdstats.panels[i].panel = i;
            stli_brdstats.panels[i].hwid = brdp->panelids[i];
            stli_brdstats.panels[i].nrports = brdp->panels[i];
      }

      if (copy_to_user(bp, &stli_brdstats, sizeof(combrd_t)))
            return -EFAULT;
      return 0;
}

/*****************************************************************************/

/*
 *    Resolve the referenced port number into a port struct pointer.
 */

static stliport_t *stli_getport(int brdnr, int panelnr, int portnr)
{
      stlibrd_t *brdp;
      int i;

      if (brdnr < 0 || brdnr >= STL_MAXBRDS)
            return NULL;
      brdp = stli_brds[brdnr];
      if (brdp == NULL)
            return NULL;
      for (i = 0; (i < panelnr); i++)
            portnr += brdp->panels[i];
      if ((portnr < 0) || (portnr >= brdp->nrports))
            return NULL;
      return brdp->ports[portnr];
}

/*****************************************************************************/

/*
 *    Return the port stats structure to user app. A NULL port struct
 *    pointer passed in means that we need to find out from the app
 *    what port to get stats for (used through board control device).
 */

static int stli_portcmdstats(stliport_t *portp)
{
      unsigned long     flags;
      stlibrd_t   *brdp;
      int         rc;

      memset(&stli_comstats, 0, sizeof(comstats_t));

      if (portp == NULL)
            return -ENODEV;
      brdp = stli_brds[portp->brdnr];
      if (brdp == NULL)
            return -ENODEV;

      if (brdp->state & BST_STARTED) {
            if ((rc = stli_cmdwait(brdp, portp, A_GETSTATS,
                &stli_cdkstats, sizeof(asystats_t), 1)) < 0)
                  return rc;
      } else {
            memset(&stli_cdkstats, 0, sizeof(asystats_t));
      }

      stli_comstats.brd = portp->brdnr;
      stli_comstats.panel = portp->panelnr;
      stli_comstats.port = portp->portnr;
      stli_comstats.state = portp->state;
      stli_comstats.flags = portp->flags;

      spin_lock_irqsave(&brd_lock, flags);
      if (portp->tty != NULL) {
            if (portp->tty->driver_data == portp) {
                  stli_comstats.ttystate = portp->tty->flags;
                  stli_comstats.rxbuffered = -1;
                  if (portp->tty->termios != NULL) {
                        stli_comstats.cflags = portp->tty->termios->c_cflag;
                        stli_comstats.iflags = portp->tty->termios->c_iflag;
                        stli_comstats.oflags = portp->tty->termios->c_oflag;
                        stli_comstats.lflags = portp->tty->termios->c_lflag;
                  }
            }
      }
      spin_unlock_irqrestore(&brd_lock, flags);

      stli_comstats.txtotal = stli_cdkstats.txchars;
      stli_comstats.rxtotal = stli_cdkstats.rxchars + stli_cdkstats.ringover;
      stli_comstats.txbuffered = stli_cdkstats.txringq;
      stli_comstats.rxbuffered += stli_cdkstats.rxringq;
      stli_comstats.rxoverrun = stli_cdkstats.overruns;
      stli_comstats.rxparity = stli_cdkstats.parity;
      stli_comstats.rxframing = stli_cdkstats.framing;
      stli_comstats.rxlost = stli_cdkstats.ringover;
      stli_comstats.rxbreaks = stli_cdkstats.rxbreaks;
      stli_comstats.txbreaks = stli_cdkstats.txbreaks;
      stli_comstats.txxon = stli_cdkstats.txstart;
      stli_comstats.txxoff = stli_cdkstats.txstop;
      stli_comstats.rxxon = stli_cdkstats.rxstart;
      stli_comstats.rxxoff = stli_cdkstats.rxstop;
      stli_comstats.rxrtsoff = stli_cdkstats.rtscnt / 2;
      stli_comstats.rxrtson = stli_cdkstats.rtscnt - stli_comstats.rxrtsoff;
      stli_comstats.modem = stli_cdkstats.dcdcnt;
      stli_comstats.hwid = stli_cdkstats.hwid;
      stli_comstats.signals = stli_mktiocm(stli_cdkstats.signals);

      return 0;
}

/*****************************************************************************/

/*
 *    Return the port stats structure to user app. A NULL port struct
 *    pointer passed in means that we need to find out from the app
 *    what port to get stats for (used through board control device).
 */

static int stli_getportstats(stliport_t *portp, comstats_t __user *cp)
{
      stlibrd_t *brdp;
      int rc;

      if (!portp) {
            if (copy_from_user(&stli_comstats, cp, sizeof(comstats_t)))
                  return -EFAULT;
            portp = stli_getport(stli_comstats.brd, stli_comstats.panel,
                  stli_comstats.port);
            if (!portp)
                  return -ENODEV;
      }

      brdp = stli_brds[portp->brdnr];
      if (!brdp)
            return -ENODEV;

      if ((rc = stli_portcmdstats(portp)) < 0)
            return rc;

      return copy_to_user(cp, &stli_comstats, sizeof(comstats_t)) ?
                  -EFAULT : 0;
}

/*****************************************************************************/

/*
 *    Clear the port stats structure. We also return it zeroed out...
 */

static int stli_clrportstats(stliport_t *portp, comstats_t __user *cp)
{
      stlibrd_t *brdp;
      int rc;

      if (!portp) {
            if (copy_from_user(&stli_comstats, cp, sizeof(comstats_t)))
                  return -EFAULT;
            portp = stli_getport(stli_comstats.brd, stli_comstats.panel,
                  stli_comstats.port);
            if (!portp)
                  return -ENODEV;
      }

      brdp = stli_brds[portp->brdnr];
      if (!brdp)
            return -ENODEV;

      if (brdp->state & BST_STARTED) {
            if ((rc = stli_cmdwait(brdp, portp, A_CLEARSTATS, NULL, 0, 0)) < 0)
                  return rc;
      }

      memset(&stli_comstats, 0, sizeof(comstats_t));
      stli_comstats.brd = portp->brdnr;
      stli_comstats.panel = portp->panelnr;
      stli_comstats.port = portp->portnr;

      if (copy_to_user(cp, &stli_comstats, sizeof(comstats_t)))
            return -EFAULT;
      return 0;
}

/*****************************************************************************/

/*
 *    Return the entire driver ports structure to a user app.
 */

static int stli_getportstruct(stliport_t __user *arg)
{
      stliport_t *portp;

      if (copy_from_user(&stli_dummyport, arg, sizeof(stliport_t)))
            return -EFAULT;
      portp = stli_getport(stli_dummyport.brdnr, stli_dummyport.panelnr,
             stli_dummyport.portnr);
      if (!portp)
            return -ENODEV;
      if (copy_to_user(arg, portp, sizeof(stliport_t)))
            return -EFAULT;
      return 0;
}

/*****************************************************************************/

/*
 *    Return the entire driver board structure to a user app.
 */

static int stli_getbrdstruct(stlibrd_t __user *arg)
{
      stlibrd_t *brdp;

      if (copy_from_user(&stli_dummybrd, arg, sizeof(stlibrd_t)))
            return -EFAULT;
      if ((stli_dummybrd.brdnr < 0) || (stli_dummybrd.brdnr >= STL_MAXBRDS))
            return -ENODEV;
      brdp = stli_brds[stli_dummybrd.brdnr];
      if (!brdp)
            return -ENODEV;
      if (copy_to_user(arg, brdp, sizeof(stlibrd_t)))
            return -EFAULT;
      return 0;
}

/*****************************************************************************/

/*
 *    The "staliomem" device is also required to do some special operations on
 *    the board. We need to be able to send an interrupt to the board,
 *    reset it, and start/stop it.
 */

static int stli_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg)
{
      stlibrd_t *brdp;
      int brdnr, rc, done;
      void __user *argp = (void __user *)arg;

/*
 *    First up handle the board independent ioctls.
 */
      done = 0;
      rc = 0;

      switch (cmd) {
      case COM_GETPORTSTATS:
            rc = stli_getportstats(NULL, argp);
            done++;
            break;
      case COM_CLRPORTSTATS:
            rc = stli_clrportstats(NULL, argp);
            done++;
            break;
      case COM_GETBRDSTATS:
            rc = stli_getbrdstats(argp);
            done++;
            break;
      case COM_READPORT:
            rc = stli_getportstruct(argp);
            done++;
            break;
      case COM_READBOARD:
            rc = stli_getbrdstruct(argp);
            done++;
            break;
      }

      if (done)
            return rc;

/*
 *    Now handle the board specific ioctls. These all depend on the
 *    minor number of the device they were called from.
 */
      brdnr = iminor(ip);
      if (brdnr >= STL_MAXBRDS)
            return -ENODEV;
      brdp = stli_brds[brdnr];
      if (!brdp)
            return -ENODEV;
      if (brdp->state == 0)
            return -ENODEV;

      switch (cmd) {
      case STL_BINTR:
            EBRDINTR(brdp);
            break;
      case STL_BSTART:
            rc = stli_startbrd(brdp);
            break;
      case STL_BSTOP:
            brdp->state &= ~BST_STARTED;
            break;
      case STL_BRESET:
            brdp->state &= ~BST_STARTED;
            EBRDRESET(brdp);
            if (stli_shared == 0) {
                  if (brdp->reenable != NULL)
                        (* brdp->reenable)(brdp);
            }
            break;
      default:
            rc = -ENOIOCTLCMD;
            break;
      }
      return rc;
}

static struct tty_operations stli_ops = {
      .open = stli_open,
      .close = stli_close,
      .write = stli_write,
      .put_char = stli_putchar,
      .flush_chars = stli_flushchars,
      .write_room = stli_writeroom,
      .chars_in_buffer = stli_charsinbuffer,
      .ioctl = stli_ioctl,
      .set_termios = stli_settermios,
      .throttle = stli_throttle,
      .unthrottle = stli_unthrottle,
      .stop = stli_stop,
      .start = stli_start,
      .hangup = stli_hangup,
      .flush_buffer = stli_flushbuffer,
      .break_ctl = stli_breakctl,
      .wait_until_sent = stli_waituntilsent,
      .send_xchar = stli_sendxchar,
      .read_proc = stli_readproc,
      .tiocmget = stli_tiocmget,
      .tiocmset = stli_tiocmset,
};

/*****************************************************************************/

static int __init stli_init(void)
{
      int i;
      printk(KERN_INFO "%s: version %s\n", stli_drvtitle, stli_drvversion);

      spin_lock_init(&stli_lock);
      spin_lock_init(&brd_lock);

      stli_initbrds();

      stli_serial = alloc_tty_driver(STL_MAXBRDS * STL_MAXPORTS);
      if (!stli_serial)
            return -ENOMEM;

/*
 *    Allocate a temporary write buffer.
 */
      stli_txcookbuf = kmalloc(STLI_TXBUFSIZE, GFP_KERNEL);
      if (!stli_txcookbuf)
            printk(KERN_ERR "STALLION: failed to allocate memory "
                        "(size=%d)\n", STLI_TXBUFSIZE);

/*
 *    Set up a character driver for the shared memory region. We need this
 *    to down load the slave code image. Also it is a useful debugging tool.
 */
      if (register_chrdev(STL_SIOMEMMAJOR, "staliomem", &stli_fsiomem))
            printk(KERN_ERR "STALLION: failed to register serial memory "
                        "device\n");

      istallion_class = class_create(THIS_MODULE, "staliomem");
      for (i = 0; i < 4; i++)
            class_device_create(istallion_class, NULL,
                        MKDEV(STL_SIOMEMMAJOR, i),
                        NULL, "staliomem%d", i);

/*
 *    Set up the tty driver structure and register us as a driver.
 */
      stli_serial->owner = THIS_MODULE;
      stli_serial->driver_name = stli_drvname;
      stli_serial->name = stli_serialname;
      stli_serial->major = STL_SERIALMAJOR;
      stli_serial->minor_start = 0;
      stli_serial->type = TTY_DRIVER_TYPE_SERIAL;
      stli_serial->subtype = SERIAL_TYPE_NORMAL;
      stli_serial->init_termios = stli_deftermios;
      stli_serial->flags = TTY_DRIVER_REAL_RAW;
      tty_set_operations(stli_serial, &stli_ops);

      if (tty_register_driver(stli_serial)) {
            put_tty_driver(stli_serial);
            printk(KERN_ERR "STALLION: failed to register serial driver\n");
            return -EBUSY;
      }
      return 0;
}

/*****************************************************************************/

Generated by  Doxygen 1.6.0   Back to index