Logo Search packages:      
Sourcecode: linux-2.6 version File versions  Download package

sonicvibes.c

/*****************************************************************************/

/*
 *      sonicvibes.c  --  S3 Sonic Vibes audio driver.
 *
 *      Copyright (C) 1998-2001, 2003  Thomas Sailer (t.sailer@alumni.ethz.ch)
 *
 *      This program is free software; you can redistribute it and/or modify
 *      it under the terms of the GNU General Public License as published by
 *      the Free Software Foundation; either version 2 of the License, or
 *      (at your option) any later version.
 *
 *      This program is distributed in the hope that it will be useful,
 *      but WITHOUT ANY WARRANTY; without even the implied warranty of
 *      MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *      GNU General Public License for more details.
 *
 *      You should have received a copy of the GNU General Public License
 *      along with this program; if not, write to the Free Software
 *      Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 *
 * Special thanks to David C. Niemi
 *
 *
 * Module command line parameters:
 *   none so far
 *
 *
 *  Supported devices:
 *  /dev/dsp    standard /dev/dsp device, (mostly) OSS compatible
 *  /dev/mixer  standard /dev/mixer device, (mostly) OSS compatible
 *  /dev/midi   simple MIDI UART interface, no ioctl
 *
 *  The card has both an FM and a Wavetable synth, but I have to figure
 *  out first how to drive them...
 *
 *  Revision history
 *    06.05.1998   0.1   Initial release
 *    10.05.1998   0.2   Fixed many bugs, esp. ADC rate calculation
 *                       First stab at a simple midi interface (no bells&whistles)
 *    13.05.1998   0.3   Fix stupid cut&paste error: set_adc_rate was called instead of
 *                       set_dac_rate in the FMODE_WRITE case in sv_open
 *                       Fix hwptr out of bounds (now mpg123 works)
 *    14.05.1998   0.4   Don't allow excessive interrupt rates
 *    08.06.1998   0.5   First release using Alan Cox' soundcore instead of miscdevice
 *    03.08.1998   0.6   Do not include modversions.h
 *                       Now mixer behaviour can basically be selected between
 *                       "OSS documented" and "OSS actual" behaviour
 *    31.08.1998   0.7   Fix realplayer problems - dac.count issues
 *    10.12.1998   0.8   Fix drain_dac trying to wait on not yet initialized DMA
 *    16.12.1998   0.9   Fix a few f_file & FMODE_ bugs
 *    06.01.1999   0.10  remove the silly SA_INTERRUPT flag.
 *                       hopefully killed the egcs section type conflict
 *    12.03.1999   0.11  cinfo.blocks should be reset after GETxPTR ioctl.
 *                       reported by Johan Maes <joma@telindus.be>
 *    22.03.1999   0.12  return EAGAIN instead of EBUSY when O_NONBLOCK
 *                       read/write cannot be executed
 *    05.04.1999   0.13  added code to sv_read and sv_write which should detect
 *                       lockups of the sound chip and revive it. This is basically
 *                       an ugly hack, but at least applications using this driver
 *                       won't hang forever. I don't know why these lockups happen,
 *                       it might well be the motherboard chipset (an early 486 PCI
 *                       board with ALI chipset), since every busmastering 100MB
 *                       ethernet card I've tried (Realtek 8139 and Macronix tulip clone)
 *                       exhibit similar behaviour (they work for a couple of packets
 *                       and then lock up and can be revived by ifconfig down/up).
 *    07.04.1999   0.14  implemented the following ioctl's: SOUND_PCM_READ_RATE, 
 *                       SOUND_PCM_READ_CHANNELS, SOUND_PCM_READ_BITS; 
 *                       Alpha fixes reported by Peter Jones <pjones@redhat.com>
 *                       Note: dmaio hack might still be wrong on archs other than i386
 *    15.06.1999   0.15  Fix bad allocation bug.
 *                       Thanks to Deti Fliegl <fliegl@in.tum.de>
 *    28.06.1999   0.16  Add pci_set_master
 *    03.08.1999   0.17  adapt to Linus' new __setup/__initcall
 *                       added kernel command line options "sonicvibes=reverb" and "sonicvibesdmaio=dmaioaddr"
 *    12.08.1999   0.18  module_init/__setup fixes
 *    24.08.1999   0.19  get rid of the dmaio kludge, replace with allocate_resource
 *    31.08.1999   0.20  add spin_lock_init
 *                       use new resource allocation to allocate DDMA IO space
 *                       replaced current->state = x with set_current_state(x)
 *    03.09.1999   0.21  change read semantics for MIDI to match
 *                       OSS more closely; remove possible wakeup race
 *    28.10.1999   0.22  More waitqueue races fixed
 *    01.12.1999   0.23  New argument to allocate_resource
 *    07.12.1999   0.24  More allocate_resource semantics change
 *    08.01.2000   0.25  Prevent some ioctl's from returning bad count values on underrun/overrun;
 *                       Tim Janik's BSE (Bedevilled Sound Engine) found this
 *                       use Martin Mares' pci_assign_resource
 *    07.02.2000   0.26  Use pci_alloc_consistent and pci_register_driver
 *    21.11.2000   0.27  Initialize dma buffers in poll, otherwise poll may return a bogus mask
 *    12.12.2000   0.28  More dma buffer initializations, patch from
 *                       Tjeerd Mulder <tjeerd.mulder@fujitsu-siemens.com>
 *    31.01.2001   0.29  Register/Unregister gameport
 *                       Fix SETTRIGGER non OSS API conformity
 *    18.05.2001   0.30  PCI probing and error values cleaned up by Marcus
 *                       Meissner <mm@caldera.de>
 *    03.01.2003   0.31  open_mode fixes from Georg Acher <acher@in.tum.de>
 *
 */

/*****************************************************************************/
      
#include <linux/module.h>
#include <linux/string.h>
#include <linux/ioport.h>
#include <linux/interrupt.h>
#include <linux/wait.h>
#include <linux/mm.h>
#include <linux/delay.h>
#include <linux/sound.h>
#include <linux/slab.h>
#include <linux/soundcard.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/poll.h>
#include <linux/spinlock.h>
#include <linux/smp_lock.h>
#include <linux/gameport.h>
#include <linux/dma-mapping.h>
#include <linux/mutex.h>


#include <asm/io.h>
#include <asm/uaccess.h>

#include "dm.h"

#if defined(CONFIG_GAMEPORT) || (defined(MODULE) && defined(CONFIG_GAMEPORT_MODULE))
#define SUPPORT_JOYSTICK 1
#endif

/* --------------------------------------------------------------------- */

#undef OSS_DOCUMENTED_MIXER_SEMANTICS

/* --------------------------------------------------------------------- */

#ifndef PCI_VENDOR_ID_S3
#define PCI_VENDOR_ID_S3             0x5333
#endif
#ifndef PCI_DEVICE_ID_S3_SONICVIBES
#define PCI_DEVICE_ID_S3_SONICVIBES  0xca00
#endif

#define SV_MAGIC  ((PCI_VENDOR_ID_S3<<16)|PCI_DEVICE_ID_S3_SONICVIBES)

#define SV_EXTENT_SB      0x10
#define SV_EXTENT_ENH     0x10
#define SV_EXTENT_SYNTH   0x4
#define SV_EXTENT_MIDI    0x4
#define SV_EXTENT_GAME    0x8
#define SV_EXTENT_DMA     0x10

/*
 * we are not a bridge and thus use a resource for DDMA that is used for bridges but
 * left empty for normal devices
 */
#define RESOURCE_SB       0
#define RESOURCE_ENH      1
#define RESOURCE_SYNTH    2
#define RESOURCE_MIDI     3
#define RESOURCE_GAME     4
#define RESOURCE_DDMA     7

#define SV_MIDI_DATA      0
#define SV_MIDI_COMMAND   1
#define SV_MIDI_STATUS    1

#define SV_DMA_ADDR0      0
#define SV_DMA_ADDR1      1
#define SV_DMA_ADDR2      2
#define SV_DMA_ADDR3      3
#define SV_DMA_COUNT0     4
#define SV_DMA_COUNT1     5
#define SV_DMA_COUNT2     6
#define SV_DMA_MODE       0xb
#define SV_DMA_RESET      0xd
#define SV_DMA_MASK       0xf

/*
 * DONT reset the DMA controllers unless you understand
 * the reset semantics. Assuming reset semantics as in
 * the 8237 does not work.
 */

#define DMA_MODE_AUTOINIT 0x10
#define DMA_MODE_READ     0x44    /* I/O to memory, no autoinit, increment, single mode */
#define DMA_MODE_WRITE    0x48    /* memory to I/O, no autoinit, increment, single mode */

#define SV_CODEC_CONTROL  0
#define SV_CODEC_INTMASK  1
#define SV_CODEC_STATUS   2
#define SV_CODEC_IADDR    4
#define SV_CODEC_IDATA    5

#define SV_CCTRL_RESET      0x80
#define SV_CCTRL_INTADRIVE  0x20
#define SV_CCTRL_WAVETABLE  0x08
#define SV_CCTRL_REVERB     0x04
#define SV_CCTRL_ENHANCED   0x01

#define SV_CINTMASK_DMAA    0x01
#define SV_CINTMASK_DMAC    0x04
#define SV_CINTMASK_SPECIAL 0x08
#define SV_CINTMASK_UPDOWN  0x40
#define SV_CINTMASK_MIDI    0x80

#define SV_CSTAT_DMAA       0x01
#define SV_CSTAT_DMAC       0x04
#define SV_CSTAT_SPECIAL    0x08
#define SV_CSTAT_UPDOWN     0x40
#define SV_CSTAT_MIDI       0x80

#define SV_CIADDR_TRD       0x80
#define SV_CIADDR_MCE       0x40

/* codec indirect registers */
#define SV_CIMIX_ADCINL     0x00
#define SV_CIMIX_ADCINR     0x01
#define SV_CIMIX_AUX1INL    0x02
#define SV_CIMIX_AUX1INR    0x03
#define SV_CIMIX_CDINL      0x04
#define SV_CIMIX_CDINR      0x05
#define SV_CIMIX_LINEINL    0x06
#define SV_CIMIX_LINEINR    0x07
#define SV_CIMIX_MICIN      0x08
#define SV_CIMIX_SYNTHINL   0x0A
#define SV_CIMIX_SYNTHINR   0x0B
#define SV_CIMIX_AUX2INL    0x0C
#define SV_CIMIX_AUX2INR    0x0D
#define SV_CIMIX_ANALOGINL  0x0E
#define SV_CIMIX_ANALOGINR  0x0F
#define SV_CIMIX_PCMINL     0x10
#define SV_CIMIX_PCMINR     0x11

#define SV_CIGAMECONTROL    0x09
#define SV_CIDATAFMT        0x12
#define SV_CIENABLE         0x13
#define SV_CIUPDOWN         0x14
#define SV_CIREVISION       0x15
#define SV_CIADCOUTPUT      0x16
#define SV_CIDMAABASECOUNT1 0x18
#define SV_CIDMAABASECOUNT0 0x19
#define SV_CIDMACBASECOUNT1 0x1c
#define SV_CIDMACBASECOUNT0 0x1d
#define SV_CIPCMSR0         0x1e
#define SV_CIPCMSR1         0x1f
#define SV_CISYNTHSR0       0x20
#define SV_CISYNTHSR1       0x21
#define SV_CIADCCLKSOURCE   0x22
#define SV_CIADCALTSR       0x23
#define SV_CIADCPLLM        0x24
#define SV_CIADCPLLN        0x25
#define SV_CISYNTHPLLM      0x26
#define SV_CISYNTHPLLN      0x27
#define SV_CIUARTCONTROL    0x2a
#define SV_CIDRIVECONTROL   0x2b
#define SV_CISRSSPACE       0x2c
#define SV_CISRSCENTER      0x2d
#define SV_CIWAVETABLESRC   0x2e
#define SV_CIANALOGPWRDOWN  0x30
#define SV_CIDIGITALPWRDOWN 0x31


#define SV_CIMIX_ADCSRC_CD     0x20
#define SV_CIMIX_ADCSRC_DAC    0x40
#define SV_CIMIX_ADCSRC_AUX2   0x60
#define SV_CIMIX_ADCSRC_LINE   0x80
#define SV_CIMIX_ADCSRC_AUX1   0xa0
#define SV_CIMIX_ADCSRC_MIC    0xc0
#define SV_CIMIX_ADCSRC_MIXOUT 0xe0
#define SV_CIMIX_ADCSRC_MASK   0xe0

#define SV_CFMT_STEREO     0x01
#define SV_CFMT_16BIT      0x02
#define SV_CFMT_MASK       0x03
#define SV_CFMT_ASHIFT     0   
#define SV_CFMT_CSHIFT     4

static const unsigned sample_size[] = { 1, 2, 2, 4 };
static const unsigned sample_shift[] = { 0, 1, 1, 2 };

#define SV_CENABLE_PPE     0x4
#define SV_CENABLE_RE      0x2
#define SV_CENABLE_PE      0x1


/* MIDI buffer sizes */

#define MIDIINBUF  256
#define MIDIOUTBUF 256

#define FMODE_MIDI_SHIFT 2
#define FMODE_MIDI_READ  (FMODE_READ << FMODE_MIDI_SHIFT)
#define FMODE_MIDI_WRITE (FMODE_WRITE << FMODE_MIDI_SHIFT)

#define FMODE_DMFM 0x10

/* --------------------------------------------------------------------- */

struct sv_state {
      /* magic */
      unsigned int magic;

      /* list of sonicvibes devices */
      struct list_head devs;

      /* the corresponding pci_dev structure */
      struct pci_dev *dev;

      /* soundcore stuff */
      int dev_audio;
      int dev_mixer;
      int dev_midi;
      int dev_dmfm;

      /* hardware resources */
      unsigned long iosb, ioenh, iosynth, iomidi;  /* long for SPARC */
      unsigned int iodmaa, iodmac, irq;

        /* mixer stuff */
        struct {
                unsigned int modcnt;
#ifndef OSS_DOCUMENTED_MIXER_SEMANTICS
            unsigned short vol[13];
#endif /* OSS_DOCUMENTED_MIXER_SEMANTICS */
        } mix;

      /* wave stuff */
      unsigned int rateadc, ratedac;
      unsigned char fmt, enable;

      spinlock_t lock;
      struct mutex open_mutex;
      mode_t open_mode;
      wait_queue_head_t open_wait;

      struct dmabuf {
            void *rawbuf;
            dma_addr_t dmaaddr;
            unsigned buforder;
            unsigned numfrag;
            unsigned fragshift;
            unsigned hwptr, swptr;
            unsigned total_bytes;
            int count;
            unsigned error; /* over/underrun */
            wait_queue_head_t wait;
            /* redundant, but makes calculations easier */
            unsigned fragsize;
            unsigned dmasize;
            unsigned fragsamples;
            /* OSS stuff */
            unsigned mapped:1;
            unsigned ready:1;
            unsigned endcleared:1;
            unsigned enabled:1;
            unsigned ossfragshift;
            int ossmaxfrags;
            unsigned subdivision;
      } dma_dac, dma_adc;

      /* midi stuff */
      struct {
            unsigned ird, iwr, icnt;
            unsigned ord, owr, ocnt;
            wait_queue_head_t iwait;
            wait_queue_head_t owait;
            struct timer_list timer;
            unsigned char ibuf[MIDIINBUF];
            unsigned char obuf[MIDIOUTBUF];
      } midi;

#if SUPPORT_JOYSTICK
      struct gameport *gameport;
#endif
};

/* --------------------------------------------------------------------- */

static LIST_HEAD(devs);
static unsigned long wavetable_mem;

/* --------------------------------------------------------------------- */

static inline unsigned ld2(unsigned int x)
{
      unsigned r = 0;
      
      if (x >= 0x10000) {
            x >>= 16;
            r += 16;
      }
      if (x >= 0x100) {
            x >>= 8;
            r += 8;
      }
      if (x >= 0x10) {
            x >>= 4;
            r += 4;
      }
      if (x >= 4) {
            x >>= 2;
            r += 2;
      }
      if (x >= 2)
            r++;
      return r;
}

/* --------------------------------------------------------------------- */

/*
 * Why use byte IO? Nobody knows, but S3 does it also in their Windows driver.
 */

#undef DMABYTEIO

static void set_dmaa(struct sv_state *s, unsigned int addr, unsigned int count)
{
#ifdef DMABYTEIO
      unsigned io = s->iodmaa, u;

      count--;
      for (u = 4; u > 0; u--, addr >>= 8, io++)
            outb(addr & 0xff, io);
      for (u = 3; u > 0; u--, count >>= 8, io++)
            outb(count & 0xff, io);
#else /* DMABYTEIO */
      count--;
      outl(addr, s->iodmaa + SV_DMA_ADDR0);
      outl(count, s->iodmaa + SV_DMA_COUNT0);
#endif /* DMABYTEIO */
      outb(0x18, s->iodmaa + SV_DMA_MODE);
}

static void set_dmac(struct sv_state *s, unsigned int addr, unsigned int count)
{
#ifdef DMABYTEIO
      unsigned io = s->iodmac, u;

      count >>= 1;
      count--;
      for (u = 4; u > 0; u--, addr >>= 8, io++)
            outb(addr & 0xff, io);
      for (u = 3; u > 0; u--, count >>= 8, io++)
            outb(count & 0xff, io);
#else /* DMABYTEIO */
      count >>= 1;
      count--;
      outl(addr, s->iodmac + SV_DMA_ADDR0);
      outl(count, s->iodmac + SV_DMA_COUNT0);
#endif /* DMABYTEIO */
      outb(0x14, s->iodmac + SV_DMA_MODE);
}

static inline unsigned get_dmaa(struct sv_state *s)
{
#ifdef DMABYTEIO
      unsigned io = s->iodmaa+6, v = 0, u;

      for (u = 3; u > 0; u--, io--) {
            v <<= 8;
            v |= inb(io);
      }
      return v + 1;
#else /* DMABYTEIO */
      return (inl(s->iodmaa + SV_DMA_COUNT0) & 0xffffff) + 1;
#endif /* DMABYTEIO */
}

static inline unsigned get_dmac(struct sv_state *s)
{
#ifdef DMABYTEIO
      unsigned io = s->iodmac+6, v = 0, u;

      for (u = 3; u > 0; u--, io--) {
            v <<= 8;
            v |= inb(io);
      }
      return (v + 1) << 1;
#else /* DMABYTEIO */
      return ((inl(s->iodmac + SV_DMA_COUNT0) & 0xffffff) + 1) << 1;
#endif /* DMABYTEIO */
}

static void wrindir(struct sv_state *s, unsigned char idx, unsigned char data)
{
      outb(idx & 0x3f, s->ioenh + SV_CODEC_IADDR);
      udelay(10);
      outb(data, s->ioenh + SV_CODEC_IDATA);
      udelay(10);
}

static unsigned char rdindir(struct sv_state *s, unsigned char idx)
{
      unsigned char v;

      outb(idx & 0x3f, s->ioenh + SV_CODEC_IADDR);
      udelay(10);
      v = inb(s->ioenh + SV_CODEC_IDATA);
      udelay(10);
      return v;
}

static void set_fmt(struct sv_state *s, unsigned char mask, unsigned char data)
{
      unsigned long flags;

      spin_lock_irqsave(&s->lock, flags);
      outb(SV_CIDATAFMT | SV_CIADDR_MCE, s->ioenh + SV_CODEC_IADDR);
      if (mask) {
            s->fmt = inb(s->ioenh + SV_CODEC_IDATA);
            udelay(10);
      }
      s->fmt = (s->fmt & mask) | data;
      outb(s->fmt, s->ioenh + SV_CODEC_IDATA);
      udelay(10);
      outb(0, s->ioenh + SV_CODEC_IADDR);
      spin_unlock_irqrestore(&s->lock, flags);
      udelay(10);
}

static void frobindir(struct sv_state *s, unsigned char idx, unsigned char mask, unsigned char data)
{
      outb(idx & 0x3f, s->ioenh + SV_CODEC_IADDR);
      udelay(10);
      outb((inb(s->ioenh + SV_CODEC_IDATA) & mask) ^ data, s->ioenh + SV_CODEC_IDATA);
      udelay(10);
}

#define REFFREQUENCY  24576000
#define ADCMULT 512
#define FULLRATE 48000

static unsigned setpll(struct sv_state *s, unsigned char reg, unsigned rate)
{
      unsigned long flags;
      unsigned char r, m=0, n=0;
      unsigned xm, xn, xr, xd, metric = ~0U;
      /* the warnings about m and n used uninitialized are bogus and may safely be ignored */

      if (rate < 625000/ADCMULT)
            rate = 625000/ADCMULT;
      if (rate > 150000000/ADCMULT)
            rate = 150000000/ADCMULT;
      /* slight violation of specs, needed for continuous sampling rates */
      for (r = 0; rate < 75000000/ADCMULT; r += 0x20, rate <<= 1);
      for (xn = 3; xn < 35; xn++)
            for (xm = 3; xm < 130; xm++) {
                  xr = REFFREQUENCY/ADCMULT * xm / xn;
                  xd = abs((signed)(xr - rate));
                  if (xd < metric) {
                        metric = xd;
                        m = xm - 2;
                        n = xn - 2;
                  }
            }
      reg &= 0x3f;
      spin_lock_irqsave(&s->lock, flags);
      outb(reg, s->ioenh + SV_CODEC_IADDR);
      udelay(10);
      outb(m, s->ioenh + SV_CODEC_IDATA);
      udelay(10);
      outb(reg+1, s->ioenh + SV_CODEC_IADDR);
      udelay(10);
      outb(r | n, s->ioenh + SV_CODEC_IDATA);
      spin_unlock_irqrestore(&s->lock, flags);
      udelay(10);
      return (REFFREQUENCY/ADCMULT * (m + 2) / (n + 2)) >> ((r >> 5) & 7);
}

#if 0

static unsigned getpll(struct sv_state *s, unsigned char reg)
{
      unsigned long flags;
      unsigned char m, n;

      reg &= 0x3f;
      spin_lock_irqsave(&s->lock, flags);
      outb(reg, s->ioenh + SV_CODEC_IADDR);
      udelay(10);
      m = inb(s->ioenh + SV_CODEC_IDATA);
      udelay(10);
      outb(reg+1, s->ioenh + SV_CODEC_IADDR);
      udelay(10);
      n = inb(s->ioenh + SV_CODEC_IDATA);
      spin_unlock_irqrestore(&s->lock, flags);
      udelay(10);
      return (REFFREQUENCY/ADCMULT * (m + 2) / ((n & 0x1f) + 2)) >> ((n >> 5) & 7);
}

#endif

static void set_dac_rate(struct sv_state *s, unsigned rate)
{
      unsigned div;
      unsigned long flags;

      if (rate > 48000)
            rate = 48000;
      if (rate < 4000)
            rate = 4000;
      div = (rate * 65536 + FULLRATE/2) / FULLRATE;
      if (div > 65535)
            div = 65535;
      spin_lock_irqsave(&s->lock, flags);
      wrindir(s, SV_CIPCMSR1, div >> 8);
      wrindir(s, SV_CIPCMSR0, div);
      spin_unlock_irqrestore(&s->lock, flags);
      s->ratedac = (div * FULLRATE + 32768) / 65536;
}

static void set_adc_rate(struct sv_state *s, unsigned rate)
{
      unsigned long flags;
      unsigned rate1, rate2, div;

      if (rate > 48000)
            rate = 48000;
      if (rate < 4000)
            rate = 4000;
      rate1 = setpll(s, SV_CIADCPLLM, rate);
      div = (48000 + rate/2) / rate;
      if (div > 8)
            div = 8;
      rate2 = (48000 + div/2) / div;
      spin_lock_irqsave(&s->lock, flags);
      wrindir(s, SV_CIADCALTSR, (div-1) << 4);
      if (abs((signed)(rate-rate2)) <= abs((signed)(rate-rate1))) {
            wrindir(s, SV_CIADCCLKSOURCE, 0x10);
            s->rateadc = rate2;
      } else {
            wrindir(s, SV_CIADCCLKSOURCE, 0x00);
            s->rateadc = rate1;
      }
      spin_unlock_irqrestore(&s->lock, flags);
}

/* --------------------------------------------------------------------- */

static inline void stop_adc(struct sv_state *s)
{
      unsigned long flags;

      spin_lock_irqsave(&s->lock, flags);
      s->enable &= ~SV_CENABLE_RE;
      wrindir(s, SV_CIENABLE, s->enable);
      spin_unlock_irqrestore(&s->lock, flags);
}     

static inline void stop_dac(struct sv_state *s)
{
      unsigned long flags;

      spin_lock_irqsave(&s->lock, flags);
      s->enable &= ~(SV_CENABLE_PPE | SV_CENABLE_PE);
      wrindir(s, SV_CIENABLE, s->enable);
      spin_unlock_irqrestore(&s->lock, flags);
}     

static void start_dac(struct sv_state *s)
{
      unsigned long flags;

      spin_lock_irqsave(&s->lock, flags);
      if ((s->dma_dac.mapped || s->dma_dac.count > 0) && s->dma_dac.ready) {
            s->enable = (s->enable & ~SV_CENABLE_PPE) | SV_CENABLE_PE;
            wrindir(s, SV_CIENABLE, s->enable);
      }
      spin_unlock_irqrestore(&s->lock, flags);
}     

static void start_adc(struct sv_state *s)
{
      unsigned long flags;

      spin_lock_irqsave(&s->lock, flags);
      if ((s->dma_adc.mapped || s->dma_adc.count < (signed)(s->dma_adc.dmasize - 2*s->dma_adc.fragsize)) 
          && s->dma_adc.ready) {
            s->enable |= SV_CENABLE_RE;
            wrindir(s, SV_CIENABLE, s->enable);
      }
      spin_unlock_irqrestore(&s->lock, flags);
}     

/* --------------------------------------------------------------------- */

#define DMABUF_DEFAULTORDER (17-PAGE_SHIFT)
#define DMABUF_MINORDER 1

static void dealloc_dmabuf(struct sv_state *s, struct dmabuf *db)
{
      struct page *page, *pend;

      if (db->rawbuf) {
            /* undo marking the pages as reserved */
            pend = virt_to_page(db->rawbuf + (PAGE_SIZE << db->buforder) - 1);
            for (page = virt_to_page(db->rawbuf); page <= pend; page++)
                  ClearPageReserved(page);
            pci_free_consistent(s->dev, PAGE_SIZE << db->buforder, db->rawbuf, db->dmaaddr);
      }
      db->rawbuf = NULL;
      db->mapped = db->ready = 0;
}


/* DMAA is used for playback, DMAC is used for recording */

static int prog_dmabuf(struct sv_state *s, unsigned rec)
{
      struct dmabuf *db = rec ? &s->dma_adc : &s->dma_dac;
      unsigned rate = rec ? s->rateadc : s->ratedac;
      int order;
      unsigned bytepersec;
      unsigned bufs;
      struct page *page, *pend;
      unsigned char fmt;
      unsigned long flags;

      spin_lock_irqsave(&s->lock, flags);
      fmt = s->fmt;
      if (rec) {
            s->enable &= ~SV_CENABLE_RE;
            fmt >>= SV_CFMT_CSHIFT;
      } else {
            s->enable &= ~SV_CENABLE_PE;
            fmt >>= SV_CFMT_ASHIFT;
      }
      wrindir(s, SV_CIENABLE, s->enable);
      spin_unlock_irqrestore(&s->lock, flags);
      fmt &= SV_CFMT_MASK;
      db->hwptr = db->swptr = db->total_bytes = db->count = db->error = db->endcleared = 0;
      if (!db->rawbuf) {
            db->ready = db->mapped = 0;
            for (order = DMABUF_DEFAULTORDER; order >= DMABUF_MINORDER; order--)
                  if ((db->rawbuf = pci_alloc_consistent(s->dev, PAGE_SIZE << order, &db->dmaaddr)))
                        break;
            if (!db->rawbuf)
                  return -ENOMEM;
            db->buforder = order;
            if ((virt_to_bus(db->rawbuf) ^ (virt_to_bus(db->rawbuf) + (PAGE_SIZE << db->buforder) - 1)) & ~0xffff)
                  printk(KERN_DEBUG "sv: DMA buffer crosses 64k boundary: busaddr 0x%lx  size %ld\n", 
                         virt_to_bus(db->rawbuf), PAGE_SIZE << db->buforder);
            if ((virt_to_bus(db->rawbuf) + (PAGE_SIZE << db->buforder) - 1) & ~0xffffff)
                  printk(KERN_DEBUG "sv: DMA buffer beyond 16MB: busaddr 0x%lx  size %ld\n", 
                         virt_to_bus(db->rawbuf), PAGE_SIZE << db->buforder);
            /* now mark the pages as reserved; otherwise remap_pfn_range doesn't do what we want */
            pend = virt_to_page(db->rawbuf + (PAGE_SIZE << db->buforder) - 1);
            for (page = virt_to_page(db->rawbuf); page <= pend; page++)
                  SetPageReserved(page);
      }
      bytepersec = rate << sample_shift[fmt];
      bufs = PAGE_SIZE << db->buforder;
      if (db->ossfragshift) {
            if ((1000 << db->ossfragshift) < bytepersec)
                  db->fragshift = ld2(bytepersec/1000);
            else
                  db->fragshift = db->ossfragshift;
      } else {
            db->fragshift = ld2(bytepersec/100/(db->subdivision ? db->subdivision : 1));
            if (db->fragshift < 3)
                  db->fragshift = 3;
      }
      db->numfrag = bufs >> db->fragshift;
      while (db->numfrag < 4 && db->fragshift > 3) {
            db->fragshift--;
            db->numfrag = bufs >> db->fragshift;
      }
      db->fragsize = 1 << db->fragshift;
      if (db->ossmaxfrags >= 4 && db->ossmaxfrags < db->numfrag)
            db->numfrag = db->ossmaxfrags;
      db->fragsamples = db->fragsize >> sample_shift[fmt];
      db->dmasize = db->numfrag << db->fragshift;
      memset(db->rawbuf, (fmt & SV_CFMT_16BIT) ? 0 : 0x80, db->dmasize);
      spin_lock_irqsave(&s->lock, flags);
      if (rec) {
            set_dmac(s, db->dmaaddr, db->numfrag << db->fragshift);
            /* program enhanced mode registers */
            wrindir(s, SV_CIDMACBASECOUNT1, (db->fragsamples-1) >> 8);
            wrindir(s, SV_CIDMACBASECOUNT0, db->fragsamples-1);
      } else {
            set_dmaa(s, db->dmaaddr, db->numfrag << db->fragshift);
            /* program enhanced mode registers */
            wrindir(s, SV_CIDMAABASECOUNT1, (db->fragsamples-1) >> 8);
            wrindir(s, SV_CIDMAABASECOUNT0, db->fragsamples-1);
      }
      spin_unlock_irqrestore(&s->lock, flags);
      db->enabled = 1;
      db->ready = 1;
      return 0;
}

static inline void clear_advance(struct sv_state *s)
{
      unsigned char c = (s->fmt & (SV_CFMT_16BIT << SV_CFMT_ASHIFT)) ? 0 : 0x80;
      unsigned char *buf = s->dma_dac.rawbuf;
      unsigned bsize = s->dma_dac.dmasize;
      unsigned bptr = s->dma_dac.swptr;
      unsigned len = s->dma_dac.fragsize;

      if (bptr + len > bsize) {
            unsigned x = bsize - bptr;
            memset(buf + bptr, c, x);
            bptr = 0;
            len -= x;
      }
      memset(buf + bptr, c, len);
}

/* call with spinlock held! */
static void sv_update_ptr(struct sv_state *s)
{
      unsigned hwptr;
      int diff;

      /* update ADC pointer */
      if (s->dma_adc.ready) {
            hwptr = (s->dma_adc.dmasize - get_dmac(s)) % s->dma_adc.dmasize;
            diff = (s->dma_adc.dmasize + hwptr - s->dma_adc.hwptr) % s->dma_adc.dmasize;
            s->dma_adc.hwptr = hwptr;
            s->dma_adc.total_bytes += diff;
            s->dma_adc.count += diff;
            if (s->dma_adc.count >= (signed)s->dma_adc.fragsize) 
                  wake_up(&s->dma_adc.wait);
            if (!s->dma_adc.mapped) {
                  if (s->dma_adc.count > (signed)(s->dma_adc.dmasize - ((3 * s->dma_adc.fragsize) >> 1))) {
                        s->enable &= ~SV_CENABLE_RE;
                        wrindir(s, SV_CIENABLE, s->enable);
                        s->dma_adc.error++;
                  }
            }
      }
      /* update DAC pointer */
      if (s->dma_dac.ready) {
            hwptr = (s->dma_dac.dmasize - get_dmaa(s)) % s->dma_dac.dmasize;
            diff = (s->dma_dac.dmasize + hwptr - s->dma_dac.hwptr) % s->dma_dac.dmasize;
            s->dma_dac.hwptr = hwptr;
            s->dma_dac.total_bytes += diff;
            if (s->dma_dac.mapped) {
                  s->dma_dac.count += diff;
                  if (s->dma_dac.count >= (signed)s->dma_dac.fragsize)
                        wake_up(&s->dma_dac.wait);
            } else {
                  s->dma_dac.count -= diff;
                  if (s->dma_dac.count <= 0) {
                        s->enable &= ~SV_CENABLE_PE;
                        wrindir(s, SV_CIENABLE, s->enable);
                        s->dma_dac.error++;
                  } else if (s->dma_dac.count <= (signed)s->dma_dac.fragsize && !s->dma_dac.endcleared) {
                        clear_advance(s);
                        s->dma_dac.endcleared = 1;
                  }
                  if (s->dma_dac.count + (signed)s->dma_dac.fragsize <= (signed)s->dma_dac.dmasize)
                        wake_up(&s->dma_dac.wait);
            }
      }
}

/* hold spinlock for the following! */
static void sv_handle_midi(struct sv_state *s)
{
      unsigned char ch;
      int wake;

      wake = 0;
      while (!(inb(s->iomidi+1) & 0x80)) {
            ch = inb(s->iomidi);
            if (s->midi.icnt < MIDIINBUF) {
                  s->midi.ibuf[s->midi.iwr] = ch;
                  s->midi.iwr = (s->midi.iwr + 1) % MIDIINBUF;
                  s->midi.icnt++;
            }
            wake = 1;
      }
      if (wake)
            wake_up(&s->midi.iwait);
      wake = 0;
      while (!(inb(s->iomidi+1) & 0x40) && s->midi.ocnt > 0) {
            outb(s->midi.obuf[s->midi.ord], s->iomidi);
            s->midi.ord = (s->midi.ord + 1) % MIDIOUTBUF;
            s->midi.ocnt--;
            if (s->midi.ocnt < MIDIOUTBUF-16)
                  wake = 1;
      }
      if (wake)
            wake_up(&s->midi.owait);
}

static irqreturn_t sv_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
        struct sv_state *s = (struct sv_state *)dev_id;
      unsigned int intsrc;
      
      /* fastpath out, to ease interrupt sharing */
      intsrc = inb(s->ioenh + SV_CODEC_STATUS);
      if (!(intsrc & (SV_CSTAT_DMAA | SV_CSTAT_DMAC | SV_CSTAT_MIDI)))
            return IRQ_NONE;
      spin_lock(&s->lock);
      sv_update_ptr(s);
      sv_handle_midi(s);
      spin_unlock(&s->lock);
      return IRQ_HANDLED;
}

static void sv_midi_timer(unsigned long data)
{
      struct sv_state *s = (struct sv_state *)data;
      unsigned long flags;
      
      spin_lock_irqsave(&s->lock, flags);
      sv_handle_midi(s);
      spin_unlock_irqrestore(&s->lock, flags);
      s->midi.timer.expires = jiffies+1;
      add_timer(&s->midi.timer);
}

/* --------------------------------------------------------------------- */

static const char invalid_magic[] = KERN_CRIT "sv: invalid magic value\n";

#define VALIDATE_STATE(s)                         \
({                                                \
      if (!(s) || (s)->magic != SV_MAGIC) { \
            printk(invalid_magic);            \
            return -ENXIO;                    \
      }                                         \
})

/* --------------------------------------------------------------------- */

#define MT_4          1
#define MT_5MUTE      2
#define MT_4MUTEMONO  3
#define MT_6MUTE      4

static const struct {
      unsigned left:5;
      unsigned right:5;
      unsigned type:3;
      unsigned rec:3;
} mixtable[SOUND_MIXER_NRDEVICES] = {
      [SOUND_MIXER_RECLEV] = { SV_CIMIX_ADCINL,    SV_CIMIX_ADCINR,    MT_4,         0 },
      [SOUND_MIXER_LINE1]  = { SV_CIMIX_AUX1INL,   SV_CIMIX_AUX1INR,   MT_5MUTE,     5 },
      [SOUND_MIXER_CD]     = { SV_CIMIX_CDINL,     SV_CIMIX_CDINR,     MT_5MUTE,     1 },
      [SOUND_MIXER_LINE]   = { SV_CIMIX_LINEINL,   SV_CIMIX_LINEINR,   MT_5MUTE,     4 },
      [SOUND_MIXER_MIC]    = { SV_CIMIX_MICIN,     SV_CIMIX_ADCINL,    MT_4MUTEMONO, 6 },
      [SOUND_MIXER_SYNTH]  = { SV_CIMIX_SYNTHINL,  SV_CIMIX_SYNTHINR,  MT_5MUTE,     2 },
      [SOUND_MIXER_LINE2]  = { SV_CIMIX_AUX2INL,   SV_CIMIX_AUX2INR,   MT_5MUTE,     3 },
      [SOUND_MIXER_VOLUME] = { SV_CIMIX_ANALOGINL, SV_CIMIX_ANALOGINR, MT_5MUTE,     7 },
      [SOUND_MIXER_PCM]    = { SV_CIMIX_PCMINL,    SV_CIMIX_PCMINR,    MT_6MUTE,     0 }
};

#ifdef OSS_DOCUMENTED_MIXER_SEMANTICS

static int return_mixval(struct sv_state *s, unsigned i, int *arg)
{
      unsigned long flags;
      unsigned char l, r, rl, rr;

      spin_lock_irqsave(&s->lock, flags);
      l = rdindir(s, mixtable[i].left);
      r = rdindir(s, mixtable[i].right);
      spin_unlock_irqrestore(&s->lock, flags);
      switch (mixtable[i].type) {
      case MT_4:
            r &= 0xf;
            l &= 0xf;
            rl = 10 + 6 * (l & 15);
            rr = 10 + 6 * (r & 15);
            break;

      case MT_4MUTEMONO:
            rl = 55 - 3 * (l & 15);
            if (r & 0x10)
                  rl += 45;
            rr = rl;
            r = l;
            break;

      case MT_5MUTE:
      default:
            rl = 100 - 3 * (l & 31);
            rr = 100 - 3 * (r & 31);
            break;
                        
      case MT_6MUTE:
            rl = 100 - 3 * (l & 63) / 2;
            rr = 100 - 3 * (r & 63) / 2;
            break;
      }
      if (l & 0x80)
            rl = 0;
      if (r & 0x80)
            rr = 0;
      return put_user((rr << 8) | rl, arg);
}

#else /* OSS_DOCUMENTED_MIXER_SEMANTICS */

static const unsigned char volidx[SOUND_MIXER_NRDEVICES] = 
{
      [SOUND_MIXER_RECLEV] = 1,
      [SOUND_MIXER_LINE1]  = 2,
      [SOUND_MIXER_CD]     = 3,
      [SOUND_MIXER_LINE]   = 4,
      [SOUND_MIXER_MIC]    = 5,
      [SOUND_MIXER_SYNTH]  = 6,
      [SOUND_MIXER_LINE2]  = 7,
      [SOUND_MIXER_VOLUME] = 8,
      [SOUND_MIXER_PCM]    = 9
};

#endif /* OSS_DOCUMENTED_MIXER_SEMANTICS */

static unsigned mixer_recmask(struct sv_state *s)
{
      unsigned long flags;
      int i, j;

      spin_lock_irqsave(&s->lock, flags);
      j = rdindir(s, SV_CIMIX_ADCINL) >> 5;
      spin_unlock_irqrestore(&s->lock, flags);
      j &= 7;
      for (i = 0; i < SOUND_MIXER_NRDEVICES && mixtable[i].rec != j; i++);
      return 1 << i;
}

static int mixer_ioctl(struct sv_state *s, unsigned int cmd, unsigned long arg)
{
      unsigned long flags;
      int i, val;
      unsigned char l, r, rl, rr;
      int __user *p = (int __user *)arg;

      VALIDATE_STATE(s);
        if (cmd == SOUND_MIXER_INFO) {
            mixer_info info;
            memset(&info, 0, sizeof(info));
            strlcpy(info.id, "SonicVibes", sizeof(info.id));
            strlcpy(info.name, "S3 SonicVibes", sizeof(info.name));
            info.modify_counter = s->mix.modcnt;
            if (copy_to_user((void __user *)arg, &info, sizeof(info)))
                  return -EFAULT;
            return 0;
      }
      if (cmd == SOUND_OLD_MIXER_INFO) {
            _old_mixer_info info;
            memset(&info, 0, sizeof(info));
            strlcpy(info.id, "SonicVibes", sizeof(info.id));
            strlcpy(info.name, "S3 SonicVibes", sizeof(info.name));
            if (copy_to_user((void __user *)arg, &info, sizeof(info)))
                  return -EFAULT;
            return 0;
      }
      if (cmd == OSS_GETVERSION)
            return put_user(SOUND_VERSION, p);
      if (cmd == SOUND_MIXER_PRIVATE1) {  /* SRS settings */
            if (get_user(val, p))
                  return -EFAULT;
            spin_lock_irqsave(&s->lock, flags);
            if (val & 1) {
                  if (val & 2) {
                        l = 4 - ((val >> 2) & 7);
                        if (l & ~3)
                              l = 4;
                        r = 4 - ((val >> 5) & 7);
                        if (r & ~3)
                              r = 4;
                        wrindir(s, SV_CISRSSPACE, l);
                        wrindir(s, SV_CISRSCENTER, r);
                  } else
                        wrindir(s, SV_CISRSSPACE, 0x80);
            }
            l = rdindir(s, SV_CISRSSPACE);
            r = rdindir(s, SV_CISRSCENTER);
            spin_unlock_irqrestore(&s->lock, flags);
            if (l & 0x80)
                  return put_user(0, p);
            return put_user(((4 - (l & 7)) << 2) | ((4 - (r & 7)) << 5) | 2, p);
      }
      if (_IOC_TYPE(cmd) != 'M' || _SIOC_SIZE(cmd) != sizeof(int))
                return -EINVAL;
        if (_SIOC_DIR(cmd) == _SIOC_READ) {
                switch (_IOC_NR(cmd)) {
                case SOUND_MIXER_RECSRC: /* Arg contains a bit for each recording source */
                  return put_user(mixer_recmask(s), p);
                  
                case SOUND_MIXER_DEVMASK: /* Arg contains a bit for each supported device */
                  for (val = i = 0; i < SOUND_MIXER_NRDEVICES; i++)
                        if (mixtable[i].type)
                              val |= 1 << i;
                  return put_user(val, p);

                case SOUND_MIXER_RECMASK: /* Arg contains a bit for each supported recording source */
                  for (val = i = 0; i < SOUND_MIXER_NRDEVICES; i++)
                        if (mixtable[i].rec)
                              val |= 1 << i;
                  return put_user(val, p);
                  
                case SOUND_MIXER_STEREODEVS: /* Mixer channels supporting stereo */
                  for (val = i = 0; i < SOUND_MIXER_NRDEVICES; i++)
                        if (mixtable[i].type && mixtable[i].type != MT_4MUTEMONO)
                              val |= 1 << i;
                  return put_user(val, p);
                  
                case SOUND_MIXER_CAPS:
                  return put_user(SOUND_CAP_EXCL_INPUT, p);

            default:
                  i = _IOC_NR(cmd);
                        if (i >= SOUND_MIXER_NRDEVICES || !mixtable[i].type)
                                return -EINVAL;
#ifdef OSS_DOCUMENTED_MIXER_SEMANTICS
                  return return_mixval(s, i, p);
#else /* OSS_DOCUMENTED_MIXER_SEMANTICS */
                  if (!volidx[i])
                        return -EINVAL;
                  return put_user(s->mix.vol[volidx[i]-1], p);
#endif /* OSS_DOCUMENTED_MIXER_SEMANTICS */
            }
      }
        if (_SIOC_DIR(cmd) != (_SIOC_READ|_SIOC_WRITE)) 
            return -EINVAL;
      s->mix.modcnt++;
      switch (_IOC_NR(cmd)) {
      case SOUND_MIXER_RECSRC: /* Arg contains a bit for each recording source */
            if (get_user(val, p))
                  return -EFAULT;
            i = hweight32(val);
            if (i == 0)
                  return 0; /*val = mixer_recmask(s);*/
            else if (i > 1) 
                  val &= ~mixer_recmask(s);
            for (i = 0; i < SOUND_MIXER_NRDEVICES; i++) {
                  if (!(val & (1 << i)))
                        continue;
                  if (mixtable[i].rec)
                        break;
            }
            if (i == SOUND_MIXER_NRDEVICES)
                  return 0;
            spin_lock_irqsave(&s->lock, flags);
            frobindir(s, SV_CIMIX_ADCINL, 0x1f, mixtable[i].rec << 5);
            frobindir(s, SV_CIMIX_ADCINR, 0x1f, mixtable[i].rec << 5);
            spin_unlock_irqrestore(&s->lock, flags);
            return 0;

      default:
            i = _IOC_NR(cmd);
            if (i >= SOUND_MIXER_NRDEVICES || !mixtable[i].type)
                  return -EINVAL;
            if (get_user(val, p))
                  return -EFAULT;
            l = val & 0xff;
            r = (val >> 8) & 0xff;
            if (mixtable[i].type == MT_4MUTEMONO)
                  l = (r + l) / 2;
            if (l > 100)
                  l = 100;
            if (r > 100)
                  r = 100;
            spin_lock_irqsave(&s->lock, flags);
            switch (mixtable[i].type) {
            case MT_4:
                  if (l >= 10)
                        l -= 10;
                  if (r >= 10)
                        r -= 10;
                  frobindir(s, mixtable[i].left, 0xf0, l / 6);
                  frobindir(s, mixtable[i].right, 0xf0, l / 6);
                  break;

            case MT_4MUTEMONO:
                  rr = 0;
                  if (l < 10)
                        rl = 0x80;
                  else {
                        if (l >= 55) {
                              rr = 0x10;
                              l -= 45;
                        }
                        rl = (55 - l) / 3;
                  }
                  wrindir(s, mixtable[i].left, rl);
                  frobindir(s, mixtable[i].right, ~0x10, rr);
                  break;
                  
            case MT_5MUTE:
                  if (l < 7)
                        rl = 0x80;
                  else
                        rl = (100 - l) / 3;
                  if (r < 7)
                        rr = 0x80;
                  else
                        rr = (100 - r) / 3;
                  wrindir(s, mixtable[i].left, rl);
                  wrindir(s, mixtable[i].right, rr);
                  break;
                        
            case MT_6MUTE:
                  if (l < 6)
                        rl = 0x80;
                  else
                        rl = (100 - l) * 2 / 3;
                  if (r < 6)
                        rr = 0x80;
                  else
                        rr = (100 - r) * 2 / 3;
                  wrindir(s, mixtable[i].left, rl);
                  wrindir(s, mixtable[i].right, rr);
                  break;
            }
            spin_unlock_irqrestore(&s->lock, flags);
#ifdef OSS_DOCUMENTED_MIXER_SEMANTICS
                return return_mixval(s, i, p);
#else /* OSS_DOCUMENTED_MIXER_SEMANTICS */
            if (!volidx[i])
                  return -EINVAL;
            s->mix.vol[volidx[i]-1] = val;
            return put_user(s->mix.vol[volidx[i]-1], p);
#endif /* OSS_DOCUMENTED_MIXER_SEMANTICS */
      }
}

/* --------------------------------------------------------------------- */

static int sv_open_mixdev(struct inode *inode, struct file *file)
{
      int minor = iminor(inode);
      struct list_head *list;
      struct sv_state *s;

      for (list = devs.next; ; list = list->next) {
            if (list == &devs)
                  return -ENODEV;
            s = list_entry(list, struct sv_state, devs);
            if (s->dev_mixer == minor)
                  break;
      }
            VALIDATE_STATE(s);
      file->private_data = s;
      return nonseekable_open(inode, file);
}

static int sv_release_mixdev(struct inode *inode, struct file *file)
{
      struct sv_state *s = (struct sv_state *)file->private_data;
      
      VALIDATE_STATE(s);
      return 0;
}

static int sv_ioctl_mixdev(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
{
      return mixer_ioctl((struct sv_state *)file->private_data, cmd, arg);
}

static /*const*/ struct file_operations sv_mixer_fops = {
      .owner            = THIS_MODULE,
      .llseek           = no_llseek,
      .ioctl            = sv_ioctl_mixdev,
      .open       = sv_open_mixdev,
      .release    = sv_release_mixdev,
};

/* --------------------------------------------------------------------- */

static int drain_dac(struct sv_state *s, int nonblock)
{
      DECLARE_WAITQUEUE(wait, current);
      unsigned long flags;
      int count, tmo;

      if (s->dma_dac.mapped || !s->dma_dac.ready)
            return 0;
        add_wait_queue(&s->dma_dac.wait, &wait);
        for (;;) {
            __set_current_state(TASK_INTERRUPTIBLE);
                spin_lock_irqsave(&s->lock, flags);
            count = s->dma_dac.count;
                spin_unlock_irqrestore(&s->lock, flags);
            if (count <= 0)
                  break;
            if (signal_pending(current))
                        break;
                if (nonblock) {
                        remove_wait_queue(&s->dma_dac.wait, &wait);
                        set_current_state(TASK_RUNNING);
                        return -EBUSY;
                }
            tmo = 3 * HZ * (count + s->dma_dac.fragsize) / 2 / s->ratedac;
            tmo >>= sample_shift[(s->fmt >> SV_CFMT_ASHIFT) & SV_CFMT_MASK];
            if (!schedule_timeout(tmo + 1))
                  printk(KERN_DEBUG "sv: dma timed out??\n");
        }
        remove_wait_queue(&s->dma_dac.wait, &wait);
        set_current_state(TASK_RUNNING);
        if (signal_pending(current))
                return -ERESTARTSYS;
        return 0;
}

/* --------------------------------------------------------------------- */

static ssize_t sv_read(struct file *file, char __user *buffer, size_t count, loff_t *ppos)
{
      struct sv_state *s = (struct sv_state *)file->private_data;
      DECLARE_WAITQUEUE(wait, current);
      ssize_t ret;
      unsigned long flags;
      unsigned swptr;
      int cnt;

      VALIDATE_STATE(s);
      if (s->dma_adc.mapped)
            return -ENXIO;
      if (!s->dma_adc.ready && (ret = prog_dmabuf(s, 1)))
            return ret;
      if (!access_ok(VERIFY_WRITE, buffer, count))
            return -EFAULT;
      ret = 0;
#if 0
      spin_lock_irqsave(&s->lock, flags);
      sv_update_ptr(s);
      spin_unlock_irqrestore(&s->lock, flags);
#endif
        add_wait_queue(&s->dma_adc.wait, &wait);
      while (count > 0) {
            spin_lock_irqsave(&s->lock, flags);
            swptr = s->dma_adc.swptr;
            cnt = s->dma_adc.dmasize-swptr;
            if (s->dma_adc.count < cnt)
                  cnt = s->dma_adc.count;
            if (cnt <= 0)
                  __set_current_state(TASK_INTERRUPTIBLE);
            spin_unlock_irqrestore(&s->lock, flags);
            if (cnt > count)
                  cnt = count;
            if (cnt <= 0) {
                  if (s->dma_adc.enabled)
                        start_adc(s);
                  if (file->f_flags & O_NONBLOCK) {
                        if (!ret)
                              ret = -EAGAIN;
                        break;
                  }
                  if (!schedule_timeout(HZ)) {
                        printk(KERN_DEBUG "sv: read: chip lockup? dmasz %u fragsz %u count %i hwptr %u swptr %u\n",
                               s->dma_adc.dmasize, s->dma_adc.fragsize, s->dma_adc.count, 
                               s->dma_adc.hwptr, s->dma_adc.swptr);
                        stop_adc(s);
                        spin_lock_irqsave(&s->lock, flags);
                        set_dmac(s, virt_to_bus(s->dma_adc.rawbuf), s->dma_adc.numfrag << s->dma_adc.fragshift);
                        /* program enhanced mode registers */
                        wrindir(s, SV_CIDMACBASECOUNT1, (s->dma_adc.fragsamples-1) >> 8);
                        wrindir(s, SV_CIDMACBASECOUNT0, s->dma_adc.fragsamples-1);
                        s->dma_adc.count = s->dma_adc.hwptr = s->dma_adc.swptr = 0;
                        spin_unlock_irqrestore(&s->lock, flags);
                  }
                  if (signal_pending(current)) {
                        if (!ret)
                              ret = -ERESTARTSYS;
                        break;
                  }
                  continue;
            }
            if (copy_to_user(buffer, s->dma_adc.rawbuf + swptr, cnt)) {
                  if (!ret)
                        ret = -EFAULT;
                  break;
            }
            swptr = (swptr + cnt) % s->dma_adc.dmasize;
            spin_lock_irqsave(&s->lock, flags);
            s->dma_adc.swptr = swptr;
            s->dma_adc.count -= cnt;
            spin_unlock_irqrestore(&s->lock, flags);
            count -= cnt;
            buffer += cnt;
            ret += cnt;
            if (s->dma_adc.enabled)
                  start_adc(s);
      }
        remove_wait_queue(&s->dma_adc.wait, &wait);
      set_current_state(TASK_RUNNING);
      return ret;
}

static ssize_t sv_write(struct file *file, const char __user *buffer, size_t count, loff_t *ppos)
{
      struct sv_state *s = (struct sv_state *)file->private_data;
      DECLARE_WAITQUEUE(wait, current);
      ssize_t ret;
      unsigned long flags;
      unsigned swptr;
      int cnt;

      VALIDATE_STATE(s);
      if (s->dma_dac.mapped)
            return -ENXIO;
      if (!s->dma_dac.ready && (ret = prog_dmabuf(s, 0)))
            return ret;
      if (!access_ok(VERIFY_READ, buffer, count))
            return -EFAULT;
      ret = 0;
#if 0
      spin_lock_irqsave(&s->lock, flags);
      sv_update_ptr(s);
      spin_unlock_irqrestore(&s->lock, flags);
#endif
        add_wait_queue(&s->dma_dac.wait, &wait);
      while (count > 0) {
            spin_lock_irqsave(&s->lock, flags);
            if (s->dma_dac.count < 0) {
                  s->dma_dac.count = 0;
                  s->dma_dac.swptr = s->dma_dac.hwptr;
            }
            swptr = s->dma_dac.swptr;
            cnt = s->dma_dac.dmasize-swptr;
            if (s->dma_dac.count + cnt > s->dma_dac.dmasize)
                  cnt = s->dma_dac.dmasize - s->dma_dac.count;
            if (cnt <= 0)
                  __set_current_state(TASK_INTERRUPTIBLE);
            spin_unlock_irqrestore(&s->lock, flags);
            if (cnt > count)
                  cnt = count;
            if (cnt <= 0) {
                  if (s->dma_dac.enabled)
                        start_dac(s);
                  if (file->f_flags & O_NONBLOCK) {
                        if (!ret)
                              ret = -EAGAIN;
                        break;
                  }
                  if (!schedule_timeout(HZ)) {
                        printk(KERN_DEBUG "sv: write: chip lockup? dmasz %u fragsz %u count %i hwptr %u swptr %u\n",
                               s->dma_dac.dmasize, s->dma_dac.fragsize, s->dma_dac.count, 
                               s->dma_dac.hwptr, s->dma_dac.swptr);
                        stop_dac(s);
                        spin_lock_irqsave(&s->lock, flags);
                        set_dmaa(s, virt_to_bus(s->dma_dac.rawbuf), s->dma_dac.numfrag << s->dma_dac.fragshift);
                        /* program enhanced mode registers */
                        wrindir(s, SV_CIDMAABASECOUNT1, (s->dma_dac.fragsamples-1) >> 8);
                        wrindir(s, SV_CIDMAABASECOUNT0, s->dma_dac.fragsamples-1);
                        s->dma_dac.count = s->dma_dac.hwptr = s->dma_dac.swptr = 0;
                        spin_unlock_irqrestore(&s->lock, flags);
                  }
                  if (signal_pending(current)) {
                        if (!ret)
                              ret = -ERESTARTSYS;
                        break;
                  }
                  continue;
            }
            if (copy_from_user(s->dma_dac.rawbuf + swptr, buffer, cnt)) {
                  if (!ret)
                        ret = -EFAULT;
                  break;
            }
            swptr = (swptr + cnt) % s->dma_dac.dmasize;
            spin_lock_irqsave(&s->lock, flags);
            s->dma_dac.swptr = swptr;
            s->dma_dac.count += cnt;
            s->dma_dac.endcleared = 0;
            spin_unlock_irqrestore(&s->lock, flags);
            count -= cnt;
            buffer += cnt;
            ret += cnt;
            if (s->dma_dac.enabled)
                  start_dac(s);
      }
        remove_wait_queue(&s->dma_dac.wait, &wait);
      set_current_state(TASK_RUNNING);
      return ret;
}

/* No kernel lock - we have our own spinlock */
static unsigned int sv_poll(struct file *file, struct poll_table_struct *wait)
{
      struct sv_state *s = (struct sv_state *)file->private_data;
      unsigned long flags;
      unsigned int mask = 0;

      VALIDATE_STATE(s);
      if (file->f_mode & FMODE_WRITE) {
            if (!s->dma_dac.ready && prog_dmabuf(s, 1))
                  return 0;
            poll_wait(file, &s->dma_dac.wait, wait);
      }
      if (file->f_mode & FMODE_READ) {
            if (!s->dma_adc.ready && prog_dmabuf(s, 0))
                  return 0;
            poll_wait(file, &s->dma_adc.wait, wait);
      }
      spin_lock_irqsave(&s->lock, flags);
      sv_update_ptr(s);
      if (file->f_mode & FMODE_READ) {
            if (s->dma_adc.count >= (signed)s->dma_adc.fragsize)
                  mask |= POLLIN | POLLRDNORM;
      }
      if (file->f_mode & FMODE_WRITE) {
            if (s->dma_dac.mapped) {
                  if (s->dma_dac.count >= (signed)s->dma_dac.fragsize) 
                        mask |= POLLOUT | POLLWRNORM;
            } else {
                  if ((signed)s->dma_dac.dmasize >= s->dma_dac.count + (signed)s->dma_dac.fragsize)
                        mask |= POLLOUT | POLLWRNORM;
            }
      }
      spin_unlock_irqrestore(&s->lock, flags);
      return mask;
}

static int sv_mmap(struct file *file, struct vm_area_struct *vma)
{
      struct sv_state *s = (struct sv_state *)file->private_data;
      struct dmabuf *db;
      int ret = -EINVAL;
      unsigned long size;

      VALIDATE_STATE(s);
      lock_kernel();
      if (vma->vm_flags & VM_WRITE) {
            if ((ret = prog_dmabuf(s, 1)) != 0)
                  goto out;
            db = &s->dma_dac;
      } else if (vma->vm_flags & VM_READ) {
            if ((ret = prog_dmabuf(s, 0)) != 0)
                  goto out;
            db = &s->dma_adc;
      } else 
            goto out;
      ret = -EINVAL;
      if (vma->vm_pgoff != 0)
            goto out;
      size = vma->vm_end - vma->vm_start;
      if (size > (PAGE_SIZE << db->buforder))
            goto out;
      ret = -EAGAIN;
      if (remap_pfn_range(vma, vma->vm_start,
                        virt_to_phys(db->rawbuf) >> PAGE_SHIFT,
                        size, vma->vm_page_prot))
            goto out;
      db->mapped = 1;
      ret = 0;
out:
      unlock_kernel();
      return ret;
}

static int sv_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
{
      struct sv_state *s = (struct sv_state *)file->private_data;
      unsigned long flags;
        audio_buf_info abinfo;
        count_info cinfo;
      int count;
      int val, mapped, ret;
      unsigned char fmtm, fmtd;
      void __user *argp = (void __user *)arg;
      int __user *p = argp;

      VALIDATE_STATE(s);
        mapped = ((file->f_mode & FMODE_WRITE) && s->dma_dac.mapped) ||
            ((file->f_mode & FMODE_READ) && s->dma_adc.mapped);
      switch (cmd) {
      case OSS_GETVERSION:
            return put_user(SOUND_VERSION, p);

      case SNDCTL_DSP_SYNC:
            if (file->f_mode & FMODE_WRITE)
                  return drain_dac(s, 0/*file->f_flags & O_NONBLOCK*/);
            return 0;
            
      case SNDCTL_DSP_SETDUPLEX:
            return 0;

      case SNDCTL_DSP_GETCAPS:
            return put_user(DSP_CAP_DUPLEX | DSP_CAP_REALTIME | DSP_CAP_TRIGGER | DSP_CAP_MMAP, p);
            
        case SNDCTL_DSP_RESET:
            if (file->f_mode & FMODE_WRITE) {
                  stop_dac(s);
                  synchronize_irq(s->irq);
                  s->dma_dac.swptr = s->dma_dac.hwptr = s->dma_dac.count = s->dma_dac.total_bytes = 0;
            }
            if (file->f_mode & FMODE_READ) {
                  stop_adc(s);
                  synchronize_irq(s->irq);
                  s->dma_adc.swptr = s->dma_adc.hwptr = s->dma_adc.count = s->dma_adc.total_bytes = 0;
            }
            return 0;

        case SNDCTL_DSP_SPEED:
                if (get_user(val, p))
                  return -EFAULT;
            if (val >= 0) {
                  if (file->f_mode & FMODE_READ) {
                        stop_adc(s);
                        s->dma_adc.ready = 0;
                        set_adc_rate(s, val);
                  }
                  if (file->f_mode & FMODE_WRITE) {
                        stop_dac(s);
                        s->dma_dac.ready = 0;
                        set_dac_rate(s, val);
                  }
            }
            return put_user((file->f_mode & FMODE_READ) ? s->rateadc : s->ratedac, p);
            
        case SNDCTL_DSP_STEREO:
                if (get_user(val, p))
                  return -EFAULT;
            fmtd = 0;
            fmtm = ~0;
            if (file->f_mode & FMODE_READ) {
                  stop_adc(s);
                  s->dma_adc.ready = 0;
                  if (val)
                        fmtd |= SV_CFMT_STEREO << SV_CFMT_CSHIFT;
                  else
                        fmtm &= ~(SV_CFMT_STEREO << SV_CFMT_CSHIFT);
            }
            if (file->f_mode & FMODE_WRITE) {
                  stop_dac(s);
                  s->dma_dac.ready = 0;
                  if (val)
                        fmtd |= SV_CFMT_STEREO << SV_CFMT_ASHIFT;
                  else
                        fmtm &= ~(SV_CFMT_STEREO << SV_CFMT_ASHIFT);
            }
            set_fmt(s, fmtm, fmtd);
            return 0;

        case SNDCTL_DSP_CHANNELS:
                if (get_user(val, p))
                  return -EFAULT;
            if (val != 0) {
                  fmtd = 0;
                  fmtm = ~0;
                  if (file->f_mode & FMODE_READ) {
                        stop_adc(s);
                        s->dma_adc.ready = 0;
                        if (val >= 2)
                              fmtd |= SV_CFMT_STEREO << SV_CFMT_CSHIFT;
                        else
                              fmtm &= ~(SV_CFMT_STEREO << SV_CFMT_CSHIFT);
                  }
                  if (file->f_mode & FMODE_WRITE) {
                        stop_dac(s);
                        s->dma_dac.ready = 0;
                        if (val >= 2)
                              fmtd |= SV_CFMT_STEREO << SV_CFMT_ASHIFT;
                        else
                              fmtm &= ~(SV_CFMT_STEREO << SV_CFMT_ASHIFT);
                  }
                  set_fmt(s, fmtm, fmtd);
            }
            return put_user((s->fmt & ((file->f_mode & FMODE_READ) ? (SV_CFMT_STEREO << SV_CFMT_CSHIFT) 
                                 : (SV_CFMT_STEREO << SV_CFMT_ASHIFT))) ? 2 : 1, p);
            
      case SNDCTL_DSP_GETFMTS: /* Returns a mask */
                return put_user(AFMT_S16_LE|AFMT_U8, p);
            
      case SNDCTL_DSP_SETFMT: /* Selects ONE fmt*/
            if (get_user(val, p))
                  return -EFAULT;
            if (val != AFMT_QUERY) {
                  fmtd = 0;
                  fmtm = ~0;
                  if (file->f_mode & FMODE_READ) {
                        stop_adc(s);
                        s->dma_adc.ready = 0;
                        if (val == AFMT_S16_LE)
                              fmtd |= SV_CFMT_16BIT << SV_CFMT_CSHIFT;
                        else
                              fmtm &= ~(SV_CFMT_16BIT << SV_CFMT_CSHIFT);
                  }
                  if (file->f_mode & FMODE_WRITE) {
                        stop_dac(s);
                        s->dma_dac.ready = 0;
                        if (val == AFMT_S16_LE)
                              fmtd |= SV_CFMT_16BIT << SV_CFMT_ASHIFT;
                        else
                              fmtm &= ~(SV_CFMT_16BIT << SV_CFMT_ASHIFT);
                  }
                  set_fmt(s, fmtm, fmtd);
            }
            return put_user((s->fmt & ((file->f_mode & FMODE_READ) ? (SV_CFMT_16BIT << SV_CFMT_CSHIFT) 
                                 : (SV_CFMT_16BIT << SV_CFMT_ASHIFT))) ? AFMT_S16_LE : AFMT_U8, p);
            
      case SNDCTL_DSP_POST:
                return 0;

        case SNDCTL_DSP_GETTRIGGER:
            val = 0;
            if (file->f_mode & FMODE_READ && s->enable & SV_CENABLE_RE) 
                  val |= PCM_ENABLE_INPUT;
            if (file->f_mode & FMODE_WRITE && s->enable & SV_CENABLE_PE) 
                  val |= PCM_ENABLE_OUTPUT;
            return put_user(val, p);
            
      case SNDCTL_DSP_SETTRIGGER:
            if (get_user(val, p))
                  return -EFAULT;
            if (file->f_mode & FMODE_READ) {
                  if (val & PCM_ENABLE_INPUT) {
                        if (!s->dma_adc.ready && (ret =  prog_dmabuf(s, 1)))
                              return ret;
                        s->dma_adc.enabled = 1;
                        start_adc(s);
                  } else {
                        s->dma_adc.enabled = 0;
                        stop_adc(s);
                  }
            }
            if (file->f_mode & FMODE_WRITE) {
                  if (val & PCM_ENABLE_OUTPUT) {
                        if (!s->dma_dac.ready && (ret = prog_dmabuf(s, 0)))
                              return ret;
                        s->dma_dac.enabled = 1;
                        start_dac(s);
                  } else {
                        s->dma_dac.enabled = 0;
                        stop_dac(s);
                  }
            }
            return 0;

      case SNDCTL_DSP_GETOSPACE:
            if (!(file->f_mode & FMODE_WRITE))
                  return -EINVAL;
            if (!s->dma_dac.ready && (val = prog_dmabuf(s, 0)) != 0)
                  return val;
            spin_lock_irqsave(&s->lock, flags);
            sv_update_ptr(s);
            abinfo.fragsize = s->dma_dac.fragsize;
            count = s->dma_dac.count;
            if (count < 0)
                  count = 0;
                abinfo.bytes = s->dma_dac.dmasize - count;
                abinfo.fragstotal = s->dma_dac.numfrag;
                abinfo.fragments = abinfo.bytes >> s->dma_dac.fragshift;      
            spin_unlock_irqrestore(&s->lock, flags);
            return copy_to_user(argp, &abinfo, sizeof(abinfo)) ? -EFAULT : 0;

      case SNDCTL_DSP_GETISPACE:
            if (!(file->f_mode & FMODE_READ))
                  return -EINVAL;
            if (!s->dma_adc.ready && (val = prog_dmabuf(s, 1)) != 0)
                  return val;
            spin_lock_irqsave(&s->lock, flags);
            sv_update_ptr(s);
            abinfo.fragsize = s->dma_adc.fragsize;
            count = s->dma_adc.count;
            if (count < 0)
                  count = 0;
                abinfo.bytes = count;
                abinfo.fragstotal = s->dma_adc.numfrag;
                abinfo.fragments = abinfo.bytes >> s->dma_adc.fragshift;      
            spin_unlock_irqrestore(&s->lock, flags);
            return copy_to_user(argp, &abinfo, sizeof(abinfo)) ? -EFAULT : 0;
            
        case SNDCTL_DSP_NONBLOCK:
                file->f_flags |= O_NONBLOCK;
                return 0;

        case SNDCTL_DSP_GETODELAY:
            if (!(file->f_mode & FMODE_WRITE))
                  return -EINVAL;
            if (!s->dma_dac.ready && (val = prog_dmabuf(s, 0)) != 0)
                  return val;
            spin_lock_irqsave(&s->lock, flags);
            sv_update_ptr(s);
                count = s->dma_dac.count;
            spin_unlock_irqrestore(&s->lock, flags);
            if (count < 0)
                  count = 0;
            return put_user(count, p);

        case SNDCTL_DSP_GETIPTR:
            if (!(file->f_mode & FMODE_READ))
                  return -EINVAL;
            if (!s->dma_adc.ready && (val = prog_dmabuf(s, 1)) != 0)
                  return val;
            spin_lock_irqsave(&s->lock, flags);
            sv_update_ptr(s);
                cinfo.bytes = s->dma_adc.total_bytes;
            count = s->dma_adc.count;
            if (count < 0)
                  count = 0;
                cinfo.blocks = count >> s->dma_adc.fragshift;
                cinfo.ptr = s->dma_adc.hwptr;
            if (s->dma_adc.mapped)
                  s->dma_adc.count &= s->dma_adc.fragsize-1;
            spin_unlock_irqrestore(&s->lock, flags);
            if (copy_to_user(argp, &cinfo, sizeof(cinfo)))
                  return -EFAULT;
            return 0;

        case SNDCTL_DSP_GETOPTR:
            if (!(file->f_mode & FMODE_WRITE))
                  return -EINVAL;
            if (!s->dma_dac.ready && (val = prog_dmabuf(s, 0)) != 0)
                  return val;
            spin_lock_irqsave(&s->lock, flags);
            sv_update_ptr(s);
                cinfo.bytes = s->dma_dac.total_bytes;
            count = s->dma_dac.count;
            if (count < 0)
                  count = 0;
                cinfo.blocks = count >> s->dma_dac.fragshift;
                cinfo.ptr = s->dma_dac.hwptr;
            if (s->dma_dac.mapped)
                  s->dma_dac.count &= s->dma_dac.fragsize-1;
            spin_unlock_irqrestore(&s->lock, flags);
                if (copy_to_user(argp, &cinfo, sizeof(cinfo)))
                  return -EFAULT;
            return 0;

        case SNDCTL_DSP_GETBLKSIZE:
            if (file->f_mode & FMODE_WRITE) {
                  if ((val = prog_dmabuf(s, 0)))
                        return val;
                  return put_user(s->dma_dac.fragsize, p);
            }
            if ((val = prog_dmabuf(s, 1)))
                  return val;
            return put_user(s->dma_adc.fragsize, p);

        case SNDCTL_DSP_SETFRAGMENT:
                if (get_user(val, p))
                  return -EFAULT;
            if (file->f_mode & FMODE_READ) {
                  s->dma_adc.ossfragshift = val & 0xffff;
                  s->dma_adc.ossmaxfrags = (val >> 16) & 0xffff;
                  if (s->dma_adc.ossfragshift < 4)
                        s->dma_adc.ossfragshift = 4;
                  if (s->dma_adc.ossfragshift > 15)
                        s->dma_adc.ossfragshift = 15;
                  if (s->dma_adc.ossmaxfrags < 4)
                        s->dma_adc.ossmaxfrags = 4;
            }
            if (file->f_mode & FMODE_WRITE) {
                  s->dma_dac.ossfragshift = val & 0xffff;
                  s->dma_dac.ossmaxfrags = (val >> 16) & 0xffff;
                  if (s->dma_dac.ossfragshift < 4)
                        s->dma_dac.ossfragshift = 4;
                  if (s->dma_dac.ossfragshift > 15)
                        s->dma_dac.ossfragshift = 15;
                  if (s->dma_dac.ossmaxfrags < 4)
                        s->dma_dac.ossmaxfrags = 4;
            }
            return 0;

        case SNDCTL_DSP_SUBDIVIDE:
            if ((file->f_mode & FMODE_READ && s->dma_adc.subdivision) ||
                (file->f_mode & FMODE_WRITE && s->dma_dac.subdivision))
                  return -EINVAL;
                if (get_user(val, p))
                  return -EFAULT;
            if (val != 1 && val != 2 && val != 4)
                  return -EINVAL;
            if (file->f_mode & FMODE_READ)
                  s->dma_adc.subdivision = val;
            if (file->f_mode & FMODE_WRITE)
                  s->dma_dac.subdivision = val;
            return 0;

        case SOUND_PCM_READ_RATE:
            return put_user((file->f_mode & FMODE_READ) ? s->rateadc : s->ratedac, p);

        case SOUND_PCM_READ_CHANNELS:
            return put_user((s->fmt & ((file->f_mode & FMODE_READ) ? (SV_CFMT_STEREO << SV_CFMT_CSHIFT) 
                                 : (SV_CFMT_STEREO << SV_CFMT_ASHIFT))) ? 2 : 1, p);

        case SOUND_PCM_READ_BITS:
            return put_user((s->fmt & ((file->f_mode & FMODE_READ) ? (SV_CFMT_16BIT << SV_CFMT_CSHIFT) 
                                 : (SV_CFMT_16BIT << SV_CFMT_ASHIFT))) ? 16 : 8, p);

        case SOUND_PCM_WRITE_FILTER:
        case SNDCTL_DSP_SETSYNCRO:
        case SOUND_PCM_READ_FILTER:
                return -EINVAL;
            
      }
      return mixer_ioctl(s, cmd, arg);
}

static int sv_open(struct inode *inode, struct file *file)
{
      int minor = iminor(inode);
      DECLARE_WAITQUEUE(wait, current);
      unsigned char fmtm = ~0, fmts = 0;
      struct list_head *list;
      struct sv_state *s;

      for (list = devs.next; ; list = list->next) {
            if (list == &devs)
                  return -ENODEV;
            s = list_entry(list, struct sv_state, devs);
            if (!((s->dev_audio ^ minor) & ~0xf))
                  break;
      }
            VALIDATE_STATE(s);
      file->private_data = s;
      /* wait for device to become free */
      mutex_lock(&s->open_mutex);
      while (s->open_mode & file->f_mode) {
            if (file->f_flags & O_NONBLOCK) {
                  mutex_unlock(&s->open_mutex);
                  return -EBUSY;
            }
            add_wait_queue(&s->open_wait, &wait);
            __set_current_state(TASK_INTERRUPTIBLE);
            mutex_unlock(&s->open_mutex);
            schedule();
            remove_wait_queue(&s->open_wait, &wait);
            set_current_state(TASK_RUNNING);
            if (signal_pending(current))
                  return -ERESTARTSYS;
            mutex_lock(&s->open_mutex);
      }
      if (file->f_mode & FMODE_READ) {
            fmtm &= ~((SV_CFMT_STEREO | SV_CFMT_16BIT) << SV_CFMT_CSHIFT);
            if ((minor & 0xf) == SND_DEV_DSP16)
                  fmts |= SV_CFMT_16BIT << SV_CFMT_CSHIFT;
            s->dma_adc.ossfragshift = s->dma_adc.ossmaxfrags = s->dma_adc.subdivision = 0;
            s->dma_adc.enabled = 1;
            set_adc_rate(s, 8000);
      }
      if (file->f_mode & FMODE_WRITE) {
            fmtm &= ~((SV_CFMT_STEREO | SV_CFMT_16BIT) << SV_CFMT_ASHIFT);
            if ((minor & 0xf) == SND_DEV_DSP16)
                  fmts |= SV_CFMT_16BIT << SV_CFMT_ASHIFT;
            s->dma_dac.ossfragshift = s->dma_dac.ossmaxfrags = s->dma_dac.subdivision = 0;
            s->dma_dac.enabled = 1;
            set_dac_rate(s, 8000);
      }
      set_fmt(s, fmtm, fmts);
      s->open_mode |= file->f_mode & (FMODE_READ | FMODE_WRITE);
      mutex_unlock(&s->open_mutex);
      return nonseekable_open(inode, file);
}

static int sv_release(struct inode *inode, struct file *file)
{
      struct sv_state *s = (struct sv_state *)file->private_data;

      VALIDATE_STATE(s);
      lock_kernel();
      if (file->f_mode & FMODE_WRITE)
            drain_dac(s, file->f_flags & O_NONBLOCK);
      mutex_lock(&s->open_mutex);
      if (file->f_mode & FMODE_WRITE) {
            stop_dac(s);
            dealloc_dmabuf(s, &s->dma_dac);
      }
      if (file->f_mode & FMODE_READ) {
            stop_adc(s);
            dealloc_dmabuf(s, &s->dma_adc);
      }
      s->open_mode &= ~(file->f_mode & (FMODE_READ|FMODE_WRITE));
      wake_up(&s->open_wait);
      mutex_unlock(&s->open_mutex);
      unlock_kernel();
      return 0;
}

static /*const*/ struct file_operations sv_audio_fops = {
      .owner            = THIS_MODULE,
      .llseek           = no_llseek,
      .read       = sv_read,
      .write            = sv_write,
      .poll       = sv_poll,
      .ioctl            = sv_ioctl,
      .mmap       = sv_mmap,
      .open       = sv_open,
      .release    = sv_release,
};

/* --------------------------------------------------------------------- */

static ssize_t sv_midi_read(struct file *file, char __user *buffer, size_t count, loff_t *ppos)
{
      struct sv_state *s = (struct sv_state *)file->private_data;
      DECLARE_WAITQUEUE(wait, current);
      ssize_t ret;
      unsigned long flags;
      unsigned ptr;
      int cnt;

      VALIDATE_STATE(s);
      if (!access_ok(VERIFY_WRITE, buffer, count))
            return -EFAULT;
      if (count == 0)
            return 0;
      ret = 0;
      add_wait_queue(&s->midi.iwait, &wait);
      while (count > 0) {
            spin_lock_irqsave(&s->lock, flags);
            ptr = s->midi.ird;
            cnt = MIDIINBUF - ptr;
            if (s->midi.icnt < cnt)
                  cnt = s->midi.icnt;
            if (cnt <= 0)
                      __set_current_state(TASK_INTERRUPTIBLE);
            spin_unlock_irqrestore(&s->lock, flags);
            if (cnt > count)
                  cnt = count;
            if (cnt <= 0) {
                      if (file->f_flags & O_NONBLOCK) {
                              if (!ret)
                                      ret = -EAGAIN;
                              break;
                      }
                      schedule();
                      if (signal_pending(current)) {
                              if (!ret)
                                      ret = -ERESTARTSYS;
                              break;
                      }
                  continue;
            }
            if (copy_to_user(buffer, s->midi.ibuf + ptr, cnt)) {
                  if (!ret)
                        ret = -EFAULT;
                  break;
            }
            ptr = (ptr + cnt) % MIDIINBUF;
            spin_lock_irqsave(&s->lock, flags);
            s->midi.ird = ptr;
            s->midi.icnt -= cnt;
            spin_unlock_irqrestore(&s->lock, flags);
            count -= cnt;
            buffer += cnt;
            ret += cnt;
            break;
      }
      __set_current_state(TASK_RUNNING);
      remove_wait_queue(&s->midi.iwait, &wait);
      return ret;
}

static ssize_t sv_midi_write(struct file *file, const char __user *buffer, size_t count, loff_t *ppos)
{
      struct sv_state *s = (struct sv_state *)file->private_data;
      DECLARE_WAITQUEUE(wait, current);
      ssize_t ret;
      unsigned long flags;
      unsigned ptr;
      int cnt;

      VALIDATE_STATE(s);
      if (!access_ok(VERIFY_READ, buffer, count))
            return -EFAULT;
      if (count == 0)
            return 0;
      ret = 0;
        add_wait_queue(&s->midi.owait, &wait);
      while (count > 0) {
            spin_lock_irqsave(&s->lock, flags);
            ptr = s->midi.owr;
            cnt = MIDIOUTBUF - ptr;
            if (s->midi.ocnt + cnt > MIDIOUTBUF)
                  cnt = MIDIOUTBUF - s->midi.ocnt;
            if (cnt <= 0) {
                  __set_current_state(TASK_INTERRUPTIBLE);
                  sv_handle_midi(s);
            }
            spin_unlock_irqrestore(&s->lock, flags);
            if (cnt > count)
                  cnt = count;
            if (cnt <= 0) {
                  if (file->f_flags & O_NONBLOCK) {
                        if (!ret)
                              ret = -EAGAIN;
                        break;
                  }
                  schedule();
                  if (signal_pending(current)) {
                        if (!ret)
                              ret = -ERESTARTSYS;
                        break;
                  }
                  continue;
            }
            if (copy_from_user(s->midi.obuf + ptr, buffer, cnt)) {
                  if (!ret)
                        ret = -EFAULT;
                  break;
            }
            ptr = (ptr + cnt) % MIDIOUTBUF;
            spin_lock_irqsave(&s->lock, flags);
            s->midi.owr = ptr;
            s->midi.ocnt += cnt;
            spin_unlock_irqrestore(&s->lock, flags);
            count -= cnt;
            buffer += cnt;
            ret += cnt;
            spin_lock_irqsave(&s->lock, flags);
            sv_handle_midi(s);
            spin_unlock_irqrestore(&s->lock, flags);
      }
      __set_current_state(TASK_RUNNING);
      remove_wait_queue(&s->midi.owait, &wait);
      return ret;
}

/* No kernel lock - we have our own spinlock */
static unsigned int sv_midi_poll(struct file *file, struct poll_table_struct *wait)
{
      struct sv_state *s = (struct sv_state *)file->private_data;
      unsigned long flags;
      unsigned int mask = 0;

      VALIDATE_STATE(s);
      if (file->f_mode & FMODE_WRITE)
            poll_wait(file, &s->midi.owait, wait);
      if (file->f_mode & FMODE_READ)
            poll_wait(file, &s->midi.iwait, wait);
      spin_lock_irqsave(&s->lock, flags);
      if (file->f_mode & FMODE_READ) {
            if (s->midi.icnt > 0)
                  mask |= POLLIN | POLLRDNORM;
      }
      if (file->f_mode & FMODE_WRITE) {
            if (s->midi.ocnt < MIDIOUTBUF)
                  mask |= POLLOUT | POLLWRNORM;
      }
      spin_unlock_irqrestore(&s->lock, flags);
      return mask;
}

static int sv_midi_open(struct inode *inode, struct file *file)
{
      int minor = iminor(inode);
      DECLARE_WAITQUEUE(wait, current);
      unsigned long flags;
      struct list_head *list;
      struct sv_state *s;

      for (list = devs.next; ; list = list->next) {
            if (list == &devs)
                  return -ENODEV;
            s = list_entry(list, struct sv_state, devs);
            if (s->dev_midi == minor)
                  break;
      }
            VALIDATE_STATE(s);
      file->private_data = s;
      /* wait for device to become free */
      mutex_lock(&s->open_mutex);
      while (s->open_mode & (file->f_mode << FMODE_MIDI_SHIFT)) {
            if (file->f_flags & O_NONBLOCK) {
                  mutex_unlock(&s->open_mutex);
                  return -EBUSY;
            }
            add_wait_queue(&s->open_wait, &wait);
            __set_current_state(TASK_INTERRUPTIBLE);
            mutex_unlock(&s->open_mutex);
            schedule();
            remove_wait_queue(&s->open_wait, &wait);
            set_current_state(TASK_RUNNING);
            if (signal_pending(current))
                  return -ERESTARTSYS;
            mutex_lock(&s->open_mutex);
      }
      spin_lock_irqsave(&s->lock, flags);
      if (!(s->open_mode & (FMODE_MIDI_READ | FMODE_MIDI_WRITE))) {
            s->midi.ird = s->midi.iwr = s->midi.icnt = 0;
            s->midi.ord = s->midi.owr = s->midi.ocnt = 0;
            //outb(inb(s->ioenh + SV_CODEC_CONTROL) | SV_CCTRL_WAVETABLE, s->ioenh + SV_CODEC_CONTROL);
            outb(inb(s->ioenh + SV_CODEC_INTMASK) | SV_CINTMASK_MIDI, s->ioenh + SV_CODEC_INTMASK);
            wrindir(s, SV_CIUARTCONTROL, 5); /* output MIDI data to external and internal synth */
            wrindir(s, SV_CIWAVETABLESRC, 1); /* Wavetable in PC RAM */
            outb(0xff, s->iomidi+1); /* reset command */
            outb(0x3f, s->iomidi+1); /* uart command */
            if (!(inb(s->iomidi+1) & 0x80))
                  inb(s->iomidi);
            s->midi.ird = s->midi.iwr = s->midi.icnt = 0;
            init_timer(&s->midi.timer);
            s->midi.timer.expires = jiffies+1;
            s->midi.timer.data = (unsigned long)s;
            s->midi.timer.function = sv_midi_timer;
            add_timer(&s->midi.timer);
      }
      if (file->f_mode & FMODE_READ) {
            s->midi.ird = s->midi.iwr = s->midi.icnt = 0;
      }
      if (file->f_mode & FMODE_WRITE) {
            s->midi.ord = s->midi.owr = s->midi.ocnt = 0;
      }
      spin_unlock_irqrestore(&s->lock, flags);
      s->open_mode |= (file->f_mode << FMODE_MIDI_SHIFT) & (FMODE_MIDI_READ | FMODE_MIDI_WRITE);
      mutex_unlock(&s->open_mutex);
      return nonseekable_open(inode, file);
}

static int sv_midi_release(struct inode *inode, struct file *file)
{
      struct sv_state *s = (struct sv_state *)file->private_data;
      DECLARE_WAITQUEUE(wait, current);
      unsigned long flags;
      unsigned count, tmo;

      VALIDATE_STATE(s);

      lock_kernel();
      if (file->f_mode & FMODE_WRITE) {
            add_wait_queue(&s->midi.owait, &wait);
            for (;;) {
                  __set_current_state(TASK_INTERRUPTIBLE);
                  spin_lock_irqsave(&s->lock, flags);
                  count = s->midi.ocnt;
                  spin_unlock_irqrestore(&s->lock, flags);
                  if (count <= 0)
                        break;
                  if (signal_pending(current))
                        break;
                  if (file->f_flags & O_NONBLOCK) {
                        remove_wait_queue(&s->midi.owait, &wait);
                        set_current_state(TASK_RUNNING);
                        unlock_kernel();
                        return -EBUSY;
                  }
                  tmo = (count * HZ) / 3100;
                  if (!schedule_timeout(tmo ? : 1) && tmo)
                        printk(KERN_DEBUG "sv: midi timed out??\n");
            }
            remove_wait_queue(&s->midi.owait, &wait);
            set_current_state(TASK_RUNNING);
      }
      mutex_lock(&s->open_mutex);
      s->open_mode &= ~((file->f_mode << FMODE_MIDI_SHIFT) & (FMODE_MIDI_READ|FMODE_MIDI_WRITE));
      spin_lock_irqsave(&s->lock, flags);
      if (!(s->open_mode & (FMODE_MIDI_READ | FMODE_MIDI_WRITE))) {
            outb(inb(s->ioenh + SV_CODEC_INTMASK) & ~SV_CINTMASK_MIDI, s->ioenh + SV_CODEC_INTMASK);
            del_timer(&s->midi.timer);          
      }
      spin_unlock_irqrestore(&s->lock, flags);
      wake_up(&s->open_wait);
      mutex_unlock(&s->open_mutex);
      unlock_kernel();
      return 0;
}

static /*const*/ struct file_operations sv_midi_fops = {
      .owner            = THIS_MODULE,
      .llseek           = no_llseek,
      .read       = sv_midi_read,
      .write            = sv_midi_write,
      .poll       = sv_midi_poll,
      .open       = sv_midi_open,
      .release    = sv_midi_release,
};

/* --------------------------------------------------------------------- */

static int sv_dmfm_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
{
      static const unsigned char op_offset[18] = {
            0x00, 0x01, 0x02, 0x03, 0x04, 0x05,
            0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D,
            0x10, 0x11, 0x12, 0x13, 0x14, 0x15
      };
      struct sv_state *s = (struct sv_state *)file->private_data;
      struct dm_fm_voice v;
      struct dm_fm_note n;
      struct dm_fm_params p;
      unsigned int io;
      unsigned int regb;

      switch (cmd) {          
      case FM_IOCTL_RESET:
            for (regb = 0xb0; regb < 0xb9; regb++) {
                  outb(regb, s->iosynth);
                  outb(0, s->iosynth+1);
                  outb(regb, s->iosynth+2);
                  outb(0, s->iosynth+3);
            }
            return 0;

      case FM_IOCTL_PLAY_NOTE:
            if (copy_from_user(&n, (void __user *)arg, sizeof(n)))
                  return -EFAULT;
            if (n.voice >= 18)
                  return -EINVAL;
            if (n.voice >= 9) {
                  regb = n.voice - 9;
                  io = s->iosynth+2;
            } else {
                  regb = n.voice;
                  io = s->iosynth;
            }
            outb(0xa0 + regb, io);
            outb(n.fnum & 0xff, io+1);
            outb(0xb0 + regb, io);
            outb(((n.fnum >> 8) & 3) | ((n.octave & 7) << 2) | ((n.key_on & 1) << 5), io+1);
            return 0;

      case FM_IOCTL_SET_VOICE:
            if (copy_from_user(&v, (void __user *)arg, sizeof(v)))
                  return -EFAULT;
            if (v.voice >= 18)
                  return -EINVAL;
            regb = op_offset[v.voice];
            io = s->iosynth + ((v.op & 1) << 1);
            outb(0x20 + regb, io);
            outb(((v.am & 1) << 7) | ((v.vibrato & 1) << 6) | ((v.do_sustain & 1) << 5) | 
                 ((v.kbd_scale & 1) << 4) | (v.harmonic & 0xf), io+1);
            outb(0x40 + regb, io);
            outb(((v.scale_level & 0x3) << 6) | (v.volume & 0x3f), io+1);
            outb(0x60 + regb, io);
            outb(((v.attack & 0xf) << 4) | (v.decay & 0xf), io+1);
            outb(0x80 + regb, io);
            outb(((v.sustain & 0xf) << 4) | (v.release & 0xf), io+1);
            outb(0xe0 + regb, io);
            outb(v.waveform & 0x7, io+1);
            if (n.voice >= 9) {
                  regb = n.voice - 9;
                  io = s->iosynth+2;
            } else {
                  regb = n.voice;
                  io = s->iosynth;
            }
            outb(0xc0 + regb, io);
            outb(((v.right & 1) << 5) | ((v.left & 1) << 4) | ((v.feedback & 7) << 1) |
                 (v.connection & 1), io+1);
            return 0;
            
      case FM_IOCTL_SET_PARAMS:
            if (copy_from_user(&p, (void *__user )arg, sizeof(p)))
                  return -EFAULT;
            outb(0x08, s->iosynth);
            outb((p.kbd_split & 1) << 6, s->iosynth+1);
            outb(0xbd, s->iosynth);
            outb(((p.am_depth & 1) << 7) | ((p.vib_depth & 1) << 6) | ((p.rhythm & 1) << 5) | ((p.bass & 1) << 4) |
                 ((p.snare & 1) << 3) | ((p.tomtom & 1) << 2) | ((p.cymbal & 1) << 1) | (p.hihat & 1), s->iosynth+1);
            return 0;

      case FM_IOCTL_SET_OPL:
            outb(4, s->iosynth+2);
            outb(arg, s->iosynth+3);
            return 0;

      case FM_IOCTL_SET_MODE:
            outb(5, s->iosynth+2);
            outb(arg & 1, s->iosynth+3);
            return 0;

      default:
            return -EINVAL;
      }
}

static int sv_dmfm_open(struct inode *inode, struct file *file)
{
      int minor = iminor(inode);
      DECLARE_WAITQUEUE(wait, current);
      struct list_head *list;
      struct sv_state *s;

      for (list = devs.next; ; list = list->next) {
            if (list == &devs)
                  return -ENODEV;
            s = list_entry(list, struct sv_state, devs);
            if (s->dev_dmfm == minor)
                  break;
      }
            VALIDATE_STATE(s);
      file->private_data = s;
      /* wait for device to become free */
      mutex_lock(&s->open_mutex);
      while (s->open_mode & FMODE_DMFM) {
            if (file->f_flags & O_NONBLOCK) {
                  mutex_unlock(&s->open_mutex);
                  return -EBUSY;
            }
            add_wait_queue(&s->open_wait, &wait);
            __set_current_state(TASK_INTERRUPTIBLE);
            mutex_unlock(&s->open_mutex);
            schedule();
            remove_wait_queue(&s->open_wait, &wait);
            set_current_state(TASK_RUNNING);
            if (signal_pending(current))
                  return -ERESTARTSYS;
            mutex_lock(&s->open_mutex);
      }
      /* init the stuff */
      outb(1, s->iosynth);
      outb(0x20, s->iosynth+1); /* enable waveforms */
      outb(4, s->iosynth+2);
      outb(0, s->iosynth+3);  /* no 4op enabled */
      outb(5, s->iosynth+2);
      outb(1, s->iosynth+3);  /* enable OPL3 */
      s->open_mode |= FMODE_DMFM;
      mutex_unlock(&s->open_mutex);
      return nonseekable_open(inode, file);
}

static int sv_dmfm_release(struct inode *inode, struct file *file)
{
      struct sv_state *s = (struct sv_state *)file->private_data;
      unsigned int regb;

      VALIDATE_STATE(s);
      lock_kernel();
      mutex_lock(&s->open_mutex);
      s->open_mode &= ~FMODE_DMFM;
      for (regb = 0xb0; regb < 0xb9; regb++) {
            outb(regb, s->iosynth);
            outb(0, s->iosynth+1);
            outb(regb, s->iosynth+2);
            outb(0, s->iosynth+3);
      }
      wake_up(&s->open_wait);
      mutex_unlock(&s->open_mutex);
      unlock_kernel();
      return 0;
}

static /*const*/ struct file_operations sv_dmfm_fops = {
      .owner            = THIS_MODULE,
      .llseek           = no_llseek,
      .ioctl            = sv_dmfm_ioctl,
      .open       = sv_dmfm_open,
      .release    = sv_dmfm_release,
};

/* --------------------------------------------------------------------- */

/* maximum number of devices; only used for command line params */
#define NR_DEVICE 5

static int reverb[NR_DEVICE];

#if 0
static int wavetable[NR_DEVICE];
#endif

static unsigned int devindex;

module_param_array(reverb, bool, NULL, 0);
MODULE_PARM_DESC(reverb, "if 1 enables the reverb circuitry. NOTE: your card must have the reverb RAM");
#if 0
MODULE_PARM(wavetable, "1-" __MODULE_STRING(NR_DEVICE) "i");
MODULE_PARM_DESC(wavetable, "if 1 the wavetable synth is enabled");
#endif

MODULE_AUTHOR("Thomas M. Sailer, sailer@ife.ee.ethz.ch, hb9jnx@hb9w.che.eu");
MODULE_DESCRIPTION("S3 SonicVibes Driver");
MODULE_LICENSE("GPL");


/* --------------------------------------------------------------------- */

static struct initvol {
      int mixch;
      int vol;
} initvol[] __devinitdata = {
      { SOUND_MIXER_WRITE_RECLEV, 0x4040 },
      { SOUND_MIXER_WRITE_LINE1, 0x4040 },
      { SOUND_MIXER_WRITE_CD, 0x4040 },
      { SOUND_MIXER_WRITE_LINE, 0x4040 },
      { SOUND_MIXER_WRITE_MIC, 0x4040 },
      { SOUND_MIXER_WRITE_SYNTH, 0x4040 },
      { SOUND_MIXER_WRITE_LINE2, 0x4040 },
      { SOUND_MIXER_WRITE_VOLUME, 0x4040 },
      { SOUND_MIXER_WRITE_PCM, 0x4040 }
};

#define RSRCISIOREGION(dev,num) (pci_resource_start((dev), (num)) != 0 && \
                         (pci_resource_flags((dev), (num)) & IORESOURCE_IO))

#ifdef SUPPORT_JOYSTICK
static int __devinit sv_register_gameport(struct sv_state *s, int io_port)
{
      struct gameport *gp;

      if (!request_region(io_port, SV_EXTENT_GAME, "S3 SonicVibes Gameport")) {
            printk(KERN_ERR "sv: gameport io ports are in use\n");
            return -EBUSY;
      }

      s->gameport = gp = gameport_allocate_port();
      if (!gp) {
            printk(KERN_ERR "sv: can not allocate memory for gameport\n");
            release_region(io_port, SV_EXTENT_GAME);
            return -ENOMEM;
      }

      gameport_set_name(gp, "S3 SonicVibes Gameport");
      gameport_set_phys(gp, "isa%04x/gameport0", io_port);
      gp->dev.parent = &s->dev->dev;
      gp->io = io_port;

      gameport_register_port(gp);

      return 0;
}

static inline void sv_unregister_gameport(struct sv_state *s)
{
      if (s->gameport) {
            int gpio = s->gameport->io;
            gameport_unregister_port(s->gameport);
            release_region(gpio, SV_EXTENT_GAME);
      }
}
#else
static inline int sv_register_gameport(struct sv_state *s, int io_port) { return -ENOSYS; }
static inline void sv_unregister_gameport(struct sv_state *s) { }
#endif /* SUPPORT_JOYSTICK */

static int __devinit sv_probe(struct pci_dev *pcidev, const struct pci_device_id *pciid)
{
      static char __devinitdata sv_ddma_name[] = "S3 Inc. SonicVibes DDMA Controller";
            struct sv_state *s;
      mm_segment_t fs;
      int i, val, ret;
      int gpio;
      char *ddmaname;
      unsigned ddmanamelen;

      if ((ret=pci_enable_device(pcidev)))
            return ret;

      if (!RSRCISIOREGION(pcidev, RESOURCE_SB) ||
          !RSRCISIOREGION(pcidev, RESOURCE_ENH) ||
          !RSRCISIOREGION(pcidev, RESOURCE_SYNTH) ||
          !RSRCISIOREGION(pcidev, RESOURCE_MIDI) ||
          !RSRCISIOREGION(pcidev, RESOURCE_GAME))
            return -ENODEV;
      if (pcidev->irq == 0)
            return -ENODEV;
      if (pci_set_dma_mask(pcidev, DMA_24BIT_MASK)) {
            printk(KERN_WARNING "sonicvibes: architecture does not support 24bit PCI busmaster DMA\n");
            return -ENODEV;
      }
      /* try to allocate a DDMA resource if not already available */
      if (!RSRCISIOREGION(pcidev, RESOURCE_DDMA)) {
            pcidev->resource[RESOURCE_DDMA].start = 0;
            pcidev->resource[RESOURCE_DDMA].end = 2*SV_EXTENT_DMA-1;
            pcidev->resource[RESOURCE_DDMA].flags = PCI_BASE_ADDRESS_SPACE_IO | IORESOURCE_IO;
            ddmanamelen = strlen(sv_ddma_name)+1;
            if (!(ddmaname = kmalloc(ddmanamelen, GFP_KERNEL)))
                  return -1;
            memcpy(ddmaname, sv_ddma_name, ddmanamelen);
            pcidev->resource[RESOURCE_DDMA].name = ddmaname;
            if (pci_assign_resource(pcidev, RESOURCE_DDMA)) {
                  pcidev->resource[RESOURCE_DDMA].name = NULL;
                  kfree(ddmaname);
                  printk(KERN_ERR "sv: cannot allocate DDMA controller io ports\n");
                  return -EBUSY;
            }
      }
      if (!(s = kmalloc(sizeof(struct sv_state), GFP_KERNEL))) {
            printk(KERN_WARNING "sv: out of memory\n");
            return -ENOMEM;
      }
      memset(s, 0, sizeof(struct sv_state));
      init_waitqueue_head(&s->dma_adc.wait);
      init_waitqueue_head(&s->dma_dac.wait);
      init_waitqueue_head(&s->open_wait);
      init_waitqueue_head(&s->midi.iwait);
      init_waitqueue_head(&s->midi.owait);
      mutex_init(&s->open_mutex);
      spin_lock_init(&s->lock);
      s->magic = SV_MAGIC;
      s->dev = pcidev;
      s->iosb = pci_resource_start(pcidev, RESOURCE_SB);
      s->ioenh = pci_resource_start(pcidev, RESOURCE_ENH);
      s->iosynth = pci_resource_start(pcidev, RESOURCE_SYNTH);
      s->iomidi = pci_resource_start(pcidev, RESOURCE_MIDI);
      s->iodmaa = pci_resource_start(pcidev, RESOURCE_DDMA);
      s->iodmac = pci_resource_start(pcidev, RESOURCE_DDMA) + SV_EXTENT_DMA;
      gpio = pci_resource_start(pcidev, RESOURCE_GAME);
      pci_write_config_dword(pcidev, 0x40, s->iodmaa | 9);  /* enable and use extended mode */
      pci_write_config_dword(pcidev, 0x48, s->iodmac | 9);  /* enable */
      printk(KERN_DEBUG "sv: io ports: %#lx %#lx %#lx %#lx %#x %#x %#x\n",
             s->iosb, s->ioenh, s->iosynth, s->iomidi, gpio, s->iodmaa, s->iodmac);
      s->irq = pcidev->irq;
      
      /* hack */
      pci_write_config_dword(pcidev, 0x60, wavetable_mem >> 12);  /* wavetable base address */

      ret = -EBUSY;
      if (!request_region(s->ioenh, SV_EXTENT_ENH, "S3 SonicVibes PCM")) {
            printk(KERN_ERR "sv: io ports %#lx-%#lx in use\n", s->ioenh, s->ioenh+SV_EXTENT_ENH-1);
            goto err_region5;
      }
      if (!request_region(s->iodmaa, SV_EXTENT_DMA, "S3 SonicVibes DMAA")) {
            printk(KERN_ERR "sv: io ports %#x-%#x in use\n", s->iodmaa, s->iodmaa+SV_EXTENT_DMA-1);
            goto err_region4;
      }
      if (!request_region(s->iodmac, SV_EXTENT_DMA, "S3 SonicVibes DMAC")) {
            printk(KERN_ERR "sv: io ports %#x-%#x in use\n", s->iodmac, s->iodmac+SV_EXTENT_DMA-1);
            goto err_region3;
      }
      if (!request_region(s->iomidi, SV_EXTENT_MIDI, "S3 SonicVibes Midi")) {
            printk(KERN_ERR "sv: io ports %#lx-%#lx in use\n", s->iomidi, s->iomidi+SV_EXTENT_MIDI-1);
            goto err_region2;
      }
      if (!request_region(s->iosynth, SV_EXTENT_SYNTH, "S3 SonicVibes Synth")) {
            printk(KERN_ERR "sv: io ports %#lx-%#lx in use\n", s->iosynth, s->iosynth+SV_EXTENT_SYNTH-1);
            goto err_region1;
      }

      /* initialize codec registers */
      outb(0x80, s->ioenh + SV_CODEC_CONTROL); /* assert reset */
      udelay(50);
      outb(0x00, s->ioenh + SV_CODEC_CONTROL); /* deassert reset */
      udelay(50);
      outb(SV_CCTRL_INTADRIVE | SV_CCTRL_ENHANCED /*| SV_CCTRL_WAVETABLE */
           | (reverb[devindex] ? SV_CCTRL_REVERB : 0), s->ioenh + SV_CODEC_CONTROL);
      inb(s->ioenh + SV_CODEC_STATUS); /* clear ints */
      wrindir(s, SV_CIDRIVECONTROL, 0);  /* drive current 16mA */
      wrindir(s, SV_CIENABLE, s->enable = 0);  /* disable DMAA and DMAC */
      outb(~(SV_CINTMASK_DMAA | SV_CINTMASK_DMAC), s->ioenh + SV_CODEC_INTMASK);
      /* outb(0xff, s->iodmaa + SV_DMA_RESET); */
      /* outb(0xff, s->iodmac + SV_DMA_RESET); */
      inb(s->ioenh + SV_CODEC_STATUS); /* ack interrupts */
      wrindir(s, SV_CIADCCLKSOURCE, 0); /* use pll as ADC clock source */
      wrindir(s, SV_CIANALOGPWRDOWN, 0); /* power up the analog parts of the device */
      wrindir(s, SV_CIDIGITALPWRDOWN, 0); /* power up the digital parts of the device */
      setpll(s, SV_CIADCPLLM, 8000);
      wrindir(s, SV_CISRSSPACE, 0x80); /* SRS off */
      wrindir(s, SV_CIPCMSR0, (8000 * 65536 / FULLRATE) & 0xff);
      wrindir(s, SV_CIPCMSR1, ((8000 * 65536 / FULLRATE) >> 8) & 0xff);
      wrindir(s, SV_CIADCOUTPUT, 0);
      /* request irq */
      if ((ret=request_irq(s->irq,sv_interrupt,IRQF_SHARED,"S3 SonicVibes",s))) {
            printk(KERN_ERR "sv: irq %u in use\n", s->irq);
            goto err_irq;
      }
      printk(KERN_INFO "sv: found adapter at io %#lx irq %u dmaa %#06x dmac %#06x revision %u\n",
             s->ioenh, s->irq, s->iodmaa, s->iodmac, rdindir(s, SV_CIREVISION));
      /* register devices */
      if ((s->dev_audio = register_sound_dsp(&sv_audio_fops, -1)) < 0) {
            ret = s->dev_audio;
            goto err_dev1;
      }
      if ((s->dev_mixer = register_sound_mixer(&sv_mixer_fops, -1)) < 0) {
            ret = s->dev_mixer;
            goto err_dev2;
      }
      if ((s->dev_midi = register_sound_midi(&sv_midi_fops, -1)) < 0) {
            ret = s->dev_midi;
            goto err_dev3;
      }
      if ((s->dev_dmfm = register_sound_special(&sv_dmfm_fops, 15 /* ?? */)) < 0) {
            ret = s->dev_dmfm;
            goto err_dev4;
      }
      pci_set_master(pcidev);  /* enable bus mastering */
      /* initialize the chips */
      fs = get_fs();
      set_fs(KERNEL_DS);
      val = SOUND_MASK_LINE|SOUND_MASK_SYNTH;
      mixer_ioctl(s, SOUND_MIXER_WRITE_RECSRC, (unsigned long)&val);
      for (i = 0; i < sizeof(initvol)/sizeof(initvol[0]); i++) {
            val = initvol[i].vol;
            mixer_ioctl(s, initvol[i].mixch, (unsigned long)&val);
      }
      set_fs(fs);
      /* register gameport */
      sv_register_gameport(s, gpio);
      /* store it in the driver field */
      pci_set_drvdata(pcidev, s);
      /* put it into driver list */
      list_add_tail(&s->devs, &devs);
      /* increment devindex */
      if (devindex < NR_DEVICE-1)
            devindex++;
      return 0;

 err_dev4:
      unregister_sound_midi(s->dev_midi);
 err_dev3:
      unregister_sound_mixer(s->dev_mixer);
 err_dev2:
      unregister_sound_dsp(s->dev_audio);
 err_dev1:
      printk(KERN_ERR "sv: cannot register misc device\n");
      free_irq(s->irq, s);
 err_irq:
      release_region(s->iosynth, SV_EXTENT_SYNTH);
 err_region1:
      release_region(s->iomidi, SV_EXTENT_MIDI);
 err_region2:
      release_region(s->iodmac, SV_EXTENT_DMA);
 err_region3:
      release_region(s->iodmaa, SV_EXTENT_DMA);
 err_region4:
      release_region(s->ioenh, SV_EXTENT_ENH);
 err_region5:
      kfree(s);
      return ret;
}

static void __devexit sv_remove(struct pci_dev *dev)
{
      struct sv_state *s = pci_get_drvdata(dev);

      if (!s)
            return;
      list_del(&s->devs);
      outb(~0, s->ioenh + SV_CODEC_INTMASK);  /* disable ints */
      synchronize_irq(s->irq);
      inb(s->ioenh + SV_CODEC_STATUS); /* ack interrupts */
      wrindir(s, SV_CIENABLE, 0);     /* disable DMAA and DMAC */
      /*outb(0, s->iodmaa + SV_DMA_RESET);*/
      /*outb(0, s->iodmac + SV_DMA_RESET);*/
      free_irq(s->irq, s);
      sv_unregister_gameport(s);
      release_region(s->iodmac, SV_EXTENT_DMA);
      release_region(s->iodmaa, SV_EXTENT_DMA);
      release_region(s->ioenh, SV_EXTENT_ENH);
      release_region(s->iomidi, SV_EXTENT_MIDI);
      release_region(s->iosynth, SV_EXTENT_SYNTH);
      unregister_sound_dsp(s->dev_audio);
      unregister_sound_mixer(s->dev_mixer);
      unregister_sound_midi(s->dev_midi);
      unregister_sound_special(s->dev_dmfm);
      kfree(s);
      pci_set_drvdata(dev, NULL);
}

static struct pci_device_id id_table[] = {
       { PCI_VENDOR_ID_S3, PCI_DEVICE_ID_S3_SONICVIBES, PCI_ANY_ID, PCI_ANY_ID, 0, 0 },
       { 0, }
};

MODULE_DEVICE_TABLE(pci, id_table);

static struct pci_driver sv_driver = {
       .name            = "sonicvibes",
       .id_table  = id_table,
       .probe           = sv_probe,
       .remove          = __devexit_p(sv_remove),
};
 
static int __init init_sonicvibes(void)
{
      printk(KERN_INFO "sv: version v0.31 time " __TIME__ " " __DATE__ "\n");
#if 0
      if (!(wavetable_mem = __get_free_pages(GFP_KERNEL, 20-PAGE_SHIFT)))
            printk(KERN_INFO "sv: cannot allocate 1MB of contiguous nonpageable memory for wavetable data\n");
#endif
      return pci_register_driver(&sv_driver);
}

static void __exit cleanup_sonicvibes(void)
{
      printk(KERN_INFO "sv: unloading\n");
      pci_unregister_driver(&sv_driver);
      if (wavetable_mem)
            free_pages(wavetable_mem, 20-PAGE_SHIFT);
}

module_init(init_sonicvibes);
module_exit(cleanup_sonicvibes);

/* --------------------------------------------------------------------- */

#ifndef MODULE

/* format is: sonicvibes=[reverb] sonicvibesdmaio=dmaioaddr */

static int __init sonicvibes_setup(char *str)
{
      static unsigned __initdata nr_dev = 0;

      if (nr_dev >= NR_DEVICE)
            return 0;
#if 0
      if (get_option(&str, &reverb[nr_dev]) == 2)
            (void)get_option(&str, &wavetable[nr_dev]);
#else
      (void)get_option(&str, &reverb[nr_dev]);
#endif

      nr_dev++;
      return 1;
}

__setup("sonicvibes=", sonicvibes_setup);

#endif /* MODULE */

Generated by  Doxygen 1.6.0   Back to index