Logo Search packages:      
Sourcecode: linux-2.6 version File versions  Download package

nsp32.c

/*
 * NinjaSCSI-32Bi Cardbus, NinjaSCSI-32UDE PCI/CardBus SCSI driver
 * Copyright (C) 2001, 2002, 2003
 *      YOKOTA Hiroshi <yokota@netlab.is.tsukuba.ac.jp>
 *      GOTO Masanori <gotom@debian.or.jp>, <gotom@debian.org>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 *
 * Revision History:
 *   1.0: Initial Release.
 *   1.1: Add /proc SDTR status.
 *        Remove obsolete error handler nsp32_reset.
 *        Some clean up.
 *   1.2: PowerPC (big endian) support.
 */

#include <linux/version.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/timer.h>
#include <linux/ioport.h>
#include <linux/major.h>
#include <linux/blkdev.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/ctype.h>
#include <linux/dma-mapping.h>

#include <asm/dma.h>
#include <asm/system.h>
#include <asm/io.h>

#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_host.h>
#include <scsi/scsi_ioctl.h>

#if (LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0))
# include <linux/blk.h>
#endif

#include "nsp32.h"


/***********************************************************************
 * Module parameters
 */
static int       trans_mode = 0;    /* default: BIOS */
module_param     (trans_mode, int, 0);
MODULE_PARM_DESC(trans_mode, "transfer mode (0: BIOS(default) 1: Async 2: Ultra20M");
#define ASYNC_MODE    1
#define ULTRA20M_MODE 2

static int       auto_param = 0;    /* default: ON */
module_param     (auto_param, bool, 0);
MODULE_PARM_DESC(auto_param, "AutoParameter mode (0: ON(default) 1: OFF)");

static int       disc_priv  = 1;    /* default: OFF */
module_param     (disc_priv, bool, 0);
MODULE_PARM_DESC(disc_priv,  "disconnection privilege mode (0: ON 1: OFF(default))");

MODULE_AUTHOR("YOKOTA Hiroshi <yokota@netlab.is.tsukuba.ac.jp>, GOTO Masanori <gotom@debian.or.jp>");
MODULE_DESCRIPTION("Workbit NinjaSCSI-32Bi/UDE CardBus/PCI SCSI host bus adapter module");
MODULE_LICENSE("GPL");

static const char *nsp32_release_version = "1.2";


/****************************************************************************
 * Supported hardware
 */
static struct pci_device_id nsp32_pci_table[] __devinitdata = {
      {
            .vendor      = PCI_VENDOR_ID_IODATA,
            .device      = PCI_DEVICE_ID_NINJASCSI_32BI_CBSC_II,
            .subvendor   = PCI_ANY_ID,
            .subdevice   = PCI_ANY_ID,
            .driver_data = MODEL_IODATA,
      },
      {
            .vendor      = PCI_VENDOR_ID_WORKBIT,
            .device      = PCI_DEVICE_ID_NINJASCSI_32BI_KME,
            .subvendor   = PCI_ANY_ID,
            .subdevice   = PCI_ANY_ID,
            .driver_data = MODEL_KME,
      },
      {
            .vendor      = PCI_VENDOR_ID_WORKBIT,
            .device      = PCI_DEVICE_ID_NINJASCSI_32BI_WBT,
            .subvendor   = PCI_ANY_ID,
            .subdevice   = PCI_ANY_ID,
            .driver_data = MODEL_WORKBIT,
      },
      {
            .vendor      = PCI_VENDOR_ID_WORKBIT,
            .device      = PCI_DEVICE_ID_WORKBIT_STANDARD,
            .subvendor   = PCI_ANY_ID,
            .subdevice   = PCI_ANY_ID,
            .driver_data = MODEL_PCI_WORKBIT,
      },
      {
            .vendor      = PCI_VENDOR_ID_WORKBIT,
            .device      = PCI_DEVICE_ID_NINJASCSI_32BI_LOGITEC,
            .subvendor   = PCI_ANY_ID,
            .subdevice   = PCI_ANY_ID,
            .driver_data = MODEL_LOGITEC,
      },
      {
            .vendor      = PCI_VENDOR_ID_WORKBIT,
            .device      = PCI_DEVICE_ID_NINJASCSI_32BIB_LOGITEC,
            .subvendor   = PCI_ANY_ID,
            .subdevice   = PCI_ANY_ID,
            .driver_data = MODEL_PCI_LOGITEC,
      },
      {
            .vendor      = PCI_VENDOR_ID_WORKBIT,
            .device      = PCI_DEVICE_ID_NINJASCSI_32UDE_MELCO,
            .subvendor   = PCI_ANY_ID,
            .subdevice   = PCI_ANY_ID,
            .driver_data = MODEL_PCI_MELCO,
      },
      {
            .vendor      = PCI_VENDOR_ID_WORKBIT,
            .device      = PCI_DEVICE_ID_NINJASCSI_32UDE_MELCO_II,
            .subvendor   = PCI_ANY_ID,
            .subdevice   = PCI_ANY_ID,
            .driver_data = MODEL_PCI_MELCO,
      },
      {0,0,},
};
MODULE_DEVICE_TABLE(pci, nsp32_pci_table);

static nsp32_hw_data nsp32_data_base;  /* probe <-> detect glue */


/*
 * Period/AckWidth speed conversion table
 *
 * Note: This period/ackwidth speed table must be in descending order.
 */
static nsp32_sync_table nsp32_sync_table_40M[] = {
     /* {PNo, AW,   SP,   EP, SREQ smpl}  Speed(MB/s) Period AckWidth */
      {0x1,  0, 0x0c, 0x0c, SMPL_40M},  /*  20.0 :  50ns,  25ns */
      {0x2,  0, 0x0d, 0x18, SMPL_40M},  /*  13.3 :  75ns,  25ns */
      {0x3,  1, 0x19, 0x19, SMPL_40M},  /*  10.0 : 100ns,  50ns */
      {0x4,  1, 0x1a, 0x1f, SMPL_20M},  /*   8.0 : 125ns,  50ns */
      {0x5,  2, 0x20, 0x25, SMPL_20M},  /*   6.7 : 150ns,  75ns */
      {0x6,  2, 0x26, 0x31, SMPL_20M},  /*   5.7 : 175ns,  75ns */
      {0x7,  3, 0x32, 0x32, SMPL_20M},  /*   5.0 : 200ns, 100ns */
      {0x8,  3, 0x33, 0x38, SMPL_10M},  /*   4.4 : 225ns, 100ns */
      {0x9,  3, 0x39, 0x3e, SMPL_10M},  /*   4.0 : 250ns, 100ns */
};

static nsp32_sync_table nsp32_sync_table_20M[] = {
      {0x1,  0, 0x19, 0x19, SMPL_40M},  /* 10.0 : 100ns,  50ns */
      {0x2,  0, 0x1a, 0x25, SMPL_20M},  /*  6.7 : 150ns,  50ns */
      {0x3,  1, 0x26, 0x32, SMPL_20M},  /*  5.0 : 200ns, 100ns */
      {0x4,  1, 0x33, 0x3e, SMPL_10M},  /*  4.0 : 250ns, 100ns */
      {0x5,  2, 0x3f, 0x4b, SMPL_10M},  /*  3.3 : 300ns, 150ns */
      {0x6,  2, 0x4c, 0x57, SMPL_10M},  /*  2.8 : 350ns, 150ns */
      {0x7,  3, 0x58, 0x64, SMPL_10M},  /*  2.5 : 400ns, 200ns */
      {0x8,  3, 0x65, 0x70, SMPL_10M},  /*  2.2 : 450ns, 200ns */
      {0x9,  3, 0x71, 0x7d, SMPL_10M},  /*  2.0 : 500ns, 200ns */
};

static nsp32_sync_table nsp32_sync_table_pci[] = {
      {0x1,  0, 0x0c, 0x0f, SMPL_40M},  /* 16.6 :  60ns,  30ns */
      {0x2,  0, 0x10, 0x16, SMPL_40M},  /* 11.1 :  90ns,  30ns */
      {0x3,  1, 0x17, 0x1e, SMPL_20M},  /*  8.3 : 120ns,  60ns */
      {0x4,  1, 0x1f, 0x25, SMPL_20M},  /*  6.7 : 150ns,  60ns */
      {0x5,  2, 0x26, 0x2d, SMPL_20M},  /*  5.6 : 180ns,  90ns */
      {0x6,  2, 0x2e, 0x34, SMPL_10M},  /*  4.8 : 210ns,  90ns */
      {0x7,  3, 0x35, 0x3c, SMPL_10M},  /*  4.2 : 240ns, 120ns */
      {0x8,  3, 0x3d, 0x43, SMPL_10M},  /*  3.7 : 270ns, 120ns */
      {0x9,  3, 0x44, 0x4b, SMPL_10M},  /*  3.3 : 300ns, 120ns */
};

/*
 * function declaration
 */
/* module entry point */
static int  __devinit nsp32_probe (struct pci_dev *, const struct pci_device_id *);
static void __devexit nsp32_remove(struct pci_dev *);
static int  __init    init_nsp32  (void);
static void __exit    exit_nsp32  (void);

/* struct struct scsi_host_template */
#if (LINUX_VERSION_CODE > KERNEL_VERSION(2,5,73))
static int         nsp32_proc_info   (struct Scsi_Host *, char *, char **, off_t, int, int);
#else
static int         nsp32_proc_info   (char *, char **, off_t, int, int, int);
#endif

#if (LINUX_VERSION_CODE > KERNEL_VERSION(2,5,73))
static int         nsp32_detect      (struct pci_dev *pdev);
#else
static int         nsp32_detect      (struct scsi_host_template *);
#endif
static int         nsp32_queuecommand(struct scsi_cmnd *,
            void (*done)(struct scsi_cmnd *));
static const char *nsp32_info        (struct Scsi_Host *);
static int         nsp32_release     (struct Scsi_Host *);

/* SCSI error handler */
static int         nsp32_eh_abort     (struct scsi_cmnd *);
static int         nsp32_eh_bus_reset (struct scsi_cmnd *);
static int         nsp32_eh_host_reset(struct scsi_cmnd *);

/* generate SCSI message */
static void nsp32_build_identify(struct scsi_cmnd *);
static void nsp32_build_nop     (struct scsi_cmnd *);
static void nsp32_build_reject  (struct scsi_cmnd *);
static void nsp32_build_sdtr    (struct scsi_cmnd *, unsigned char, unsigned char);

/* SCSI message handler */
static int  nsp32_busfree_occur(struct scsi_cmnd *, unsigned short);
static void nsp32_msgout_occur (struct scsi_cmnd *);
static void nsp32_msgin_occur  (struct scsi_cmnd *, unsigned long, unsigned short);

static int  nsp32_setup_sg_table    (struct scsi_cmnd *);
static int  nsp32_selection_autopara(struct scsi_cmnd *);
static int  nsp32_selection_autoscsi(struct scsi_cmnd *);
static void nsp32_scsi_done         (struct scsi_cmnd *);
static int  nsp32_arbitration       (struct scsi_cmnd *, unsigned int);
static int  nsp32_reselection       (struct scsi_cmnd *, unsigned char);
static void nsp32_adjust_busfree    (struct scsi_cmnd *, unsigned int);
static void nsp32_restart_autoscsi  (struct scsi_cmnd *, unsigned short);

/* SCSI SDTR */
static void nsp32_analyze_sdtr       (struct scsi_cmnd *);
static int  nsp32_search_period_entry(nsp32_hw_data *, nsp32_target *, unsigned char);
static void nsp32_set_async          (nsp32_hw_data *, nsp32_target *);
static void nsp32_set_max_sync       (nsp32_hw_data *, nsp32_target *, unsigned char *, unsigned char *);
static void nsp32_set_sync_entry     (nsp32_hw_data *, nsp32_target *, int, unsigned char);

/* SCSI bus status handler */
static void nsp32_wait_req    (nsp32_hw_data *, int);
static void nsp32_wait_sack   (nsp32_hw_data *, int);
static void nsp32_sack_assert (nsp32_hw_data *);
static void nsp32_sack_negate (nsp32_hw_data *);
static void nsp32_do_bus_reset(nsp32_hw_data *);

/* hardware interrupt handler */
static irqreturn_t do_nsp32_isr(int, void *, struct pt_regs *);

/* initialize hardware */
static int  nsp32hw_init(nsp32_hw_data *);

/* EEPROM handler */
static        int  nsp32_getprom_param (nsp32_hw_data *);
static        int  nsp32_getprom_at24  (nsp32_hw_data *);
static        int  nsp32_getprom_c16   (nsp32_hw_data *);
static        void nsp32_prom_start    (nsp32_hw_data *);
static        void nsp32_prom_stop     (nsp32_hw_data *);
static        int  nsp32_prom_read     (nsp32_hw_data *, int);
static        int  nsp32_prom_read_bit (nsp32_hw_data *);
static        void nsp32_prom_write_bit(nsp32_hw_data *, int);
static        void nsp32_prom_set      (nsp32_hw_data *, int, int);
static        int  nsp32_prom_get      (nsp32_hw_data *, int);

/* debug/warning/info message */
static void nsp32_message (const char *, int, char *, char *, ...);
#ifdef NSP32_DEBUG
static void nsp32_dmessage(const char *, int, int,    char *, ...);
#endif

/*
 * max_sectors is currently limited up to 128.
 */
static struct scsi_host_template nsp32_template = {
      .proc_name              = "nsp32",
      .name                   = "Workbit NinjaSCSI-32Bi/UDE",
      .proc_info              = nsp32_proc_info,
      .info                   = nsp32_info,
      .queuecommand                 = nsp32_queuecommand,
      .can_queue              = 1,
      .sg_tablesize                 = NSP32_SG_SIZE,
      .max_sectors                  = 128,
      .cmd_per_lun                  = 1,
      .this_id                = NSP32_HOST_SCSIID,
      .use_clustering               = DISABLE_CLUSTERING,
      .eh_abort_handler             = nsp32_eh_abort,
      .eh_bus_reset_handler         = nsp32_eh_bus_reset,
      .eh_host_reset_handler        = nsp32_eh_host_reset,
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2,5,74))
      .detect                       = nsp32_detect,
      .release                = nsp32_release,
#endif
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2,5,2))
      .use_new_eh_code              = 1,
#else
/*    .highmem_io             = 1, */
#endif
};

#include "nsp32_io.h"

/***********************************************************************
 * debug, error print
 */
#ifndef NSP32_DEBUG
# define NSP32_DEBUG_MASK           0x000000
# define nsp32_msg(type, args...)     nsp32_message ("", 0, (type), args)
# define nsp32_dbg(mask, args...)     /* */
#else
# define NSP32_DEBUG_MASK           0xffffff
# define nsp32_msg(type, args...) \
      nsp32_message (__FUNCTION__, __LINE__, (type), args)
# define nsp32_dbg(mask, args...) \
      nsp32_dmessage(__FUNCTION__, __LINE__, (mask), args)
#endif

#define NSP32_DEBUG_QUEUECOMMAND    BIT(0)
#define NSP32_DEBUG_REGISTER        BIT(1)
#define NSP32_DEBUG_AUTOSCSI        BIT(2)
#define NSP32_DEBUG_INTR            BIT(3)
#define NSP32_DEBUG_SGLIST          BIT(4)
#define NSP32_DEBUG_BUSFREE         BIT(5)
#define NSP32_DEBUG_CDB_CONTENTS    BIT(6)
#define NSP32_DEBUG_RESELECTION           BIT(7)
#define NSP32_DEBUG_MSGINOCCUR            BIT(8)
#define NSP32_DEBUG_EEPROM          BIT(9)
#define NSP32_DEBUG_MSGOUTOCCUR           BIT(10)
#define NSP32_DEBUG_BUSRESET        BIT(11)
#define NSP32_DEBUG_RESTART         BIT(12)
#define NSP32_DEBUG_SYNC            BIT(13)
#define NSP32_DEBUG_WAIT            BIT(14)
#define NSP32_DEBUG_TARGETFLAG            BIT(15)
#define NSP32_DEBUG_PROC            BIT(16)
#define NSP32_DEBUG_INIT            BIT(17)
#define NSP32_SPECIAL_PRINT_REGISTER      BIT(20)

#define NSP32_DEBUG_BUF_LEN         100

static void nsp32_message(const char *func, int line, char *type, char *fmt, ...)
{
      va_list args;
      char buf[NSP32_DEBUG_BUF_LEN];

      va_start(args, fmt);
      vsnprintf(buf, sizeof(buf), fmt, args);
      va_end(args);

#ifndef NSP32_DEBUG
      printk("%snsp32: %s\n", type, buf);
#else
      printk("%snsp32: %s (%d): %s\n", type, func, line, buf);
#endif
}

#ifdef NSP32_DEBUG
static void nsp32_dmessage(const char *func, int line, int mask, char *fmt, ...)
{
      va_list args;
      char buf[NSP32_DEBUG_BUF_LEN];

      va_start(args, fmt);
      vsnprintf(buf, sizeof(buf), fmt, args);
      va_end(args);

      if (mask & NSP32_DEBUG_MASK) {
            printk("nsp32-debug: 0x%x %s (%d): %s\n", mask, func, line, buf);
      }
}
#endif

#ifdef NSP32_DEBUG
# include "nsp32_debug.c"
#else
# define show_command(arg)   /* */
# define show_busphase(arg)  /* */
# define show_autophase(arg) /* */
#endif

/*
 * IDENTIFY Message
 */
static void nsp32_build_identify(struct scsi_cmnd *SCpnt)
{
      nsp32_hw_data *data = (nsp32_hw_data *)SCpnt->device->host->hostdata;
      int pos             = data->msgout_len;
      int mode            = FALSE;

      /* XXX: Auto DiscPriv detection is progressing... */
      if (disc_priv == 0) {
            /* mode = TRUE; */
      }

      data->msgoutbuf[pos] = IDENTIFY(mode, SCpnt->device->lun); pos++;

      data->msgout_len = pos;
}

/*
 * SDTR Message Routine
 */
static void nsp32_build_sdtr(struct scsi_cmnd    *SCpnt,
                       unsigned char period,
                       unsigned char offset)
{
      nsp32_hw_data *data = (nsp32_hw_data *)SCpnt->device->host->hostdata;
      int pos             = data->msgout_len;

      data->msgoutbuf[pos] = EXTENDED_MESSAGE;  pos++;
      data->msgoutbuf[pos] = EXTENDED_SDTR_LEN; pos++;
      data->msgoutbuf[pos] = EXTENDED_SDTR;     pos++;
      data->msgoutbuf[pos] = period;            pos++;
      data->msgoutbuf[pos] = offset;            pos++;

      data->msgout_len = pos;
}

/*
 * No Operation Message
 */
static void nsp32_build_nop(struct scsi_cmnd *SCpnt)
{
      nsp32_hw_data *data = (nsp32_hw_data *)SCpnt->device->host->hostdata;
      int            pos  = data->msgout_len;

      if (pos != 0) {
            nsp32_msg(KERN_WARNING,
                    "Some messages are already contained!");
            return;
      }

      data->msgoutbuf[pos] = NOP; pos++;
      data->msgout_len = pos;
}

/*
 * Reject Message
 */
static void nsp32_build_reject(struct scsi_cmnd *SCpnt)
{
      nsp32_hw_data *data = (nsp32_hw_data *)SCpnt->device->host->hostdata;
      int            pos  = data->msgout_len;

      data->msgoutbuf[pos] = MESSAGE_REJECT; pos++;
      data->msgout_len = pos;
}
      
/*
 * timer
 */
#if 0
static void nsp32_start_timer(struct scsi_cmnd *SCpnt, int time)
{
      unsigned int base = SCpnt->host->io_port;

      nsp32_dbg(NSP32_DEBUG_INTR, "timer=%d", time);

      if (time & (~TIMER_CNT_MASK)) {
            nsp32_dbg(NSP32_DEBUG_INTR, "timer set overflow");
      }

      nsp32_write2(base, TIMER_SET, time & TIMER_CNT_MASK);
}
#endif


/*
 * set SCSI command and other parameter to asic, and start selection phase
 */
static int nsp32_selection_autopara(struct scsi_cmnd *SCpnt)
{
      nsp32_hw_data  *data = (nsp32_hw_data *)SCpnt->device->host->hostdata;
      unsigned int      base    = SCpnt->device->host->io_port;
      unsigned int      host_id = SCpnt->device->host->this_id;
      unsigned char     target  = scmd_id(SCpnt);
      nsp32_autoparam *param  = data->autoparam;
      unsigned char     phase;
      int         i, ret;
      unsigned int      msgout;
      u16_le              s;

      nsp32_dbg(NSP32_DEBUG_AUTOSCSI, "in");

      /*
       * check bus free
       */
      phase = nsp32_read1(base, SCSI_BUS_MONITOR);
      if (phase != BUSMON_BUS_FREE) {
            nsp32_msg(KERN_WARNING, "bus busy");
            show_busphase(phase & BUSMON_PHASE_MASK);
            SCpnt->result = DID_BUS_BUSY << 16;
            return FALSE;
      }

      /*
       * message out
       *
       * Note: If the range of msgout_len is 1 - 3, fill scsi_msgout.
       *       over 3 messages needs another routine.
       */
      if (data->msgout_len == 0) {
            nsp32_msg(KERN_ERR, "SCSI MsgOut without any message!");
            SCpnt->result = DID_ERROR << 16;
            return FALSE;
      } else if (data->msgout_len > 0 && data->msgout_len <= 3) {
            msgout = 0;
            for (i = 0; i < data->msgout_len; i++) {
                  /*
                   * the sending order of the message is:
                   *  MCNT 3: MSG#0 -> MSG#1 -> MSG#2
                   *  MCNT 2:          MSG#1 -> MSG#2
                   *  MCNT 1:                   MSG#2    
                   */
                  msgout >>= 8;
                  msgout |= ((unsigned int)(data->msgoutbuf[i]) << 24);
            }
            msgout |= MV_VALID;     /* MV valid */
            msgout |= (unsigned int)data->msgout_len; /* len */
      } else {
            /* data->msgout_len > 3 */
            msgout = 0;
      }

      // nsp_dbg(NSP32_DEBUG_AUTOSCSI, "sel time out=0x%x\n", nsp32_read2(base, SEL_TIME_OUT));
      // nsp32_write2(base, SEL_TIME_OUT,   SEL_TIMEOUT_TIME);

      /*
       * setup asic parameter
       */
      memset(param, 0, sizeof(nsp32_autoparam));

      /* cdb */
      for (i = 0; i < SCpnt->cmd_len; i++) {
            param->cdb[4 * i] = SCpnt->cmnd[i];
      }

      /* outgoing messages */
      param->msgout = cpu_to_le32(msgout);

      /* syncreg, ackwidth, target id, SREQ sampling rate */
      param->syncreg    = data->cur_target->syncreg;
      param->ackwidth   = data->cur_target->ackwidth;
      param->target_id  = BIT(host_id) | BIT(target);
      param->sample_reg = data->cur_target->sample_reg;

      // nsp32_dbg(NSP32_DEBUG_AUTOSCSI, "sample rate=0x%x\n", data->cur_target->sample_reg);

      /* command control */
      param->command_control = cpu_to_le16(CLEAR_CDB_FIFO_POINTER |
                                   AUTOSCSI_START         |
                                   AUTO_MSGIN_00_OR_04    |
                                   AUTO_MSGIN_02          |
                                   AUTO_ATN               );


      /* transfer control */
      s = 0;
      switch (data->trans_method) {
      case NSP32_TRANSFER_BUSMASTER:
            s |= BM_START;
            break;
      case NSP32_TRANSFER_MMIO:
            s |= CB_MMIO_MODE;
            break;
      case NSP32_TRANSFER_PIO:
            s |= CB_IO_MODE;
            break;
      default:
            nsp32_msg(KERN_ERR, "unknown trans_method");
            break;
      }
      /*
       * OR-ed BLIEND_MODE, FIFO intr is decreased, instead of PCI bus waits.
       * For bus master transfer, it's taken off.
       */
      s |= (TRANSFER_GO | ALL_COUNTER_CLR);
      param->transfer_control = cpu_to_le16(s);

      /* sg table addr */
      param->sgt_pointer = cpu_to_le32(data->cur_lunt->sglun_paddr);

      /*
       * transfer parameter to ASIC
       */
      nsp32_write4(base, SGT_ADR,         data->auto_paddr);
      nsp32_write2(base, COMMAND_CONTROL, CLEAR_CDB_FIFO_POINTER |
                                        AUTO_PARAMETER         );

      /*
       * Check arbitration
       */
      ret = nsp32_arbitration(SCpnt, base);

      return ret;
}


/*
 * Selection with AUTO SCSI (without AUTO PARAMETER)
 */
static int nsp32_selection_autoscsi(struct scsi_cmnd *SCpnt)
{
      nsp32_hw_data  *data = (nsp32_hw_data *)SCpnt->device->host->hostdata;
      unsigned int      base    = SCpnt->device->host->io_port;
      unsigned int      host_id = SCpnt->device->host->this_id;
      unsigned char     target  = scmd_id(SCpnt);
      unsigned char     phase;
      int         status;
      unsigned short    command     = 0;
      unsigned int      msgout  = 0;
      unsigned short    execph;
      int         i;

      nsp32_dbg(NSP32_DEBUG_AUTOSCSI, "in");

      /*
       * IRQ disable
       */
      nsp32_write2(base, IRQ_CONTROL, IRQ_CONTROL_ALL_IRQ_MASK);

      /*
       * check bus line
       */
      phase = nsp32_read1(base, SCSI_BUS_MONITOR);
      if(((phase & BUSMON_BSY) == 1) || (phase & BUSMON_SEL) == 1) {
            nsp32_msg(KERN_WARNING, "bus busy");
            SCpnt->result = DID_BUS_BUSY << 16;
            status = 1;
            goto out;
        }

      /*
       * clear execph
       */
      execph = nsp32_read2(base, SCSI_EXECUTE_PHASE);

      /*
       * clear FIFO counter to set CDBs
       */
      nsp32_write2(base, COMMAND_CONTROL, CLEAR_CDB_FIFO_POINTER);

      /*
       * set CDB0 - CDB15
       */
      for (i = 0; i < SCpnt->cmd_len; i++) {
            nsp32_write1(base, COMMAND_DATA, SCpnt->cmnd[i]);
        }
      nsp32_dbg(NSP32_DEBUG_CDB_CONTENTS, "CDB[0]=[0x%x]", SCpnt->cmnd[0]);

      /*
       * set SCSIOUT LATCH(initiator)/TARGET(target) (OR-ed) ID
       */
      nsp32_write1(base, SCSI_OUT_LATCH_TARGET_ID, BIT(host_id) | BIT(target));

      /*
       * set SCSI MSGOUT REG
       *
       * Note: If the range of msgout_len is 1 - 3, fill scsi_msgout.
       *       over 3 messages needs another routine.
       */
      if (data->msgout_len == 0) {
            nsp32_msg(KERN_ERR, "SCSI MsgOut without any message!");
            SCpnt->result = DID_ERROR << 16;
            status = 1;
            goto out;
      } else if (data->msgout_len > 0 && data->msgout_len <= 3) {
            msgout = 0;
            for (i = 0; i < data->msgout_len; i++) {
                  /*
                   * the sending order of the message is:
                   *  MCNT 3: MSG#0 -> MSG#1 -> MSG#2
                   *  MCNT 2:          MSG#1 -> MSG#2
                   *  MCNT 1:                   MSG#2    
                   */
                  msgout >>= 8;
                  msgout |= ((unsigned int)(data->msgoutbuf[i]) << 24);
            }
            msgout |= MV_VALID;     /* MV valid */
            msgout |= (unsigned int)data->msgout_len; /* len */
            nsp32_write4(base, SCSI_MSG_OUT, msgout);
      } else {
            /* data->msgout_len > 3 */
            nsp32_write4(base, SCSI_MSG_OUT, 0);
      }

      /*
       * set selection timeout(= 250ms)
       */
      nsp32_write2(base, SEL_TIME_OUT,   SEL_TIMEOUT_TIME);

      /*
       * set SREQ hazard killer sampling rate
       * 
       * TODO: sample_rate (BASE+0F) is 0 when internal clock = 40MHz.
       *      check other internal clock!
       */
      nsp32_write1(base, SREQ_SMPL_RATE, data->cur_target->sample_reg);

      /*
       * clear Arbit
       */
      nsp32_write1(base, SET_ARBIT,      ARBIT_CLEAR);

      /*
       * set SYNCREG
       * Don't set BM_START_ADR before setting this register.
       */
      nsp32_write1(base, SYNC_REG,  data->cur_target->syncreg);

      /*
       * set ACKWIDTH
       */
      nsp32_write1(base, ACK_WIDTH, data->cur_target->ackwidth);

      nsp32_dbg(NSP32_DEBUG_AUTOSCSI,
              "syncreg=0x%x, ackwidth=0x%x, sgtpaddr=0x%x, id=0x%x",
              nsp32_read1(base, SYNC_REG), nsp32_read1(base, ACK_WIDTH),
              nsp32_read4(base, SGT_ADR), nsp32_read1(base, SCSI_OUT_LATCH_TARGET_ID));
      nsp32_dbg(NSP32_DEBUG_AUTOSCSI, "msgout_len=%d, msgout=0x%x",
              data->msgout_len, msgout);

      /*
       * set SGT ADDR (physical address)
       */
      nsp32_write4(base, SGT_ADR, data->cur_lunt->sglun_paddr);

      /*
       * set TRANSFER CONTROL REG
       */
      command = 0;
      command |= (TRANSFER_GO | ALL_COUNTER_CLR);
      if (data->trans_method & NSP32_TRANSFER_BUSMASTER) {
            if (SCpnt->request_bufflen > 0) {
                  command |= BM_START;
            }
      } else if (data->trans_method & NSP32_TRANSFER_MMIO) {
            command |= CB_MMIO_MODE;
      } else if (data->trans_method & NSP32_TRANSFER_PIO) {
            command |= CB_IO_MODE;
      }
      nsp32_write2(base, TRANSFER_CONTROL, command);

      /*
       * start AUTO SCSI, kick off arbitration
       */
      command = (CLEAR_CDB_FIFO_POINTER |
               AUTOSCSI_START         |
               AUTO_MSGIN_00_OR_04    |
               AUTO_MSGIN_02          |
               AUTO_ATN                );
      nsp32_write2(base, COMMAND_CONTROL, command);

      /*
       * Check arbitration
       */
      status = nsp32_arbitration(SCpnt, base);

 out:
      /*
       * IRQ enable
       */
      nsp32_write2(base, IRQ_CONTROL, 0);

      return status;
}


/*
 * Arbitration Status Check
 *    
 * Note: Arbitration counter is waited during ARBIT_GO is not lifting.
 *     Using udelay(1) consumes CPU time and system time, but 
 *     arbitration delay time is defined minimal 2.4us in SCSI
 *     specification, thus udelay works as coarse grained wait timer.
 */
static int nsp32_arbitration(struct scsi_cmnd *SCpnt, unsigned int base)
{
      unsigned char arbit;
      int         status = TRUE;
      int         time   = 0;

      do {
            arbit = nsp32_read1(base, ARBIT_STATUS);
            time++;
      } while ((arbit & (ARBIT_WIN | ARBIT_FAIL)) == 0 &&
             (time <= ARBIT_TIMEOUT_TIME));

      nsp32_dbg(NSP32_DEBUG_AUTOSCSI,
              "arbit: 0x%x, delay time: %d", arbit, time);

      if (arbit & ARBIT_WIN) {
            /* Arbitration succeeded */
            SCpnt->result = DID_OK << 16;
            nsp32_index_write1(base, EXT_PORT, LED_ON); /* PCI LED on */
      } else if (arbit & ARBIT_FAIL) {
            /* Arbitration failed */
            SCpnt->result = DID_BUS_BUSY << 16;
            status = FALSE;
      } else {
            /*
             * unknown error or ARBIT_GO timeout,
             * something lock up! guess no connection.
             */
            nsp32_dbg(NSP32_DEBUG_AUTOSCSI, "arbit timeout");
            SCpnt->result = DID_NO_CONNECT << 16;
            status = FALSE;
        }

      /*
       * clear Arbit
       */
      nsp32_write1(base, SET_ARBIT, ARBIT_CLEAR);

      return status;
}


/*
 * reselection
 *
 * Note: This reselection routine is called from msgin_occur,
 *     reselection target id&lun must be already set.
 *     SCSI-2 says IDENTIFY implies RESTORE_POINTER operation.
 */
static int nsp32_reselection(struct scsi_cmnd *SCpnt, unsigned char newlun)
{
      nsp32_hw_data *data = (nsp32_hw_data *)SCpnt->device->host->hostdata;
      unsigned int   host_id = SCpnt->device->host->this_id;
      unsigned int   base    = SCpnt->device->host->io_port;
      unsigned char  tmpid, newid;

      nsp32_dbg(NSP32_DEBUG_RESELECTION, "enter");

      /*
       * calculate reselected SCSI ID
       */
      tmpid = nsp32_read1(base, RESELECT_ID);
      tmpid &= (~BIT(host_id));
      newid = 0;
      while (tmpid) {
            if (tmpid & 1) {
                  break;
            }
            tmpid >>= 1;
            newid++;
      }

      /*
       * If reselected New ID:LUN is not existed
       * or current nexus is not existed, unexpected
       * reselection is occurred. Send reject message.
       */
      if (newid >= ARRAY_SIZE(data->lunt) || newlun >= ARRAY_SIZE(data->lunt[0])) {
            nsp32_msg(KERN_WARNING, "unknown id/lun");
            return FALSE;
      } else if(data->lunt[newid][newlun].SCpnt == NULL) {
            nsp32_msg(KERN_WARNING, "no SCSI command is processing");
            return FALSE;
      }

      data->cur_id    = newid;
      data->cur_lun   = newlun;
      data->cur_target = &(data->target[newid]);
      data->cur_lunt   = &(data->lunt[newid][newlun]);

      /* reset SACK/SavedACK counter (or ALL clear?) */
      nsp32_write4(base, CLR_COUNTER, CLRCOUNTER_ALLMASK);

      return TRUE;
}


/*
 * nsp32_setup_sg_table - build scatter gather list for transfer data
 *                    with bus master.
 *
 * Note: NinjaSCSI-32Bi/UDE bus master can not transfer over 64KB at a time.
 */
static int nsp32_setup_sg_table(struct scsi_cmnd *SCpnt)
{
      nsp32_hw_data *data = (nsp32_hw_data *)SCpnt->device->host->hostdata;
      struct scatterlist   *sgl;
      nsp32_sgtable *sgt = data->cur_lunt->sglun->sgt;
      int num, i;
      u32_le l;

      if (SCpnt->request_bufflen == 0) {
            return TRUE;
      }

      if (sgt == NULL) {
            nsp32_dbg(NSP32_DEBUG_SGLIST, "SGT == null");
            return FALSE;
      }

      if (SCpnt->use_sg) {
            sgl = (struct scatterlist *)SCpnt->request_buffer;
            num = pci_map_sg(data->Pci, sgl, SCpnt->use_sg,
                         SCpnt->sc_data_direction);
            for (i = 0; i < num; i++) {
                  /*
                   * Build nsp32_sglist, substitute sg dma addresses.
                   */
                  sgt[i].addr = cpu_to_le32(sg_dma_address(sgl));
                  sgt[i].len  = cpu_to_le32(sg_dma_len(sgl));
                  sgl++;

                  if (le32_to_cpu(sgt[i].len) > 0x10000) {
                        nsp32_msg(KERN_ERR,
                              "can't transfer over 64KB at a time, size=0x%lx", le32_to_cpu(sgt[i].len));
                        return FALSE;
                  }
                  nsp32_dbg(NSP32_DEBUG_SGLIST,
                          "num 0x%x : addr 0x%lx len 0x%lx",
                          i,
                          le32_to_cpu(sgt[i].addr),
                          le32_to_cpu(sgt[i].len ));
            }

            /* set end mark */
            l = le32_to_cpu(sgt[num-1].len);
            sgt[num-1].len = cpu_to_le32(l | SGTEND);

      } else {
            SCpnt->SCp.have_data_in = pci_map_single(data->Pci,
                  SCpnt->request_buffer, SCpnt->request_bufflen,
                  SCpnt->sc_data_direction);

            sgt[0].addr = cpu_to_le32(SCpnt->SCp.have_data_in);
            sgt[0].len  = cpu_to_le32(SCpnt->request_bufflen | SGTEND); /* set end mark */

            if (SCpnt->request_bufflen > 0x10000) {
                  nsp32_msg(KERN_ERR,
                          "can't transfer over 64KB at a time, size=0x%lx", SCpnt->request_bufflen);
                  return FALSE;
            }
            nsp32_dbg(NSP32_DEBUG_SGLIST, "single : addr 0x%lx len=0x%lx",
                    le32_to_cpu(sgt[0].addr),
                    le32_to_cpu(sgt[0].len ));
      }

      return TRUE;
}

static int nsp32_queuecommand(struct scsi_cmnd *SCpnt, void (*done)(struct scsi_cmnd *))
{
      nsp32_hw_data *data = (nsp32_hw_data *)SCpnt->device->host->hostdata;
      nsp32_target *target;
      nsp32_lunt   *cur_lunt;
      int ret;

      nsp32_dbg(NSP32_DEBUG_QUEUECOMMAND,
              "enter. target: 0x%x LUN: 0x%x cmnd: 0x%x cmndlen: 0x%x "
              "use_sg: 0x%x reqbuf: 0x%lx reqlen: 0x%x",
              SCpnt->device->id, SCpnt->device->lun, SCpnt->cmnd[0], SCpnt->cmd_len,
              SCpnt->use_sg, SCpnt->request_buffer, SCpnt->request_bufflen);

      if (data->CurrentSC != NULL) {
            nsp32_msg(KERN_ERR, "Currentsc != NULL. Cancel this command request");
            data->CurrentSC = NULL;
            SCpnt->result   = DID_NO_CONNECT << 16;
            done(SCpnt);
            return 0;
      }

      /* check target ID is not same as this initiator ID */
      if (scmd_id(SCpnt) == SCpnt->device->host->this_id) {
            nsp32_dbg(NSP32_DEBUG_QUEUECOMMAND, "terget==host???");
            SCpnt->result = DID_BAD_TARGET << 16;
            done(SCpnt);
            return 0;
      }

      /* check target LUN is allowable value */
      if (SCpnt->device->lun >= MAX_LUN) {
            nsp32_dbg(NSP32_DEBUG_QUEUECOMMAND, "no more lun");
            SCpnt->result = DID_BAD_TARGET << 16;
            done(SCpnt);
            return 0;
      }

      show_command(SCpnt);

      SCpnt->scsi_done     = done;
      data->CurrentSC      = SCpnt;
      SCpnt->SCp.Status    = CHECK_CONDITION;
      SCpnt->SCp.Message   = 0;
      SCpnt->resid         = SCpnt->request_bufflen;

      SCpnt->SCp.ptr              = (char *) SCpnt->request_buffer;
      SCpnt->SCp.this_residual    = SCpnt->request_bufflen;
      SCpnt->SCp.buffer     = NULL;
      SCpnt->SCp.buffers_residual = 0;

      /* initialize data */
      data->msgout_len  = 0;
      data->msgin_len         = 0;
      cur_lunt          = &(data->lunt[SCpnt->device->id][SCpnt->device->lun]);
      cur_lunt->SCpnt         = SCpnt;
      cur_lunt->save_datp     = 0;
      cur_lunt->msgin03 = FALSE;
      data->cur_lunt          = cur_lunt;
      data->cur_id            = SCpnt->device->id;
      data->cur_lun           = SCpnt->device->lun;

      ret = nsp32_setup_sg_table(SCpnt);
      if (ret == FALSE) {
            nsp32_msg(KERN_ERR, "SGT fail");
            SCpnt->result = DID_ERROR << 16;
            nsp32_scsi_done(SCpnt);
            return 0;
      }

      /* Build IDENTIFY */
      nsp32_build_identify(SCpnt);

      /* 
       * If target is the first time to transfer after the reset
       * (target don't have SDTR_DONE and SDTR_INITIATOR), sync
       * message SDTR is needed to do synchronous transfer.
       */
      target = &data->target[scmd_id(SCpnt)];
      data->cur_target = target;

      if (!(target->sync_flag & (SDTR_DONE | SDTR_INITIATOR | SDTR_TARGET))) {
            unsigned char period, offset;

            if (trans_mode != ASYNC_MODE) {
                  nsp32_set_max_sync(data, target, &period, &offset);
                  nsp32_build_sdtr(SCpnt, period, offset);
                  target->sync_flag |= SDTR_INITIATOR;
            } else {
                  nsp32_set_async(data, target);
                  target->sync_flag |= SDTR_DONE;
            }

            nsp32_dbg(NSP32_DEBUG_QUEUECOMMAND,
                    "SDTR: entry: %d start_period: 0x%x offset: 0x%x\n",
                    target->limit_entry, period, offset);
      } else if (target->sync_flag & SDTR_INITIATOR) {
            /*
             * It was negotiating SDTR with target, sending from the
             * initiator, but there are no chance to remove this flag.
             * Set async because we don't get proper negotiation.
             */
            nsp32_set_async(data, target);
            target->sync_flag &= ~SDTR_INITIATOR;
            target->sync_flag |= SDTR_DONE;

            nsp32_dbg(NSP32_DEBUG_QUEUECOMMAND,
                    "SDTR_INITIATOR: fall back to async");
      } else if (target->sync_flag & SDTR_TARGET) {
            /*
             * It was negotiating SDTR with target, sending from target,
             * but there are no chance to remove this flag.  Set async
             * because we don't get proper negotiation.
             */
            nsp32_set_async(data, target);
            target->sync_flag &= ~SDTR_TARGET;
            target->sync_flag |= SDTR_DONE;

            nsp32_dbg(NSP32_DEBUG_QUEUECOMMAND,
                    "Unknown SDTR from target is reached, fall back to async.");
      }

      nsp32_dbg(NSP32_DEBUG_TARGETFLAG,
              "target: %d sync_flag: 0x%x syncreg: 0x%x ackwidth: 0x%x",
              SCpnt->device->id, target->sync_flag, target->syncreg,
              target->ackwidth);

      /* Selection */
      if (auto_param == 0) {
            ret = nsp32_selection_autopara(SCpnt);
      } else {
            ret = nsp32_selection_autoscsi(SCpnt);
      }

      if (ret != TRUE) {
            nsp32_dbg(NSP32_DEBUG_QUEUECOMMAND, "selection fail");
            nsp32_scsi_done(SCpnt);
      }

      return 0;
}

/* initialize asic */
static int nsp32hw_init(nsp32_hw_data *data)
{
      unsigned int   base = data->BaseAddress;
      unsigned short irq_stat;
      unsigned long  lc_reg;
      unsigned char  power;

      lc_reg = nsp32_index_read4(base, CFG_LATE_CACHE);
      if ((lc_reg & 0xff00) == 0) {
            lc_reg |= (0x20 << 8);
            nsp32_index_write2(base, CFG_LATE_CACHE, lc_reg & 0xffff);
      }

      nsp32_write2(base, IRQ_CONTROL,        IRQ_CONTROL_ALL_IRQ_MASK);
      nsp32_write2(base, TRANSFER_CONTROL,   0);
      nsp32_write4(base, BM_CNT,             0);
      nsp32_write2(base, SCSI_EXECUTE_PHASE, 0);

      do {
            irq_stat = nsp32_read2(base, IRQ_STATUS);
            nsp32_dbg(NSP32_DEBUG_INIT, "irq_stat 0x%x", irq_stat);
      } while (irq_stat & IRQSTATUS_ANY_IRQ);

      /*
       * Fill FIFO_FULL_SHLD, FIFO_EMPTY_SHLD. Below parameter is
       *  designated by specification.
       */
      if ((data->trans_method & NSP32_TRANSFER_PIO) ||
          (data->trans_method & NSP32_TRANSFER_MMIO)) {
            nsp32_index_write1(base, FIFO_FULL_SHLD_COUNT,  0x40);
            nsp32_index_write1(base, FIFO_EMPTY_SHLD_COUNT, 0x40);
      } else if (data->trans_method & NSP32_TRANSFER_BUSMASTER) {
            nsp32_index_write1(base, FIFO_FULL_SHLD_COUNT,  0x10);
            nsp32_index_write1(base, FIFO_EMPTY_SHLD_COUNT, 0x60);
      } else {
            nsp32_dbg(NSP32_DEBUG_INIT, "unknown transfer mode");
      }

      nsp32_dbg(NSP32_DEBUG_INIT, "full 0x%x emp 0x%x",
              nsp32_index_read1(base, FIFO_FULL_SHLD_COUNT),
              nsp32_index_read1(base, FIFO_EMPTY_SHLD_COUNT));

      nsp32_index_write1(base, CLOCK_DIV, data->clock);
      nsp32_index_write1(base, BM_CYCLE,  MEMRD_CMD1 | SGT_AUTO_PARA_MEMED_CMD);
      nsp32_write1(base, PARITY_CONTROL, 0);    /* parity check is disable */

      /*
       * initialize MISC_WRRD register
       * 
       * Note: Designated parameters is obeyed as following:
       *    MISC_SCSI_DIRECTION_DETECTOR_SELECT: It must be set.
       *    MISC_MASTER_TERMINATION_SELECT:      It must be set.
       *    MISC_BMREQ_NEGATE_TIMING_SEL:      It should be set.
       *    MISC_AUTOSEL_TIMING_SEL:           It should be set.
       *    MISC_BMSTOP_CHANGE2_NONDATA_PHASE:   It should be set.
       *    MISC_DELAYED_BMSTART:              It's selected for safety.
       *
       * Note: If MISC_BMSTOP_CHANGE2_NONDATA_PHASE is set, then
       *    we have to set TRANSFERCONTROL_BM_START as 0 and set
       *    appropriate value before restarting bus master transfer.
       */
      nsp32_index_write2(base, MISC_WR,
                     (SCSI_DIRECTION_DETECTOR_SELECT |
                      DELAYED_BMSTART                |
                      MASTER_TERMINATION_SELECT      |
                      BMREQ_NEGATE_TIMING_SEL        |
                      AUTOSEL_TIMING_SEL             |
                      BMSTOP_CHANGE2_NONDATA_PHASE));

      nsp32_index_write1(base, TERM_PWR_CONTROL, 0);
      power = nsp32_index_read1(base, TERM_PWR_CONTROL);
      if (!(power & SENSE)) {
            nsp32_msg(KERN_INFO, "term power on");
            nsp32_index_write1(base, TERM_PWR_CONTROL, BPWR);
      }

      nsp32_write2(base, TIMER_SET, TIMER_STOP);
      nsp32_write2(base, TIMER_SET, TIMER_STOP); /* Required 2 times */

      nsp32_write1(base, SYNC_REG,     0);
      nsp32_write1(base, ACK_WIDTH,    0);
      nsp32_write2(base, SEL_TIME_OUT, SEL_TIMEOUT_TIME);

      /*
       * enable to select designated IRQ (except for
       * IRQSELECT_SERR, IRQSELECT_PERR, IRQSELECT_BMCNTERR)
       */
      nsp32_index_write2(base, IRQ_SELECT, IRQSELECT_TIMER_IRQ         |
                                       IRQSELECT_SCSIRESET_IRQ     |
                                       IRQSELECT_FIFO_SHLD_IRQ     |
                                       IRQSELECT_RESELECT_IRQ      |
                                       IRQSELECT_PHASE_CHANGE_IRQ  |
                                       IRQSELECT_AUTO_SCSI_SEQ_IRQ |
                                    //   IRQSELECT_BMCNTERR_IRQ      |
                                       IRQSELECT_TARGET_ABORT_IRQ  |
                                       IRQSELECT_MASTER_ABORT_IRQ );
      nsp32_write2(base, IRQ_CONTROL, 0);

      /* PCI LED off */
      nsp32_index_write1(base, EXT_PORT_DDR, LED_OFF);
      nsp32_index_write1(base, EXT_PORT,     LED_OFF);

      return TRUE;
}


/* interrupt routine */
static irqreturn_t do_nsp32_isr(int irq, void *dev_id, struct pt_regs *regs)
{
      nsp32_hw_data *data = dev_id;
      unsigned int base = data->BaseAddress;
      struct scsi_cmnd *SCpnt = data->CurrentSC;
      unsigned short auto_stat, irq_stat, trans_stat;
      unsigned char busmon, busphase;
      unsigned long flags;
      int ret;
      int handled = 0;

#if (LINUX_VERSION_CODE > KERNEL_VERSION(2,5,0))
      struct Scsi_Host *host = data->Host;
      spin_lock_irqsave(host->host_lock, flags);
#else
      spin_lock_irqsave(&io_request_lock, flags);
#endif

      /*
       * IRQ check, then enable IRQ mask
       */
      irq_stat = nsp32_read2(base, IRQ_STATUS);
      nsp32_dbg(NSP32_DEBUG_INTR, 
              "enter IRQ: %d, IRQstatus: 0x%x", irq, irq_stat);
      /* is this interrupt comes from Ninja asic? */
      if ((irq_stat & IRQSTATUS_ANY_IRQ) == 0) {
            nsp32_dbg(NSP32_DEBUG_INTR, "shared interrupt: irq other 0x%x", irq_stat);
            goto out2;
      }
      handled = 1;
      nsp32_write2(base, IRQ_CONTROL, IRQ_CONTROL_ALL_IRQ_MASK);

      busmon = nsp32_read1(base, SCSI_BUS_MONITOR);
      busphase = busmon & BUSMON_PHASE_MASK;

      trans_stat = nsp32_read2(base, TRANSFER_STATUS);
      if ((irq_stat == 0xffff) && (trans_stat == 0xffff)) {
            nsp32_msg(KERN_INFO, "card disconnect");
            if (data->CurrentSC != NULL) {
                  nsp32_msg(KERN_INFO, "clean up current SCSI command");
                  SCpnt->result = DID_BAD_TARGET << 16;
                  nsp32_scsi_done(SCpnt);
            }
            goto out;
      }

      /* Timer IRQ */
      if (irq_stat & IRQSTATUS_TIMER_IRQ) {
            nsp32_dbg(NSP32_DEBUG_INTR, "timer stop");
            nsp32_write2(base, TIMER_SET, TIMER_STOP);
            goto out;
      }

      /* SCSI reset */
      if (irq_stat & IRQSTATUS_SCSIRESET_IRQ) {
            nsp32_msg(KERN_INFO, "detected someone do bus reset");
            nsp32_do_bus_reset(data);
            if (SCpnt != NULL) {
                  SCpnt->result = DID_RESET << 16;
                  nsp32_scsi_done(SCpnt);
            }
            goto out;
      }

      if (SCpnt == NULL) {
            nsp32_msg(KERN_WARNING, "SCpnt==NULL this can't be happened");
            nsp32_msg(KERN_WARNING, "irq_stat=0x%x trans_stat=0x%x", irq_stat, trans_stat);
            goto out;
      }

      /*
       * AutoSCSI Interrupt.
       * Note: This interrupt is occurred when AutoSCSI is finished.  Then
       * check SCSIEXECUTEPHASE, and do appropriate action.  Each phases are
       * recorded when AutoSCSI sequencer has been processed.
       */
      if(irq_stat & IRQSTATUS_AUTOSCSI_IRQ) {
            /* getting SCSI executed phase */
            auto_stat = nsp32_read2(base, SCSI_EXECUTE_PHASE);
            nsp32_write2(base, SCSI_EXECUTE_PHASE, 0);

            /* Selection Timeout, go busfree phase. */
            if (auto_stat & SELECTION_TIMEOUT) {
                  nsp32_dbg(NSP32_DEBUG_INTR,
                          "selection timeout occurred");

                  SCpnt->result = DID_TIME_OUT << 16;
                  nsp32_scsi_done(SCpnt);
                  goto out;
            }

            if (auto_stat & MSGOUT_PHASE) {
                  /*
                   * MsgOut phase was processed.
                   * If MSG_IN_OCCUER is not set, then MsgOut phase is
                   * completed. Thus, msgout_len must reset.  Otherwise,
                   * nothing to do here. If MSG_OUT_OCCUER is occurred,
                   * then we will encounter the condition and check.
                   */
                  if (!(auto_stat & MSG_IN_OCCUER) &&
                       (data->msgout_len <= 3)) {
                        /*
                         * !MSG_IN_OCCUER && msgout_len <=3
                         *   ---> AutoSCSI with MSGOUTreg is processed.
                         */
                        data->msgout_len = 0;
                  };

                  nsp32_dbg(NSP32_DEBUG_INTR, "MsgOut phase processed");
            }

            if ((auto_stat & DATA_IN_PHASE) &&
                (SCpnt->resid > 0) &&
                ((nsp32_read2(base, FIFO_REST_CNT) & FIFO_REST_MASK) != 0)) {
                  printk( "auto+fifo\n");
                  //nsp32_pio_read(SCpnt);
            }

            if (auto_stat & (DATA_IN_PHASE | DATA_OUT_PHASE)) {
                  /* DATA_IN_PHASE/DATA_OUT_PHASE was processed. */
                  nsp32_dbg(NSP32_DEBUG_INTR,
                          "Data in/out phase processed");

                  /* read BMCNT, SGT pointer addr */
                  nsp32_dbg(NSP32_DEBUG_INTR, "BMCNT=0x%lx", 
                            nsp32_read4(base, BM_CNT));
                  nsp32_dbg(NSP32_DEBUG_INTR, "addr=0x%lx", 
                            nsp32_read4(base, SGT_ADR));
                  nsp32_dbg(NSP32_DEBUG_INTR, "SACK=0x%lx", 
                            nsp32_read4(base, SACK_CNT));
                  nsp32_dbg(NSP32_DEBUG_INTR, "SSACK=0x%lx", 
                            nsp32_read4(base, SAVED_SACK_CNT));

                  SCpnt->resid = 0; /* all data transfered! */
            }

            /*
             * MsgIn Occur
             */
            if (auto_stat & MSG_IN_OCCUER) {
                  nsp32_msgin_occur(SCpnt, irq_stat, auto_stat);
            }

            /*
             * MsgOut Occur
             */
            if (auto_stat & MSG_OUT_OCCUER) {
                  nsp32_msgout_occur(SCpnt);
            }

            /*
             * Bus Free Occur
             */
            if (auto_stat & BUS_FREE_OCCUER) {
                  ret = nsp32_busfree_occur(SCpnt, auto_stat);
                  if (ret == TRUE) {
                        goto out;
                  }
            }

            if (auto_stat & STATUS_PHASE) {
                  /*
                   * Read CSB and substitute CSB for SCpnt->result
                   * to save status phase stutas byte.
                   * scsi error handler checks host_byte (DID_*:
                   * low level driver to indicate status), then checks 
                   * status_byte (SCSI status byte).
                   */
                  SCpnt->result =   (int)nsp32_read1(base, SCSI_CSB_IN);
            }

            if (auto_stat & ILLEGAL_PHASE) {
                  /* Illegal phase is detected. SACK is not back. */
                  nsp32_msg(KERN_WARNING, 
                          "AUTO SCSI ILLEGAL PHASE OCCUR!!!!");

                  /* TODO: currently we don't have any action... bus reset? */

                  /*
                   * To send back SACK, assert, wait, and negate.
                   */
                  nsp32_sack_assert(data);
                  nsp32_wait_req(data, NEGATE);
                  nsp32_sack_negate(data);

            }

            if (auto_stat & COMMAND_PHASE) {
                  /* nothing to do */
                  nsp32_dbg(NSP32_DEBUG_INTR, "Command phase processed");
            }

            if (auto_stat & AUTOSCSI_BUSY) {
                  /* AutoSCSI is running */
            }

            show_autophase(auto_stat);
      }

      /* FIFO_SHLD_IRQ */
      if (irq_stat & IRQSTATUS_FIFO_SHLD_IRQ) {
            nsp32_dbg(NSP32_DEBUG_INTR, "FIFO IRQ");

            switch(busphase) {
            case BUSPHASE_DATA_OUT:
                  nsp32_dbg(NSP32_DEBUG_INTR, "fifo/write");

                  //nsp32_pio_write(SCpnt);

                  break;

            case BUSPHASE_DATA_IN:
                  nsp32_dbg(NSP32_DEBUG_INTR, "fifo/read");

                  //nsp32_pio_read(SCpnt);

                  break;

            case BUSPHASE_STATUS:
                  nsp32_dbg(NSP32_DEBUG_INTR, "fifo/status");

                  SCpnt->SCp.Status = nsp32_read1(base, SCSI_CSB_IN);

                  break;
            default:
                  nsp32_dbg(NSP32_DEBUG_INTR, "fifo/other phase");
                  nsp32_dbg(NSP32_DEBUG_INTR, "irq_stat=0x%x trans_stat=0x%x", irq_stat, trans_stat);
                  show_busphase(busphase);
                  break;
            }

            goto out;
      }

      /* Phase Change IRQ */
      if (irq_stat & IRQSTATUS_PHASE_CHANGE_IRQ) {
            nsp32_dbg(NSP32_DEBUG_INTR, "phase change IRQ");

            switch(busphase) {
            case BUSPHASE_MESSAGE_IN:
                  nsp32_dbg(NSP32_DEBUG_INTR, "phase chg/msg in");
                  nsp32_msgin_occur(SCpnt, irq_stat, 0);
                  break;
            default:
                  nsp32_msg(KERN_WARNING, "phase chg/other phase?");
                  nsp32_msg(KERN_WARNING, "irq_stat=0x%x trans_stat=0x%x\n",
                          irq_stat, trans_stat);
                  show_busphase(busphase);
                  break;
            }
            goto out;
      }

      /* PCI_IRQ */
      if (irq_stat & IRQSTATUS_PCI_IRQ) {
            nsp32_dbg(NSP32_DEBUG_INTR, "PCI IRQ occurred");
            /* Do nothing */
      }

      /* BMCNTERR_IRQ */
      if (irq_stat & IRQSTATUS_BMCNTERR_IRQ) {
            nsp32_msg(KERN_ERR, "Received unexpected BMCNTERR IRQ! ");
            /*
             * TODO: To be implemented improving bus master
             * transfer reliablity when BMCNTERR is occurred in
             * AutoSCSI phase described in specification.
             */
      }

#if 0
      nsp32_dbg(NSP32_DEBUG_INTR,
              "irq_stat=0x%x trans_stat=0x%x", irq_stat, trans_stat);
      show_busphase(busphase);
#endif

 out:
      /* disable IRQ mask */
      nsp32_write2(base, IRQ_CONTROL, 0);

 out2:
#if (LINUX_VERSION_CODE > KERNEL_VERSION(2,5,0))
      spin_unlock_irqrestore(host->host_lock, flags);
#else
      spin_unlock_irqrestore(&io_request_lock, flags);
#endif

      nsp32_dbg(NSP32_DEBUG_INTR, "exit");

      return IRQ_RETVAL(handled);
}

#undef SPRINTF
#define SPRINTF(args...) \
      do { \
            if(length > (pos - buffer)) { \
                  pos += snprintf(pos, length - (pos - buffer) + 1, ## args); \
                  nsp32_dbg(NSP32_DEBUG_PROC, "buffer=0x%p pos=0x%p length=%d %d\n", buffer, pos, length,  length - (pos - buffer));\
            } \
      } while(0)
static int nsp32_proc_info(
#if (LINUX_VERSION_CODE > KERNEL_VERSION(2,5,73)) 
      struct Scsi_Host *host,
#endif
      char             *buffer,
      char            **start,
      off_t             offset,
      int               length,
#if !(LINUX_VERSION_CODE > KERNEL_VERSION(2,5,73)) 
      int               hostno,
#endif
      int               inout)
{
      char             *pos = buffer;
      int               thislength;
      unsigned long     flags;
      nsp32_hw_data    *data;
#if (LINUX_VERSION_CODE > KERNEL_VERSION(2,5,73)) 
      int               hostno;
#else
      struct Scsi_Host *host;
#endif
      unsigned int      base;
      unsigned char     mode_reg;
      int               id, speed;
      long              model;

      /* Write is not supported, just return. */
      if (inout == TRUE) {
            return -EINVAL;
      }

#if (LINUX_VERSION_CODE > KERNEL_VERSION(2,5,73)) 
      hostno = host->host_no;
#else
      /* search this HBA host */
      host = scsi_host_hn_get(hostno);
      if (host == NULL) {
            return -ESRCH;
      }
#endif
      data = (nsp32_hw_data *)host->hostdata;
      base = host->io_port;

      SPRINTF("NinjaSCSI-32 status\n\n");
      SPRINTF("Driver version:        %s, $Revision: 1.33 $\n", nsp32_release_version);
      SPRINTF("SCSI host No.:         %d\n",          hostno);
      SPRINTF("IRQ:                   %d\n",          host->irq);
      SPRINTF("IO:                    0x%lx-0x%lx\n", host->io_port, host->io_port + host->n_io_port - 1);
      SPRINTF("MMIO(virtual address): 0x%lx-0x%lx\n", host->base, host->base + data->MmioLength - 1);
      SPRINTF("sg_tablesize:          %d\n",          host->sg_tablesize);
      SPRINTF("Chip revision:         0x%x\n",        (nsp32_read2(base, INDEX_REG) >> 8) & 0xff);

      mode_reg = nsp32_index_read1(base, CHIP_MODE);
      model    = data->pci_devid->driver_data;

#ifdef CONFIG_PM
      SPRINTF("Power Management:      %s\n",          (mode_reg & OPTF) ? "yes" : "no");
#endif
      SPRINTF("OEM:                   %ld, %s\n",     (mode_reg & (OEM0|OEM1)), nsp32_model[model]);

      spin_lock_irqsave(&(data->Lock), flags);
      SPRINTF("CurrentSC:             0x%p\n\n",      data->CurrentSC);
      spin_unlock_irqrestore(&(data->Lock), flags);


      SPRINTF("SDTR status\n");
      for (id = 0; id < ARRAY_SIZE(data->target); id++) {

                SPRINTF("id %d: ", id);

            if (id == host->this_id) {
                  SPRINTF("----- NinjaSCSI-32 host adapter\n");
                  continue;
            }

            if (data->target[id].sync_flag == SDTR_DONE) {
                  if (data->target[id].period == 0            &&
                      data->target[id].offset == ASYNC_OFFSET ) {
                        SPRINTF("async");
                  } else {
                        SPRINTF(" sync");
                  }
            } else {
                  SPRINTF(" none");
            }

            if (data->target[id].period != 0) {

                  speed = 1000000 / (data->target[id].period * 4);

                  SPRINTF(" transfer %d.%dMB/s, offset %d",
                        speed / 1000,
                        speed % 1000,
                        data->target[id].offset
                        );
            }
            SPRINTF("\n");
      }


      thislength = pos - (buffer + offset);

      if(thislength < 0) {
            *start = NULL;
                return 0;
        }


      thislength = min(thislength, length);
      *start = buffer + offset;

      return thislength;
}
#undef SPRINTF



/*
 * Reset parameters and call scsi_done for data->cur_lunt.
 * Be careful setting SCpnt->result = DID_* before calling this function.
 */
static void nsp32_scsi_done(struct scsi_cmnd *SCpnt)
{
      nsp32_hw_data *data = (nsp32_hw_data *)SCpnt->device->host->hostdata;
      unsigned int   base = SCpnt->device->host->io_port;

      /*
       * unmap pci
       */
      if (SCpnt->request_bufflen == 0) {
            goto skip;
      }

      if (SCpnt->use_sg) {
            pci_unmap_sg(data->Pci,
                       (struct scatterlist *)SCpnt->request_buffer,
                       SCpnt->use_sg, SCpnt->sc_data_direction);
      } else {
            pci_unmap_single(data->Pci,
                         (u32)SCpnt->SCp.have_data_in,
                         SCpnt->request_bufflen,
                         SCpnt->sc_data_direction);
      }

 skip:
      /*
       * clear TRANSFERCONTROL_BM_START
       */
      nsp32_write2(base, TRANSFER_CONTROL, 0);
      nsp32_write4(base, BM_CNT,           0);

      /*
       * call scsi_done
       */
      (*SCpnt->scsi_done)(SCpnt);

      /*
       * reset parameters
       */
      data->cur_lunt->SCpnt = NULL;
      data->cur_lunt        = NULL;
      data->cur_target      = NULL;
      data->CurrentSC      = NULL;
}


/*
 * Bus Free Occur
 *
 * Current Phase is BUSFREE. AutoSCSI is automatically execute BUSFREE phase
 * with ACK reply when below condition is matched:
 *    MsgIn 00: Command Complete.
 *    MsgIn 02: Save Data Pointer.
 *    MsgIn 04: Diconnect.
 * In other case, unexpected BUSFREE is detected.
 */
static int nsp32_busfree_occur(struct scsi_cmnd *SCpnt, unsigned short execph)
{
      nsp32_hw_data *data = (nsp32_hw_data *)SCpnt->device->host->hostdata;
      unsigned int base   = SCpnt->device->host->io_port;

      nsp32_dbg(NSP32_DEBUG_BUSFREE, "enter execph=0x%x", execph);
      show_autophase(execph);

      nsp32_write4(base, BM_CNT,           0);
      nsp32_write2(base, TRANSFER_CONTROL, 0);

      /*
       * MsgIn 02: Save Data Pointer
       *
       * VALID:
       *   Save Data Pointer is received. Adjust pointer.
       *   
       * NO-VALID:
       *   SCSI-3 says if Save Data Pointer is not received, then we restart
       *   processing and we can't adjust any SCSI data pointer in next data
       *   phase.
       */
      if (execph & MSGIN_02_VALID) {
            nsp32_dbg(NSP32_DEBUG_BUSFREE, "MsgIn02_Valid");

            /*
             * Check sack_cnt/saved_sack_cnt, then adjust sg table if
             * needed.
             */
            if (!(execph & MSGIN_00_VALID) && 
                ((execph & DATA_IN_PHASE) || (execph & DATA_OUT_PHASE))) {
                  unsigned int sacklen, s_sacklen;

                  /*
                   * Read SACK count and SAVEDSACK count, then compare.
                   */
                  sacklen   = nsp32_read4(base, SACK_CNT      );
                  s_sacklen = nsp32_read4(base, SAVED_SACK_CNT);

                  /*
                   * If SAVEDSACKCNT == 0, it means SavedDataPointer is
                   * come after data transfering.
                   */
                  if (s_sacklen > 0) {
                        /*
                         * Comparing between sack and savedsack to
                         * check the condition of AutoMsgIn03.
                         *
                         * If they are same, set msgin03 == TRUE,
                         * COMMANDCONTROL_AUTO_MSGIN_03 is enabled at
                         * reselection.  On the other hand, if they
                         * aren't same, set msgin03 == FALSE, and
                         * COMMANDCONTROL_AUTO_MSGIN_03 is disabled at
                         * reselection.
                         */
                        if (sacklen != s_sacklen) {
                              data->cur_lunt->msgin03 = FALSE;
                        } else {
                              data->cur_lunt->msgin03 = TRUE;
                        }

                        nsp32_adjust_busfree(SCpnt, s_sacklen);
                  }
            }

            /* This value has not substitude with valid value yet... */
            //data->cur_lunt->save_datp = data->cur_datp;
      } else {
            /*
             * no processing.
             */
      }
      
      if (execph & MSGIN_03_VALID) {
            /* MsgIn03 was valid to be processed. No need processing. */
      }

      /*
       * target SDTR check
       */
      if (data->cur_target->sync_flag & SDTR_INITIATOR) {
            /*
             * SDTR negotiation pulled by the initiator has not
             * finished yet. Fall back to ASYNC mode.
             */
            nsp32_set_async(data, data->cur_target);
            data->cur_target->sync_flag &= ~SDTR_INITIATOR;
            data->cur_target->sync_flag |= SDTR_DONE;
      } else if (data->cur_target->sync_flag & SDTR_TARGET) {
            /*
             * SDTR negotiation pulled by the target has been
             * negotiating.
             */
            if (execph & (MSGIN_00_VALID | MSGIN_04_VALID)) {
                  /* 
                   * If valid message is received, then
                   * negotiation is succeeded.
                   */
            } else {
                  /*
                   * On the contrary, if unexpected bus free is
                   * occurred, then negotiation is failed. Fall
                   * back to ASYNC mode.
                   */
                  nsp32_set_async(data, data->cur_target);
            }
            data->cur_target->sync_flag &= ~SDTR_TARGET;
            data->cur_target->sync_flag |= SDTR_DONE;
      }

      /*
       * It is always ensured by SCSI standard that initiator
       * switches into Bus Free Phase after
       * receiving message 00 (Command Complete), 04 (Disconnect).
       * It's the reason that processing here is valid.
       */
      if (execph & MSGIN_00_VALID) {
            /* MsgIn 00: Command Complete */
            nsp32_dbg(NSP32_DEBUG_BUSFREE, "command complete");

            SCpnt->SCp.Status  = nsp32_read1(base, SCSI_CSB_IN);
            SCpnt->SCp.Message = 0;
            nsp32_dbg(NSP32_DEBUG_BUSFREE, 
                    "normal end stat=0x%x resid=0x%x\n",
                    SCpnt->SCp.Status, SCpnt->resid);
            SCpnt->result = (DID_OK             << 16) |
                          (SCpnt->SCp.Message <<  8) |
                          (SCpnt->SCp.Status  <<  0);
            nsp32_scsi_done(SCpnt);
            /* All operation is done */
            return TRUE;
      } else if (execph & MSGIN_04_VALID) {
            /* MsgIn 04: Disconnect */
            SCpnt->SCp.Status  = nsp32_read1(base, SCSI_CSB_IN);
            SCpnt->SCp.Message = 4;
            
            nsp32_dbg(NSP32_DEBUG_BUSFREE, "disconnect");
            return TRUE;
      } else {
            /* Unexpected bus free */
            nsp32_msg(KERN_WARNING, "unexpected bus free occurred");

            /* DID_ERROR? */
            //SCpnt->result   = (DID_OK << 16) | (SCpnt->SCp.Message << 8) | (SCpnt->SCp.Status << 0);
            SCpnt->result = DID_ERROR << 16;
            nsp32_scsi_done(SCpnt);
            return TRUE;
      }
      return FALSE;
}


/*
 * nsp32_adjust_busfree - adjusting SG table
 *
 * Note: This driver adjust the SG table using SCSI ACK
 *       counter instead of BMCNT counter!
 */
static void nsp32_adjust_busfree(struct scsi_cmnd *SCpnt, unsigned int s_sacklen)
{
      nsp32_hw_data *data = (nsp32_hw_data *)SCpnt->device->host->hostdata;
      int                   old_entry = data->cur_entry;
      int                   new_entry;
      int                   sg_num = data->cur_lunt->sg_num;
      nsp32_sgtable *sgt    = data->cur_lunt->sglun->sgt;
      unsigned int          restlen, sentlen;
      u32_le                len, addr;

      nsp32_dbg(NSP32_DEBUG_SGLIST, "old resid=0x%x", SCpnt->resid);

      /* adjust saved SACK count with 4 byte start address boundary */
      s_sacklen -= le32_to_cpu(sgt[old_entry].addr) & 3;

      /*
       * calculate new_entry from sack count and each sgt[].len 
       * calculate the byte which is intent to send
       */
      sentlen = 0;
      for (new_entry = old_entry; new_entry < sg_num; new_entry++) {
            sentlen += (le32_to_cpu(sgt[new_entry].len) & ~SGTEND);
            if (sentlen > s_sacklen) {
                  break;
            }
      }

      /* all sgt is processed */
      if (new_entry == sg_num) {
            goto last;
      }

      if (sentlen == s_sacklen) {
            /* XXX: confirm it's ok or not */
            /* In this case, it's ok because we are at 
               the head element of the sg. restlen is correctly calculated. */
      }

      /* calculate the rest length for transfering */
      restlen = sentlen - s_sacklen;

      /* update adjusting current SG table entry */
      len  = le32_to_cpu(sgt[new_entry].len);
      addr = le32_to_cpu(sgt[new_entry].addr);
      addr += (len - restlen);
      sgt[new_entry].addr = cpu_to_le32(addr);
      sgt[new_entry].len  = cpu_to_le32(restlen);

      /* set cur_entry with new_entry */
      data->cur_entry = new_entry;
 
      return;

 last:
      if (SCpnt->resid < sentlen) {
            nsp32_msg(KERN_ERR, "resid underflow");
      }

      SCpnt->resid -= sentlen;
      nsp32_dbg(NSP32_DEBUG_SGLIST, "new resid=0x%x", SCpnt->resid);

      /* update hostdata and lun */

      return;
}


/*
 * It's called MsgOut phase occur.
 * NinjaSCSI-32Bi/UDE automatically processes up to 3 messages in
 * message out phase. It, however, has more than 3 messages,
 * HBA creates the interrupt and we have to process by hand.
 */
static void nsp32_msgout_occur(struct scsi_cmnd *SCpnt)
{
      nsp32_hw_data *data = (nsp32_hw_data *)SCpnt->device->host->hostdata;
      unsigned int base   = SCpnt->device->host->io_port;
      //unsigned short command;
      long new_sgtp;
      int i;
      
      nsp32_dbg(NSP32_DEBUG_MSGOUTOCCUR,
              "enter: msgout_len: 0x%x", data->msgout_len);

      /*
       * If MsgOut phase is occurred without having any
       * message, then No_Operation is sent (SCSI-2).
       */
      if (data->msgout_len == 0) {
            nsp32_build_nop(SCpnt);
      }

      /*
       * Set SGTP ADDR current entry for restarting AUTOSCSI, 
       * because SGTP is incremented next point.
       * There is few statement in the specification...
       */
      new_sgtp = data->cur_lunt->sglun_paddr + 
               (data->cur_lunt->cur_entry * sizeof(nsp32_sgtable));

      /*
       * send messages
       */
      for (i = 0; i < data->msgout_len; i++) {
            nsp32_dbg(NSP32_DEBUG_MSGOUTOCCUR,
                    "%d : 0x%x", i, data->msgoutbuf[i]);

            /*
             * Check REQ is asserted.
             */
            nsp32_wait_req(data, ASSERT);

            if (i == (data->msgout_len - 1)) {
                  /*
                   * If the last message, set the AutoSCSI restart
                   * before send back the ack message. AutoSCSI
                   * restart automatically negate ATN signal.
                   */
                  //command = (AUTO_MSGIN_00_OR_04 | AUTO_MSGIN_02);
                  //nsp32_restart_autoscsi(SCpnt, command);
                  nsp32_write2(base, COMMAND_CONTROL,
                               (CLEAR_CDB_FIFO_POINTER |
                                AUTO_COMMAND_PHASE     |
                                AUTOSCSI_RESTART       |
                                AUTO_MSGIN_00_OR_04    |
                                AUTO_MSGIN_02          ));
            }
            /*
             * Write data with SACK, then wait sack is
             * automatically negated.
             */
            nsp32_write1(base, SCSI_DATA_WITH_ACK, data->msgoutbuf[i]);
            nsp32_wait_sack(data, NEGATE);

            nsp32_dbg(NSP32_DEBUG_MSGOUTOCCUR, "bus: 0x%x\n",
                    nsp32_read1(base, SCSI_BUS_MONITOR));
      };

      data->msgout_len = 0;

      nsp32_dbg(NSP32_DEBUG_MSGOUTOCCUR, "exit");
}

/*
 * Restart AutoSCSI
 *
 * Note: Restarting AutoSCSI needs set:
 *          SYNC_REG, ACK_WIDTH, SGT_ADR, TRANSFER_CONTROL
 */
static void nsp32_restart_autoscsi(struct scsi_cmnd *SCpnt, unsigned short command)
{
      nsp32_hw_data *data = (nsp32_hw_data *)SCpnt->device->host->hostdata;
      unsigned int   base = data->BaseAddress;
      unsigned short transfer = 0;

      nsp32_dbg(NSP32_DEBUG_RESTART, "enter");

      if (data->cur_target == NULL || data->cur_lunt == NULL) {
            nsp32_msg(KERN_ERR, "Target or Lun is invalid");
      }

      /*
       * set SYNC_REG
       * Don't set BM_START_ADR before setting this register.
       */
      nsp32_write1(base, SYNC_REG, data->cur_target->syncreg);

      /*
       * set ACKWIDTH
       */
      nsp32_write1(base, ACK_WIDTH, data->cur_target->ackwidth);

      /*
       * set SREQ hazard killer sampling rate
       */
      nsp32_write1(base, SREQ_SMPL_RATE, data->cur_target->sample_reg);

      /*
       * set SGT ADDR (physical address)
       */
      nsp32_write4(base, SGT_ADR, data->cur_lunt->sglun_paddr);

      /*
       * set TRANSFER CONTROL REG
       */
      transfer = 0;
      transfer |= (TRANSFER_GO | ALL_COUNTER_CLR);
      if (data->trans_method & NSP32_TRANSFER_BUSMASTER) {
            if (SCpnt->request_bufflen > 0) {
                  transfer |= BM_START;
            }
      } else if (data->trans_method & NSP32_TRANSFER_MMIO) {
            transfer |= CB_MMIO_MODE;
      } else if (data->trans_method & NSP32_TRANSFER_PIO) {
            transfer |= CB_IO_MODE;
      }
      nsp32_write2(base, TRANSFER_CONTROL, transfer);

      /*
       * restart AutoSCSI
       *
       * TODO: COMMANDCONTROL_AUTO_COMMAND_PHASE is needed ?
       */
      command |= (CLEAR_CDB_FIFO_POINTER |
                AUTO_COMMAND_PHASE     |
                AUTOSCSI_RESTART       );
      nsp32_write2(base, COMMAND_CONTROL, command);

      nsp32_dbg(NSP32_DEBUG_RESTART, "exit");
}


/*
 * cannot run automatically message in occur
 */
static void nsp32_msgin_occur(struct scsi_cmnd     *SCpnt,
                        unsigned long  irq_status,
                        unsigned short execph)
{
      nsp32_hw_data *data = (nsp32_hw_data *)SCpnt->device->host->hostdata;
      unsigned int   base = SCpnt->device->host->io_port;
      unsigned char  msg;
      unsigned char  msgtype;
      unsigned char  newlun;
      unsigned short command  = 0;
      int            msgclear = TRUE;
      long           new_sgtp;
      int            ret;

      /*
       * read first message
       *    Use SCSIDATA_W_ACK instead of SCSIDATAIN, because the procedure
       *    of Message-In have to be processed before sending back SCSI ACK.
       */
      msg = nsp32_read1(base, SCSI_DATA_IN);
      data->msginbuf[(unsigned char)data->msgin_len] = msg;
      msgtype = data->msginbuf[0];
      nsp32_dbg(NSP32_DEBUG_MSGINOCCUR,
              "enter: msglen: 0x%x msgin: 0x%x msgtype: 0x%x",
              data->msgin_len, msg, msgtype);

      /*
       * TODO: We need checking whether bus phase is message in?
       */

      /*
       * assert SCSI ACK
       */
      nsp32_sack_assert(data);

      /*
       * processing IDENTIFY
       */
      if (msgtype & 0x80) {
            if (!(irq_status & IRQSTATUS_RESELECT_OCCUER)) {
                  /* Invalid (non reselect) phase */
                  goto reject;
            }

            newlun = msgtype & 0x1f; /* TODO: SPI-3 compliant? */
            ret = nsp32_reselection(SCpnt, newlun);
            if (ret == TRUE) {
                  goto restart;
            } else {
                  goto reject;
            }
      }
      
      /*
       * processing messages except for IDENTIFY
       *
       * TODO: Messages are all SCSI-2 terminology. SCSI-3 compliance is TODO.
       */
      switch (msgtype) {
      /*
       * 1-byte message
       */
      case COMMAND_COMPLETE:
      case DISCONNECT:
            /*
             * These messages should not be occurred.
             * They should be processed on AutoSCSI sequencer.
             */
            nsp32_msg(KERN_WARNING, 
                     "unexpected message of AutoSCSI MsgIn: 0x%x", msg);
            break;
            
      case RESTORE_POINTERS:
            /*
             * AutoMsgIn03 is disabled, and HBA gets this message.
             */

            if ((execph & DATA_IN_PHASE) || (execph & DATA_OUT_PHASE)) {
                  unsigned int s_sacklen;

                  s_sacklen = nsp32_read4(base, SAVED_SACK_CNT);
                  if ((execph & MSGIN_02_VALID) && (s_sacklen > 0)) {
                        nsp32_adjust_busfree(SCpnt, s_sacklen);
                  } else {
                        /* No need to rewrite SGT */
                  }
            }
            data->cur_lunt->msgin03 = FALSE;

            /* Update with the new value */

            /* reset SACK/SavedACK counter (or ALL clear?) */
            nsp32_write4(base, CLR_COUNTER, CLRCOUNTER_ALLMASK);

            /*
             * set new sg pointer
             */
            new_sgtp = data->cur_lunt->sglun_paddr + 
                  (data->cur_lunt->cur_entry * sizeof(nsp32_sgtable));
            nsp32_write4(base, SGT_ADR, new_sgtp);

            break;

      case SAVE_POINTERS:
            /*
             * These messages should not be occurred.
             * They should be processed on AutoSCSI sequencer.
             */
            nsp32_msg (KERN_WARNING, 
                     "unexpected message of AutoSCSI MsgIn: SAVE_POINTERS");
            
            break;
            
      case MESSAGE_REJECT:
            /* If previous message_out is sending SDTR, and get 
               message_reject from target, SDTR negotiation is failed */
            if (data->cur_target->sync_flag &
                        (SDTR_INITIATOR | SDTR_TARGET)) {
                  /*
                   * Current target is negotiating SDTR, but it's
                   * failed.  Fall back to async transfer mode, and set
                   * SDTR_DONE.
                   */
                  nsp32_set_async(data, data->cur_target);
                  data->cur_target->sync_flag &= ~SDTR_INITIATOR;
                  data->cur_target->sync_flag |= SDTR_DONE;

            }
            break;

      case LINKED_CMD_COMPLETE:
      case LINKED_FLG_CMD_COMPLETE:
            /* queue tag is not supported currently */
            nsp32_msg (KERN_WARNING, 
                     "unsupported message: 0x%x", msgtype);
            break;

      case INITIATE_RECOVERY:
            /* staring ECA (Extended Contingent Allegiance) state. */
            /* This message is declined in SPI2 or later. */

            goto reject;

      /*
       * 2-byte message
       */
      case SIMPLE_QUEUE_TAG:
      case 0x23:
            /*
             * 0x23: Ignore_Wide_Residue is not declared in scsi.h.
             * No support is needed.
             */
            if (data->msgin_len >= 1) {
                  goto reject;
            }

            /* current position is 1-byte of 2 byte */
            msgclear = FALSE;

            break;

      /*
       * extended message
       */
      case EXTENDED_MESSAGE:
            if (data->msgin_len < 1) {
                  /*
                   * Current position does not reach 2-byte
                   * (2-byte is extended message length).
                   */
                  msgclear = FALSE;
                  break;
            }

            if ((data->msginbuf[1] + 1) > data->msgin_len) {
                  /*
                   * Current extended message has msginbuf[1] + 2
                   * (msgin_len starts counting from 0, so buf[1] + 1).
                   * If current message position is not finished,
                   * continue receiving message.
                   */
                  msgclear = FALSE;
                  break;
            }

            /*
             * Reach here means regular length of each type of 
             * extended messages.
             */
            switch (data->msginbuf[2]) {
            case EXTENDED_MODIFY_DATA_POINTER:
                  /* TODO */
                  goto reject; /* not implemented yet */
                  break;

            case EXTENDED_SDTR:
                  /*
                   * Exchange this message between initiator and target.
                   */
                  if (data->msgin_len != EXTENDED_SDTR_LEN + 1) {
                        /*
                         * received inappropriate message.
                         */
                        goto reject;
                        break;
                  }

                  nsp32_analyze_sdtr(SCpnt);

                  break;

            case EXTENDED_EXTENDED_IDENTIFY:
                  /* SCSI-I only, not supported. */
                  goto reject; /* not implemented yet */

                  break;

            case EXTENDED_WDTR:
                  goto reject; /* not implemented yet */

                  break;
                  
            default:
                  goto reject;
            }
            break;
            
      default:
            goto reject;
      }

 restart:
      if (msgclear == TRUE) {
            data->msgin_len = 0;

            /*
             * If restarting AutoSCSI, but there are some message to out
             * (msgout_len > 0), set AutoATN, and set SCSIMSGOUT as 0
             * (MV_VALID = 0). When commandcontrol is written with
             * AutoSCSI restart, at the same time MsgOutOccur should be
             * happened (however, such situation is really possible...?).
             */
            if (data->msgout_len > 0) {   
                  nsp32_write4(base, SCSI_MSG_OUT, 0);
                  command |= AUTO_ATN;
            }

            /*
             * restart AutoSCSI
             * If it's failed, COMMANDCONTROL_AUTO_COMMAND_PHASE is needed.
             */
            command |= (AUTO_MSGIN_00_OR_04 | AUTO_MSGIN_02);

            /*
             * If current msgin03 is TRUE, then flag on.
             */
            if (data->cur_lunt->msgin03 == TRUE) {
                  command |= AUTO_MSGIN_03;
            }
            data->cur_lunt->msgin03 = FALSE;
      } else {
            data->msgin_len++;
      }

      /*
       * restart AutoSCSI
       */
      nsp32_restart_autoscsi(SCpnt, command);

      /*
       * wait SCSI REQ negate for REQ-ACK handshake
       */
      nsp32_wait_req(data, NEGATE);

      /*
       * negate SCSI ACK
       */
      nsp32_sack_negate(data);

      nsp32_dbg(NSP32_DEBUG_MSGINOCCUR, "exit");

      return;

 reject:
      nsp32_msg(KERN_WARNING, 
              "invalid or unsupported MessageIn, rejected. "
              "current msg: 0x%x (len: 0x%x), processing msg: 0x%x",
              msg, data->msgin_len, msgtype);
      nsp32_build_reject(SCpnt);
      data->msgin_len = 0;

      goto restart;
}

/*
 * 
 */
static void nsp32_analyze_sdtr(struct scsi_cmnd *SCpnt)
{
      nsp32_hw_data   *data = (nsp32_hw_data *)SCpnt->device->host->hostdata;
      nsp32_target     *target     = data->cur_target;
      nsp32_sync_table *synct;
      unsigned char     get_period = data->msginbuf[3];
      unsigned char     get_offset = data->msginbuf[4];
      int               entry;
      int               syncnum;

      nsp32_dbg(NSP32_DEBUG_MSGINOCCUR, "enter");

      synct   = data->synct;
      syncnum = data->syncnum;

      /*
       * If this inititor sent the SDTR message, then target responds SDTR,
       * initiator SYNCREG, ACKWIDTH from SDTR parameter.
       * Messages are not appropriate, then send back reject message.
       * If initiator did not send the SDTR, but target sends SDTR, 
       * initiator calculator the appropriate parameter and send back SDTR.
       */   
      if (target->sync_flag & SDTR_INITIATOR) {
            /*
             * Initiator sent SDTR, the target responds and
             * send back negotiation SDTR.
             */
            nsp32_dbg(NSP32_DEBUG_MSGINOCCUR, "target responds SDTR");
      
            target->sync_flag &= ~SDTR_INITIATOR;
            target->sync_flag |= SDTR_DONE;

            /*
             * offset:
             */
            if (get_offset > SYNC_OFFSET) {
                  /*
                   * Negotiation is failed, the target send back
                   * unexpected offset value.
                   */
                  goto reject;
            }
            
            if (get_offset == ASYNC_OFFSET) {
                  /*
                   * Negotiation is succeeded, the target want
                   * to fall back into asynchronous transfer mode.
                   */
                  goto async;
            }

            /*
             * period:
             *    Check whether sync period is too short. If too short,
             *    fall back to async mode. If it's ok, then investigate
             *    the received sync period. If sync period is acceptable
             *    between sync table start_period and end_period, then
             *    set this I_T nexus as sent offset and period.
             *    If it's not acceptable, send back reject and fall back
             *    to async mode.
             */
            if (get_period < data->synct[0].period_num) {
                  /*
                   * Negotiation is failed, the target send back
                   * unexpected period value.
                   */
                  goto reject;
            }

            entry = nsp32_search_period_entry(data, target, get_period);

            if (entry < 0) {
                  /*
                   * Target want to use long period which is not 
                   * acceptable NinjaSCSI-32Bi/UDE.
                   */
                  goto reject;
            }

            /*
             * Set new sync table and offset in this I_T nexus.
             */
            nsp32_set_sync_entry(data, target, entry, get_offset);
      } else {
            /* Target send SDTR to initiator. */
            nsp32_dbg(NSP32_DEBUG_MSGINOCCUR, "target send SDTR");
      
            target->sync_flag |= SDTR_INITIATOR;

            /* offset: */
            if (get_offset > SYNC_OFFSET) {
                  /* send back as SYNC_OFFSET */
                  get_offset = SYNC_OFFSET;
            }

            /* period: */
            if (get_period < data->synct[0].period_num) {
                  get_period = data->synct[0].period_num;
            }

            entry = nsp32_search_period_entry(data, target, get_period);

            if (get_offset == ASYNC_OFFSET || entry < 0) {
                  nsp32_set_async(data, target);
                  nsp32_build_sdtr(SCpnt, 0, ASYNC_OFFSET);
            } else {
                  nsp32_set_sync_entry(data, target, entry, get_offset);
                  nsp32_build_sdtr(SCpnt, get_period, get_offset);
            }
      }

      target->period = get_period;
      nsp32_dbg(NSP32_DEBUG_MSGINOCCUR, "exit");
      return;

 reject:
      /*
       * If the current message is unacceptable, send back to the target
       * with reject message.
       */
      nsp32_build_reject(SCpnt);

 async:
      nsp32_set_async(data, target);      /* set as ASYNC transfer mode */

      target->period = 0;
      nsp32_dbg(NSP32_DEBUG_MSGINOCCUR, "exit: set async");
      return;
}


/*
 * Search config entry number matched in sync_table from given
 * target and speed period value. If failed to search, return negative value.
 */
static int nsp32_search_period_entry(nsp32_hw_data *data,
                             nsp32_target  *target,
                             unsigned char  period)
{
      int i;

      if (target->limit_entry >= data->syncnum) {
            nsp32_msg(KERN_ERR, "limit_entry exceeds syncnum!");
            target->limit_entry = 0;
      }

      for (i = target->limit_entry; i < data->syncnum; i++) {
            if (period >= data->synct[i].start_period &&
                period <= data->synct[i].end_period) {
                        break;
            }
      }

      /*
       * Check given period value is over the sync_table value.
       * If so, return max value.
       */
      if (i == data->syncnum) {
            i = -1;
      }

      return i;
}


/*
 * target <-> initiator use ASYNC transfer
 */
static void nsp32_set_async(nsp32_hw_data *data, nsp32_target *target)
{
      unsigned char period = data->synct[target->limit_entry].period_num;

      target->offset     = ASYNC_OFFSET;
      target->period     = 0;
      target->syncreg    = TO_SYNCREG(period, ASYNC_OFFSET);
      target->ackwidth   = 0;
      target->sample_reg = 0;

      nsp32_dbg(NSP32_DEBUG_SYNC, "set async");
}


/*
 * target <-> initiator use maximum SYNC transfer
 */
static void nsp32_set_max_sync(nsp32_hw_data *data,
                         nsp32_target  *target,
                         unsigned char *period,
                         unsigned char *offset)
{
      unsigned char period_num, ackwidth;

      period_num = data->synct[target->limit_entry].period_num;
      *period    = data->synct[target->limit_entry].start_period;
      ackwidth   = data->synct[target->limit_entry].ackwidth;
      *offset    = SYNC_OFFSET;

      target->syncreg    = TO_SYNCREG(period_num, *offset);
      target->ackwidth   = ackwidth;
      target->offset     = *offset;
      target->sample_reg = 0;       /* disable SREQ sampling */
}


/*
 * target <-> initiator use entry number speed
 */
static void nsp32_set_sync_entry(nsp32_hw_data *data,
                         nsp32_target  *target,
                         int            entry,
                         unsigned char  offset)
{
      unsigned char period, ackwidth, sample_rate;

      period      = data->synct[entry].period_num;
      ackwidth    = data->synct[entry].ackwidth;
      offset      = offset;
      sample_rate = data->synct[entry].sample_rate;

      target->syncreg    = TO_SYNCREG(period, offset);
      target->ackwidth   = ackwidth;
      target->offset     = offset;
      target->sample_reg = sample_rate | SAMPLING_ENABLE;

      nsp32_dbg(NSP32_DEBUG_SYNC, "set sync");
}


/*
 * It waits until SCSI REQ becomes assertion or negation state.
 *
 * Note: If nsp32_msgin_occur is called, we asserts SCSI ACK. Then
 *     connected target responds SCSI REQ negation.  We have to wait
 *     SCSI REQ becomes negation in order to negate SCSI ACK signal for
 *     REQ-ACK handshake.
 */
static void nsp32_wait_req(nsp32_hw_data *data, int state)
{
      unsigned int  base      = data->BaseAddress;
      int           wait_time = 0;
      unsigned char bus, req_bit;

      if (!((state == ASSERT) || (state == NEGATE))) {
            nsp32_msg(KERN_ERR, "unknown state designation");
      }
      /* REQ is BIT(5) */
      req_bit = (state == ASSERT ? BUSMON_REQ : 0);

      do {
            bus = nsp32_read1(base, SCSI_BUS_MONITOR);
            if ((bus & BUSMON_REQ) == req_bit) {
                  nsp32_dbg(NSP32_DEBUG_WAIT, 
                          "wait_time: %d", wait_time);
                  return;
            }
            udelay(1);
            wait_time++;
      } while (wait_time < REQSACK_TIMEOUT_TIME);

      nsp32_msg(KERN_WARNING, "wait REQ timeout, req_bit: 0x%x", req_bit);
}

/*
 * It waits until SCSI SACK becomes assertion or negation state.
 */
static void nsp32_wait_sack(nsp32_hw_data *data, int state)
{
      unsigned int  base      = data->BaseAddress;
      int           wait_time = 0;
      unsigned char bus, ack_bit;

      if (!((state == ASSERT) || (state == NEGATE))) {
            nsp32_msg(KERN_ERR, "unknown state designation");
      }
      /* ACK is BIT(4) */
      ack_bit = (state == ASSERT ? BUSMON_ACK : 0);

      do {
            bus = nsp32_read1(base, SCSI_BUS_MONITOR);
            if ((bus & BUSMON_ACK) == ack_bit) {
                  nsp32_dbg(NSP32_DEBUG_WAIT,
                          "wait_time: %d", wait_time);
                  return;
            }
            udelay(1);
            wait_time++;
      } while (wait_time < REQSACK_TIMEOUT_TIME);

      nsp32_msg(KERN_WARNING, "wait SACK timeout, ack_bit: 0x%x", ack_bit);
}

/*
 * assert SCSI ACK
 *
 * Note: SCSI ACK assertion needs with ACKENB=1, AUTODIRECTION=1.
 */
static void nsp32_sack_assert(nsp32_hw_data *data)
{
      unsigned int  base = data->BaseAddress;
      unsigned char busctrl;

      busctrl  = nsp32_read1(base, SCSI_BUS_CONTROL);
      busctrl     |= (BUSCTL_ACK | AUTODIRECTION | ACKENB);
      nsp32_write1(base, SCSI_BUS_CONTROL, busctrl);
}

/*
 * negate SCSI ACK
 */
static void nsp32_sack_negate(nsp32_hw_data *data)
{
      unsigned int  base = data->BaseAddress;
      unsigned char busctrl;

      busctrl  = nsp32_read1(base, SCSI_BUS_CONTROL);
      busctrl     &= ~BUSCTL_ACK;
      nsp32_write1(base, SCSI_BUS_CONTROL, busctrl);
}



/*
 * Note: n_io_port is defined as 0x7f because I/O register port is
 *     assigned as:
 *    0x800-0x8ff: memory mapped I/O port
 *    0x900-0xbff: (map same 0x800-0x8ff I/O port image repeatedly)
 *    0xc00-0xfff: CardBus status registers
 */
#if (LINUX_VERSION_CODE > KERNEL_VERSION(2,5,73))
#define DETECT_OK 0
#define DETECT_NG 1
#define PCIDEV    pdev
static int nsp32_detect(struct pci_dev *pdev)
#else
#define DETECT_OK 1
#define DETECT_NG 0
#define PCIDEV    (data->Pci)
static int nsp32_detect(struct scsi_host_template *sht)
#endif
{
      struct Scsi_Host *host; /* registered host structure */
      struct resource  *res;
      nsp32_hw_data    *data;
      int               ret;
      int               i, j;

      nsp32_dbg(NSP32_DEBUG_REGISTER, "enter");

      /*
       * register this HBA as SCSI device
       */
#if (LINUX_VERSION_CODE > KERNEL_VERSION(2,5,73))
      host = scsi_host_alloc(&nsp32_template, sizeof(nsp32_hw_data));
#else
      host = scsi_register(sht, sizeof(nsp32_hw_data));
#endif
      if (host == NULL) {
            nsp32_msg (KERN_ERR, "failed to scsi register");
            goto err;
      }

      /*
       * set nsp32_hw_data
       */
      data = (nsp32_hw_data *)host->hostdata;

      memcpy(data, &nsp32_data_base, sizeof(nsp32_hw_data));

      host->irq       = data->IrqNumber;
      host->io_port   = data->BaseAddress;
      host->unique_id = data->BaseAddress;
      host->n_io_port   = data->NumAddress;
      host->base      = (unsigned long)data->MmioAddress;
#if (LINUX_VERSION_CODE <= KERNEL_VERSION(2,5,63))
      scsi_set_pci_device(host, PCIDEV);
#endif

      data->Host      = host;
      spin_lock_init(&(data->Lock));

      data->cur_lunt   = NULL;
      data->cur_target = NULL;

      /*
       * Bus master transfer mode is supported currently.
       */
      data->trans_method = NSP32_TRANSFER_BUSMASTER;

      /*
       * Set clock div, CLOCK_4 (HBA has own external clock, and
       * dividing * 100ns/4).
       * Currently CLOCK_4 has only tested, not for CLOCK_2/PCICLK yet.
       */
      data->clock = CLOCK_4;

      /*
       * Select appropriate nsp32_sync_table and set I_CLOCKDIV.
       */
      switch (data->clock) {
      case CLOCK_4:
            /* If data->clock is CLOCK_4, then select 40M sync table. */
            data->synct   = nsp32_sync_table_40M;
            data->syncnum = ARRAY_SIZE(nsp32_sync_table_40M);
            break;
      case CLOCK_2:
            /* If data->clock is CLOCK_2, then select 20M sync table. */
            data->synct   = nsp32_sync_table_20M;
            data->syncnum = ARRAY_SIZE(nsp32_sync_table_20M);
            break;
      case PCICLK:
            /* If data->clock is PCICLK, then select pci sync table. */
            data->synct   = nsp32_sync_table_pci;
            data->syncnum = ARRAY_SIZE(nsp32_sync_table_pci);
            break;
      default:
            nsp32_msg(KERN_WARNING,
                    "Invalid clock div is selected, set CLOCK_4.");
            /* Use default value CLOCK_4 */
            data->clock   = CLOCK_4;
            data->synct   = nsp32_sync_table_40M;
            data->syncnum = ARRAY_SIZE(nsp32_sync_table_40M);
      }

      /*
       * setup nsp32_lunt
       */

      /*
       * setup DMA 
       */
      if (pci_set_dma_mask(PCIDEV, DMA_32BIT_MASK) != 0) {
            nsp32_msg (KERN_ERR, "failed to set PCI DMA mask");
            goto scsi_unregister;
      }

      /*
       * allocate autoparam DMA resource.
       */
      data->autoparam = pci_alloc_consistent(PCIDEV, sizeof(nsp32_autoparam), &(data->auto_paddr));
      if (data->autoparam == NULL) {
            nsp32_msg(KERN_ERR, "failed to allocate DMA memory");
            goto scsi_unregister;
      }

      /*
       * allocate scatter-gather DMA resource.
       */
      data->sg_list = pci_alloc_consistent(PCIDEV, NSP32_SG_TABLE_SIZE,
                                   &(data->sg_paddr));
      if (data->sg_list == NULL) {
            nsp32_msg(KERN_ERR, "failed to allocate DMA memory");
            goto free_autoparam;
      }

      for (i = 0; i < ARRAY_SIZE(data->lunt); i++) {
            for (j = 0; j < ARRAY_SIZE(data->lunt[0]); j++) {
                  int offset = i * ARRAY_SIZE(data->lunt[0]) + j;
                  nsp32_lunt tmp = {
                        .SCpnt       = NULL,
                        .save_datp   = 0,
                        .msgin03     = FALSE,
                        .sg_num      = 0,
                        .cur_entry   = 0,
                        .sglun       = &(data->sg_list[offset]),
                        .sglun_paddr = data->sg_paddr + (offset * sizeof(nsp32_sglun)),
                  };

                  data->lunt[i][j] = tmp;
            }
      }

      /*
       * setup target
       */
      for (i = 0; i < ARRAY_SIZE(data->target); i++) {
            nsp32_target *target = &(data->target[i]);

            target->limit_entry  = 0;
            target->sync_flag    = 0;
            nsp32_set_async(data, target);
      }

      /*
       * EEPROM check
       */
      ret = nsp32_getprom_param(data);
      if (ret == FALSE) {
            data->resettime = 3;    /* default 3 */
      }

      /*
       * setup HBA
       */
      nsp32hw_init(data);

      snprintf(data->info_str, sizeof(data->info_str),
             "NinjaSCSI-32Bi/UDE: irq %d, io 0x%lx+0x%x",
             host->irq, host->io_port, host->n_io_port);

      /*
       * SCSI bus reset
       *
       * Note: It's important to reset SCSI bus in initialization phase.
       *     NinjaSCSI-32Bi/UDE HBA EEPROM seems to exchange SDTR when
       *     system is coming up, so SCSI devices connected to HBA is set as
       *     un-asynchronous mode.  It brings the merit that this HBA is
       *     ready to start synchronous transfer without any preparation,
       *     but we are difficult to control transfer speed.  In addition,
       *     it prevents device transfer speed from effecting EEPROM start-up
       *     SDTR.  NinjaSCSI-32Bi/UDE has the feature if EEPROM is set as
       *     Auto Mode, then FAST-10M is selected when SCSI devices are
       *     connected same or more than 4 devices.  It should be avoided
       *     depending on this specification. Thus, resetting the SCSI bus
       *     restores all connected SCSI devices to asynchronous mode, then
       *     this driver set SDTR safely later, and we can control all SCSI
       *     device transfer mode.
       */
      nsp32_do_bus_reset(data);

      ret = request_irq(host->irq, do_nsp32_isr, IRQF_SHARED, "nsp32", data);
      if (ret < 0) {
            nsp32_msg(KERN_ERR, "Unable to allocate IRQ for NinjaSCSI32 "
                    "SCSI PCI controller. Interrupt: %d", host->irq);
            goto free_sg_list;
      }

        /*
         * PCI IO register
         */
      res = request_region(host->io_port, host->n_io_port, "nsp32");
      if (res == NULL) {
            nsp32_msg(KERN_ERR, 
                    "I/O region 0x%lx+0x%lx is already used",
                    data->BaseAddress, data->NumAddress);
            goto free_irq;
        }

#if (LINUX_VERSION_CODE > KERNEL_VERSION(2,5,73))
      ret = scsi_add_host(host, &PCIDEV->dev);
      if (ret) {
            nsp32_msg(KERN_ERR, "failed to add scsi host");
            goto free_region;
      }
      scsi_scan_host(host);
#endif
      pci_set_drvdata(PCIDEV, host);
      return DETECT_OK;

 free_region:
      release_region(host->io_port, host->n_io_port);

 free_irq:
      free_irq(host->irq, data);

 free_sg_list:
      pci_free_consistent(PCIDEV, NSP32_SG_TABLE_SIZE,
                      data->sg_list, data->sg_paddr);

 free_autoparam:
      pci_free_consistent(PCIDEV, sizeof(nsp32_autoparam),
                      data->autoparam, data->auto_paddr);
      
 scsi_unregister:
      scsi_host_put(host);

 err:
      return DETECT_NG;
}
#undef DETECT_OK
#undef DETECT_NG
#undef PCIDEV

static int nsp32_release(struct Scsi_Host *host)
{
      nsp32_hw_data *data = (nsp32_hw_data *)host->hostdata;

      if (data->autoparam) {
            pci_free_consistent(data->Pci, sizeof(nsp32_autoparam),
                            data->autoparam, data->auto_paddr);
      }

      if (data->sg_list) {
            pci_free_consistent(data->Pci, NSP32_SG_TABLE_SIZE,
                            data->sg_list, data->sg_paddr);
      }

      if (host->irq) {
            free_irq(host->irq, data);
      }

      if (host->io_port && host->n_io_port) {
            release_region(host->io_port, host->n_io_port);
      }

      if (data->MmioAddress) {
            iounmap(data->MmioAddress);
      }

      return 0;
}

static const char *nsp32_info(struct Scsi_Host *shpnt)
{
      nsp32_hw_data *data = (nsp32_hw_data *)shpnt->hostdata;

      return data->info_str;
}


/****************************************************************************
 * error handler
 */
static int nsp32_eh_abort(struct scsi_cmnd *SCpnt)
{
      nsp32_hw_data *data = (nsp32_hw_data *)SCpnt->device->host->hostdata;
      unsigned int   base = SCpnt->device->host->io_port;

      nsp32_msg(KERN_WARNING, "abort");

      if (data->cur_lunt->SCpnt == NULL) {
            nsp32_dbg(NSP32_DEBUG_BUSRESET, "abort failed");
            return FAILED;
      }

      if (data->cur_target->sync_flag & (SDTR_INITIATOR | SDTR_TARGET)) {
            /* reset SDTR negotiation */
            data->cur_target->sync_flag = 0;
            nsp32_set_async(data, data->cur_target);
      }

      nsp32_write2(base, TRANSFER_CONTROL, 0);
      nsp32_write2(base, BM_CNT,           0);

      SCpnt->result = DID_ABORT << 16;
      nsp32_scsi_done(SCpnt);

      nsp32_dbg(NSP32_DEBUG_BUSRESET, "abort success");
      return SUCCESS;
}

static int nsp32_eh_bus_reset(struct scsi_cmnd *SCpnt)
{
      nsp32_hw_data *data = (nsp32_hw_data *)SCpnt->device->host->hostdata;
      unsigned int   base = SCpnt->device->host->io_port;

      spin_lock_irq(SCpnt->device->host->host_lock);

      nsp32_msg(KERN_INFO, "Bus Reset");  
      nsp32_dbg(NSP32_DEBUG_BUSRESET, "SCpnt=0x%x", SCpnt);

      nsp32_write2(base, IRQ_CONTROL, IRQ_CONTROL_ALL_IRQ_MASK);
      nsp32_do_bus_reset(data);
      nsp32_write2(base, IRQ_CONTROL, 0);

      spin_unlock_irq(SCpnt->device->host->host_lock);
      return SUCCESS;   /* SCSI bus reset is succeeded at any time. */
}

static void nsp32_do_bus_reset(nsp32_hw_data *data)
{
      unsigned int   base = data->BaseAddress;
      unsigned short intrdat;
      int i;

      nsp32_dbg(NSP32_DEBUG_BUSRESET, "in");

      /*
       * stop all transfer
       * clear TRANSFERCONTROL_BM_START
       * clear counter
       */
      nsp32_write2(base, TRANSFER_CONTROL, 0);
      nsp32_write4(base, BM_CNT,           0);
      nsp32_write4(base, CLR_COUNTER,      CLRCOUNTER_ALLMASK);

      /*
       * fall back to asynchronous transfer mode
       * initialize SDTR negotiation flag
       */
      for (i = 0; i < ARRAY_SIZE(data->target); i++) {
            nsp32_target *target = &data->target[i];

            target->sync_flag = 0;
            nsp32_set_async(data, target);
      }

      /*
       * reset SCSI bus
       */
      nsp32_write1(base, SCSI_BUS_CONTROL, BUSCTL_RST);
      udelay(RESET_HOLD_TIME);
      nsp32_write1(base, SCSI_BUS_CONTROL, 0);
      for(i = 0; i < 5; i++) {
            intrdat = nsp32_read2(base, IRQ_STATUS); /* dummy read */
            nsp32_dbg(NSP32_DEBUG_BUSRESET, "irq:1: 0x%x", intrdat);
        }

      data->CurrentSC = NULL;
}

static int nsp32_eh_host_reset(struct scsi_cmnd *SCpnt)
{
      struct Scsi_Host *host = SCpnt->device->host;
      unsigned int      base = SCpnt->device->host->io_port;
      nsp32_hw_data    *data = (nsp32_hw_data *)host->hostdata;

      nsp32_msg(KERN_INFO, "Host Reset"); 
      nsp32_dbg(NSP32_DEBUG_BUSRESET, "SCpnt=0x%x", SCpnt);

      spin_lock_irq(SCpnt->device->host->host_lock);

      nsp32hw_init(data);
      nsp32_write2(base, IRQ_CONTROL, IRQ_CONTROL_ALL_IRQ_MASK);
      nsp32_do_bus_reset(data);
      nsp32_write2(base, IRQ_CONTROL, 0);

      spin_unlock_irq(SCpnt->device->host->host_lock);
      return SUCCESS;   /* Host reset is succeeded at any time. */
}


/**************************************************************************
 * EEPROM handler
 */

/*
 * getting EEPROM parameter
 */
static int nsp32_getprom_param(nsp32_hw_data *data)
{
      int vendor = data->pci_devid->vendor;
      int device = data->pci_devid->device;
      int ret, val, i;

      /*
       * EEPROM checking.
       */
      ret = nsp32_prom_read(data, 0x7e);
      if (ret != 0x55) {
            nsp32_msg(KERN_INFO, "No EEPROM detected: 0x%x", ret);
            return FALSE;
      }
      ret = nsp32_prom_read(data, 0x7f);
      if (ret != 0xaa) {
            nsp32_msg(KERN_INFO, "Invalid number: 0x%x", ret);
            return FALSE;
      }

      /*
       * check EEPROM type
       */
      if (vendor == PCI_VENDOR_ID_WORKBIT &&
          device == PCI_DEVICE_ID_WORKBIT_STANDARD) {
            ret = nsp32_getprom_c16(data);
      } else if (vendor == PCI_VENDOR_ID_WORKBIT &&
               device == PCI_DEVICE_ID_NINJASCSI_32BIB_LOGITEC) {
            ret = nsp32_getprom_at24(data);
      } else if (vendor == PCI_VENDOR_ID_WORKBIT &&
               device == PCI_DEVICE_ID_NINJASCSI_32UDE_MELCO ) {
            ret = nsp32_getprom_at24(data);
      } else {
            nsp32_msg(KERN_WARNING, "Unknown EEPROM");
            ret = FALSE;
      }

      /* for debug : SPROM data full checking */
      for (i = 0; i <= 0x1f; i++) {
            val = nsp32_prom_read(data, i);
            nsp32_dbg(NSP32_DEBUG_EEPROM,
                    "rom address 0x%x : 0x%x", i, val);
      }

      return ret;
}


/*
 * AT24C01A (Logitec: LHA-600S), AT24C02 (Melco Buffalo: IFC-USLP) data map:
 *
 *   ROMADDR
 *   0x00 - 0x06 :  Device Synchronous Transfer Period (SCSI ID 0 - 6) 
 *                Value 0x0: ASYNC, 0x0c: Ultra-20M, 0x19: Fast-10M
 *   0x07        :  HBA Synchronous Transfer Period
 *                Value 0: AutoSync, 1: Manual Setting
 *   0x08 - 0x0f :  Not Used? (0x0)
 *   0x10        :  Bus Termination
 *                Value 0: Auto[ON], 1: ON, 2: OFF
 *   0x11        :  Not Used? (0)
 *   0x12        :  Bus Reset Delay Time (0x03)
 *   0x13        :  Bootable CD Support
 *                Value 0: Disable, 1: Enable
 *   0x14        :  Device Scan
 *                Bit   7  6  5  4  3  2  1  0
 *                      |  <----------------->
 *                      |    SCSI ID: Value 0: Skip, 1: YES
 *                      |->  Value 0: ALL scan,  Value 1: Manual
 *   0x15 - 0x1b :  Not Used? (0)
 *   0x1c        :  Constant? (0x01) (clock div?)
 *   0x1d - 0x7c :  Not Used (0xff)
 *   0x7d    :  Not Used? (0xff)
 *   0x7e        :  Constant (0x55), Validity signature
 *   0x7f        :  Constant (0xaa), Validity signature
 */
static int nsp32_getprom_at24(nsp32_hw_data *data)
{
      int           ret, i;
      int           auto_sync;
      nsp32_target *target;
      int           entry;

      /*
       * Reset time which is designated by EEPROM.
       *
       * TODO: Not used yet.
       */
      data->resettime = nsp32_prom_read(data, 0x12);

      /*
       * HBA Synchronous Transfer Period
       *
       * Note: auto_sync = 0: auto, 1: manual.  Ninja SCSI HBA spec says
       *    that if auto_sync is 0 (auto), and connected SCSI devices are
       *    same or lower than 3, then transfer speed is set as ULTRA-20M.
       *    On the contrary if connected SCSI devices are same or higher
       *    than 4, then transfer speed is set as FAST-10M.
       *
       *    I break this rule. The number of connected SCSI devices are
       *    only ignored. If auto_sync is 0 (auto), then transfer speed is
       *    forced as ULTRA-20M.
       */
      ret = nsp32_prom_read(data, 0x07);
      switch (ret) {
      case 0:
            auto_sync = TRUE;
            break;
      case 1:
            auto_sync = FALSE;
            break;
      default:
            nsp32_msg(KERN_WARNING,
                    "Unsupported Auto Sync mode. Fall back to manual mode.");
            auto_sync = TRUE;
      }

      if (trans_mode == ULTRA20M_MODE) {
            auto_sync = TRUE;
      }

      /*
       * each device Synchronous Transfer Period
       */
      for (i = 0; i < NSP32_HOST_SCSIID; i++) {
            target = &data->target[i];
            if (auto_sync == TRUE) {
                  target->limit_entry = 0;   /* set as ULTRA20M */
            } else {
                  ret   = nsp32_prom_read(data, i);
                  entry = nsp32_search_period_entry(data, target, ret);
                  if (entry < 0) {
                        /* search failed... set maximum speed */
                        entry = 0;
                  }
                  target->limit_entry = entry;
            }
      }

      return TRUE;
}


/*
 * C16 110 (I-O Data: SC-NBD) data map:
 *
 *   ROMADDR
 *   0x00 - 0x06 :  Device Synchronous Transfer Period (SCSI ID 0 - 6) 
 *                Value 0x0: 20MB/S, 0x1: 10MB/S, 0x2: 5MB/S, 0x3: ASYNC
 *   0x07        :  0 (HBA Synchronous Transfer Period: Auto Sync)
 *   0x08 - 0x0f :  Not Used? (0x0)
 *   0x10        :  Transfer Mode
 *                Value 0: PIO, 1: Busmater
 *   0x11        :  Bus Reset Delay Time (0x00-0x20)
 *   0x12        :  Bus Termination
 *                Value 0: Disable, 1: Enable
 *   0x13 - 0x19 :  Disconnection
 *                Value 0: Disable, 1: Enable
 *   0x1a - 0x7c :  Not Used? (0)
 *   0x7d    :  Not Used? (0xf8)
 *   0x7e        :  Constant (0x55), Validity signature
 *   0x7f        :  Constant (0xaa), Validity signature
 */
static int nsp32_getprom_c16(nsp32_hw_data *data)
{
      int           ret, i;
      nsp32_target *target;
      int           entry, val;

      /*
       * Reset time which is designated by EEPROM.
       *
       * TODO: Not used yet.
       */
      data->resettime = nsp32_prom_read(data, 0x11);

      /*
       * each device Synchronous Transfer Period
       */
      for (i = 0; i < NSP32_HOST_SCSIID; i++) {
            target = &data->target[i];
            ret = nsp32_prom_read(data, i);
            switch (ret) {
            case 0:           /* 20MB/s */
                  val = 0x0c;
                  break;
            case 1:           /* 10MB/s */
                  val = 0x19;
                  break;
            case 2:           /* 5MB/s */
                  val = 0x32;
                  break;
            case 3:           /* ASYNC */
                  val = 0x00;
                  break;
            default:    /* default 20MB/s */
                  val = 0x0c;
                  break;
            }
            entry = nsp32_search_period_entry(data, target, val);
            if (entry < 0 || trans_mode == ULTRA20M_MODE) {
                  /* search failed... set maximum speed */
                  entry = 0;
            }
            target->limit_entry = entry;
      }

      return TRUE;
}


/*
 * Atmel AT24C01A (drived in 5V) serial EEPROM routines
 */
static int nsp32_prom_read(nsp32_hw_data *data, int romaddr)
{
      int i, val;

      /* start condition */
      nsp32_prom_start(data);

      /* device address */
      nsp32_prom_write_bit(data, 1);      /* 1 */
      nsp32_prom_write_bit(data, 0);      /* 0 */
      nsp32_prom_write_bit(data, 1);      /* 1 */
      nsp32_prom_write_bit(data, 0);      /* 0 */
      nsp32_prom_write_bit(data, 0);      /* A2: 0 (GND) */
      nsp32_prom_write_bit(data, 0);      /* A1: 0 (GND) */
      nsp32_prom_write_bit(data, 0);      /* A0: 0 (GND) */

      /* R/W: W for dummy write */
      nsp32_prom_write_bit(data, 0);

      /* ack */
      nsp32_prom_write_bit(data, 0);

      /* word address */
      for (i = 7; i >= 0; i--) {
            nsp32_prom_write_bit(data, ((romaddr >> i) & 1));
      }

      /* ack */
      nsp32_prom_write_bit(data, 0);

      /* start condition */
      nsp32_prom_start(data);

      /* device address */
      nsp32_prom_write_bit(data, 1);      /* 1 */
      nsp32_prom_write_bit(data, 0);      /* 0 */
      nsp32_prom_write_bit(data, 1);      /* 1 */
      nsp32_prom_write_bit(data, 0);      /* 0 */
      nsp32_prom_write_bit(data, 0);      /* A2: 0 (GND) */
      nsp32_prom_write_bit(data, 0);      /* A1: 0 (GND) */
      nsp32_prom_write_bit(data, 0);      /* A0: 0 (GND) */

      /* R/W: R */
      nsp32_prom_write_bit(data, 1);

      /* ack */
      nsp32_prom_write_bit(data, 0);

      /* data... */
      val = 0;
      for (i = 7; i >= 0; i--) {
            val += (nsp32_prom_read_bit(data) << i);
      }
      
      /* no ack */
      nsp32_prom_write_bit(data, 1);

      /* stop condition */
      nsp32_prom_stop(data);

      return val;
}

static void nsp32_prom_set(nsp32_hw_data *data, int bit, int val)
{
      int base = data->BaseAddress;
      int tmp;

      tmp = nsp32_index_read1(base, SERIAL_ROM_CTL);

      if (val == 0) {
            tmp &= ~bit;
      } else {
            tmp |=  bit;
      }

      nsp32_index_write1(base, SERIAL_ROM_CTL, tmp);

      udelay(10);
}

static int nsp32_prom_get(nsp32_hw_data *data, int bit)
{
      int base = data->BaseAddress;
      int tmp, ret;

      if (bit != SDA) {
            nsp32_msg(KERN_ERR, "return value is not appropriate");
            return 0;
      }


      tmp = nsp32_index_read1(base, SERIAL_ROM_CTL) & bit;

      if (tmp == 0) {
            ret = 0;
      } else {
            ret = 1;
      }

      udelay(10);

      return ret;
}

static void nsp32_prom_start (nsp32_hw_data *data)
{
      /* start condition */
      nsp32_prom_set(data, SCL, 1);
      nsp32_prom_set(data, SDA, 1);
      nsp32_prom_set(data, ENA, 1); /* output mode */
      nsp32_prom_set(data, SDA, 0); /* keeping SCL=1 and transiting
                               * SDA 1->0 is start condition */
      nsp32_prom_set(data, SCL, 0);
}

static void nsp32_prom_stop (nsp32_hw_data *data)
{
      /* stop condition */
      nsp32_prom_set(data, SCL, 1);
      nsp32_prom_set(data, SDA, 0);
      nsp32_prom_set(data, ENA, 1); /* output mode */
      nsp32_prom_set(data, SDA, 1);
      nsp32_prom_set(data, SCL, 0);
}

static void nsp32_prom_write_bit(nsp32_hw_data *data, int val)
{
      /* write */
      nsp32_prom_set(data, SDA, val);
      nsp32_prom_set(data, SCL, 1  );
      nsp32_prom_set(data, SCL, 0  );
}

static int nsp32_prom_read_bit(nsp32_hw_data *data)
{
      int val;

      /* read */
      nsp32_prom_set(data, ENA, 0); /* input mode */
      nsp32_prom_set(data, SCL, 1);

      val = nsp32_prom_get(data, SDA);

      nsp32_prom_set(data, SCL, 0);
      nsp32_prom_set(data, ENA, 1); /* output mode */

      return val;
}


/**************************************************************************
 * Power Management
 */
#ifdef CONFIG_PM

/* Device suspended */
static int nsp32_suspend(struct pci_dev *pdev, pm_message_t state)
{
      struct Scsi_Host *host = pci_get_drvdata(pdev);

      nsp32_msg(KERN_INFO, "pci-suspend: pdev=0x%p, state=%ld, slot=%s, host=0x%p", pdev, state, pci_name(pdev), host);

      pci_save_state     (pdev);
      pci_disable_device (pdev);
      pci_set_power_state(pdev, pci_choose_state(pdev, state));

      return 0;
}

/* Device woken up */
static int nsp32_resume(struct pci_dev *pdev)
{
      struct Scsi_Host *host = pci_get_drvdata(pdev);
      nsp32_hw_data    *data = (nsp32_hw_data *)host->hostdata;
      unsigned short    reg;

      nsp32_msg(KERN_INFO, "pci-resume: pdev=0x%p, slot=%s, host=0x%p", pdev, pci_name(pdev), host);

      pci_set_power_state(pdev, PCI_D0);
      pci_enable_wake    (pdev, PCI_D0, 0);
      pci_restore_state  (pdev);

      reg = nsp32_read2(data->BaseAddress, INDEX_REG);

      nsp32_msg(KERN_INFO, "io=0x%x reg=0x%x", data->BaseAddress, reg);

      if (reg == 0xffff) {
            nsp32_msg(KERN_INFO, "missing device. abort resume.");
            return 0;
      }

      nsp32hw_init      (data);
      nsp32_do_bus_reset(data);

      nsp32_msg(KERN_INFO, "resume success");

      return 0;
}

/* Enable wake event */
static int nsp32_enable_wake(struct pci_dev *pdev, pci_power_t state, int enable)
{
      struct Scsi_Host *host = pci_get_drvdata(pdev);

      nsp32_msg(KERN_INFO, "pci-enable_wake: stub, pdev=0x%p, enable=%d, slot=%s, host=0x%p", pdev, enable, pci_name(pdev), host);

      return 0;
}
#endif

/************************************************************************
 * PCI/Cardbus probe/remove routine
 */
static int __devinit nsp32_probe(struct pci_dev *pdev, const struct pci_device_id *id)
{
      int ret;
      nsp32_hw_data *data = &nsp32_data_base;

      nsp32_dbg(NSP32_DEBUG_REGISTER, "enter");

        ret = pci_enable_device(pdev);
      if (ret) {
            nsp32_msg(KERN_ERR, "failed to enable pci device");
            return ret;
      }

      data->Pci         = pdev;
      data->pci_devid   = id;
      data->IrqNumber   = pdev->irq;
      data->BaseAddress = pci_resource_start(pdev, 0);
      data->NumAddress  = pci_resource_len  (pdev, 0);
      data->MmioAddress = ioremap_nocache(pci_resource_start(pdev, 1),
                                     pci_resource_len  (pdev, 1));
      data->MmioLength  = pci_resource_len  (pdev, 1);

      pci_set_master(pdev);

#if (LINUX_VERSION_CODE > KERNEL_VERSION(2,5,73))
      ret = nsp32_detect(pdev);
#else
      ret = scsi_register_host(&nsp32_template);
#endif

      nsp32_msg(KERN_INFO, "irq: %i mmio: %p+0x%lx slot: %s model: %s",
              pdev->irq,
              data->MmioAddress, data->MmioLength,
              pci_name(pdev),
              nsp32_model[id->driver_data]);

      nsp32_dbg(NSP32_DEBUG_REGISTER, "exit %d", ret);

      return ret;
}

static void __devexit nsp32_remove(struct pci_dev *pdev)
{
#if (LINUX_VERSION_CODE > KERNEL_VERSION(2,5,73))
      struct Scsi_Host *host = pci_get_drvdata(pdev);
#endif

      nsp32_dbg(NSP32_DEBUG_REGISTER, "enter");

#if (LINUX_VERSION_CODE > KERNEL_VERSION(2,5,73))
        scsi_remove_host(host);

      nsp32_release(host);

      scsi_host_put(host);
#else
      scsi_unregister_host(&nsp32_template);    
#endif
}



static struct pci_driver nsp32_driver = {
      .name       = "nsp32",
      .id_table   = nsp32_pci_table,
      .probe            = nsp32_probe,
      .remove           = __devexit_p(nsp32_remove),
#ifdef CONFIG_PM
      .suspend    = nsp32_suspend, 
      .resume           = nsp32_resume, 
      .enable_wake    = nsp32_enable_wake,
#endif
};

/*********************************************************************
 * Moule entry point
 */
static int __init init_nsp32(void) {
      nsp32_msg(KERN_INFO, "loading...");
      return pci_module_init(&nsp32_driver);
}

static void __exit exit_nsp32(void) {
      nsp32_msg(KERN_INFO, "unloading...");
      pci_unregister_driver(&nsp32_driver);
}

module_init(init_nsp32);
module_exit(exit_nsp32);

/* end */

Generated by  Doxygen 1.6.0   Back to index