Logo Search packages:      
Sourcecode: linux-2.6 version File versions  Download package

r8169.c

/*
=========================================================================
 r8169.c: A RealTek RTL-8169 Gigabit Ethernet driver for Linux kernel 2.4.x.
 --------------------------------------------------------------------

 History:
 Feb  4 2002      - created initially by ShuChen <shuchen@realtek.com.tw>.
 May 20 2002      - Add link status force-mode and TBI mode support.
        2004      - Massive updates. See kernel SCM system for details.
=========================================================================
  1. [DEPRECATED: use ethtool instead] The media can be forced in 5 modes.
       Command: 'insmod r8169 media = SET_MEDIA'
       Ex:    'insmod r8169 media = 0x04' will force PHY to operate in 100Mpbs Half-duplex.
      
       SET_MEDIA can be:
            _10_Half    = 0x01
            _10_Full    = 0x02
            _100_Half   = 0x04
            _100_Full   = 0x08
            _1000_Full  = 0x10
  
  2. Support TBI mode.
=========================================================================
VERSION 1.1 <2002/10/4>

      The bit4:0 of MII register 4 is called "selector field", and have to be
      00001b to indicate support of IEEE std 802.3 during NWay process of
      exchanging Link Code Word (FLP). 

VERSION 1.2 <2002/11/30>

      - Large style cleanup
      - Use ether_crc in stock kernel (linux/crc32.h)
      - Copy mc_filter setup code from 8139cp
        (includes an optimization, and avoids set_bit use)

VERSION 1.6LK     <2004/04/14>

      - Merge of Realtek's version 1.6
      - Conversion to DMA API
      - Suspend/resume
      - Endianness
      - Misc Rx/Tx bugs

VERSION 2.2LK     <2005/01/25>

      - RX csum, TX csum/SG, TSO
      - VLAN
      - baby (< 7200) Jumbo frames support
      - Merge of Realtek's version 2.2 (new phy)
 */

#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/ethtool.h>
#include <linux/mii.h>
#include <linux/if_vlan.h>
#include <linux/crc32.h>
#include <linux/in.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/init.h>
#include <linux/dma-mapping.h>

#include <asm/io.h>
#include <asm/irq.h>

#ifdef CONFIG_R8169_NAPI
#define NAPI_SUFFIX     "-NAPI"
#else
#define NAPI_SUFFIX     ""
#endif

#define RTL8169_VERSION "2.2LK" NAPI_SUFFIX
#define MODULENAME "r8169"
#define PFX MODULENAME ": "

#ifdef RTL8169_DEBUG
#define assert(expr) \
        if(!(expr)) {                           \
              printk( "Assertion failed! %s,%s,%s,line=%d\n",     \
            #expr,__FILE__,__FUNCTION__,__LINE__);          \
        }
#define dprintk(fmt, args...) do { printk(PFX fmt, ## args); } while (0)
#else
#define assert(expr) do {} while (0)
#define dprintk(fmt, args...) do {} while (0)
#endif /* RTL8169_DEBUG */

#define R8169_MSG_DEFAULT \
      (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN)

#define TX_BUFFS_AVAIL(tp) \
      (tp->dirty_tx + NUM_TX_DESC - tp->cur_tx - 1)

#ifdef CONFIG_R8169_NAPI
#define rtl8169_rx_skb              netif_receive_skb
#define rtl8169_rx_hwaccel_skb            vlan_hwaccel_receive_skb
#define rtl8169_rx_quota(count, quota)    min(count, quota)
#else
#define rtl8169_rx_skb              netif_rx
#define rtl8169_rx_hwaccel_skb            vlan_hwaccel_rx
#define rtl8169_rx_quota(count, quota)    count
#endif

/* media options */
#define MAX_UNITS 8
static int media[MAX_UNITS] = { -1, -1, -1, -1, -1, -1, -1, -1 };
static int num_media = 0;

/* Maximum events (Rx packets, etc.) to handle at each interrupt. */
static const int max_interrupt_work = 20;

/* Maximum number of multicast addresses to filter (vs. Rx-all-multicast).
   The RTL chips use a 64 element hash table based on the Ethernet CRC. */
static const int multicast_filter_limit = 32;

/* MAC address length */
#define MAC_ADDR_LEN    6

#define RX_FIFO_THRESH  7     /* 7 means NO threshold, Rx buffer level before first PCI xfer. */
#define RX_DMA_BURST    6     /* Maximum PCI burst, '6' is 1024 */
#define TX_DMA_BURST    6     /* Maximum PCI burst, '6' is 1024 */
#define EarlyTxThld     0x3F  /* 0x3F means NO early transmit */
#define RxPacketMaxSize 0x3FE8      /* 16K - 1 - ETH_HLEN - VLAN - CRC... */
#define SafeMtu         0x1c20      /* ... actually life sucks beyond ~7k */
#define InterFrameGap   0x03  /* 3 means InterFrameGap = the shortest one */

#define R8169_REGS_SIZE       256
#define R8169_NAPI_WEIGHT     64
#define NUM_TX_DESC     64    /* Number of Tx descriptor registers */
#define NUM_RX_DESC     256   /* Number of Rx descriptor registers */
#define RX_BUF_SIZE     1536  /* Rx Buffer size */
#define R8169_TX_RING_BYTES   (NUM_TX_DESC * sizeof(struct TxDesc))
#define R8169_RX_RING_BYTES   (NUM_RX_DESC * sizeof(struct RxDesc))

#define RTL8169_TX_TIMEOUT    (6*HZ)
#define RTL8169_PHY_TIMEOUT   (10*HZ)

/* write/read MMIO register */
#define RTL_W8(reg, val8)     writeb ((val8), ioaddr + (reg))
#define RTL_W16(reg, val16)   writew ((val16), ioaddr + (reg))
#define RTL_W32(reg, val32)   writel ((val32), ioaddr + (reg))
#define RTL_R8(reg)           readb (ioaddr + (reg))
#define RTL_R16(reg)          readw (ioaddr + (reg))
#define RTL_R32(reg)          ((unsigned long) readl (ioaddr + (reg)))

enum mac_version {
      RTL_GIGA_MAC_VER_B = 0x00,
      /* RTL_GIGA_MAC_VER_C = 0x03, */
      RTL_GIGA_MAC_VER_D = 0x01,
      RTL_GIGA_MAC_VER_E = 0x02,
      RTL_GIGA_MAC_VER_X = 0x04     /* Greater than RTL_GIGA_MAC_VER_E */
};

enum phy_version {
      RTL_GIGA_PHY_VER_C = 0x03, /* PHY Reg 0x03 bit0-3 == 0x0000 */
      RTL_GIGA_PHY_VER_D = 0x04, /* PHY Reg 0x03 bit0-3 == 0x0000 */
      RTL_GIGA_PHY_VER_E = 0x05, /* PHY Reg 0x03 bit0-3 == 0x0000 */
      RTL_GIGA_PHY_VER_F = 0x06, /* PHY Reg 0x03 bit0-3 == 0x0001 */
      RTL_GIGA_PHY_VER_G = 0x07, /* PHY Reg 0x03 bit0-3 == 0x0002 */
      RTL_GIGA_PHY_VER_H = 0x08, /* PHY Reg 0x03 bit0-3 == 0x0003 */
};


#define _R(NAME,MAC,MASK) \
      { .name = NAME, .mac_version = MAC, .RxConfigMask = MASK }

static const struct {
      const char *name;
      u8 mac_version;
      u32 RxConfigMask; /* Clears the bits supported by this chip */
} rtl_chip_info[] = {
      _R("RTL8169",           RTL_GIGA_MAC_VER_B, 0xff7e1880),
      _R("RTL8169s/8110s",    RTL_GIGA_MAC_VER_D, 0xff7e1880),
      _R("RTL8169s/8110s",    RTL_GIGA_MAC_VER_E, 0xff7e1880),
      _R("RTL8169s/8110s",    RTL_GIGA_MAC_VER_X, 0xff7e1880),
};
#undef _R

static struct pci_device_id rtl8169_pci_tbl[] = {
      { PCI_DEVICE(PCI_VENDOR_ID_REALTEK, 0x8169), },
      { PCI_DEVICE(PCI_VENDOR_ID_REALTEK, 0x8129), },
      { PCI_DEVICE(PCI_VENDOR_ID_DLINK,   0x4300), },
      { PCI_DEVICE(0x16ec,                0x0116), },
      { PCI_VENDOR_ID_LINKSYS,            0x1032, PCI_ANY_ID, 0x0024, },
      {0,},
};

MODULE_DEVICE_TABLE(pci, rtl8169_pci_tbl);

static int rx_copybreak = 200;
static int use_dac;
static struct {
      u32 msg_enable;
} debug = { -1 };

enum RTL8169_registers {
      MAC0 = 0,         /* Ethernet hardware address. */
      MAR0 = 8,         /* Multicast filter. */
      CounterAddrLow = 0x10,
      CounterAddrHigh = 0x14,
      TxDescStartAddrLow = 0x20,
      TxDescStartAddrHigh = 0x24,
      TxHDescStartAddrLow = 0x28,
      TxHDescStartAddrHigh = 0x2c,
      FLASH = 0x30,
      ERSR = 0x36,
      ChipCmd = 0x37,
      TxPoll = 0x38,
      IntrMask = 0x3C,
      IntrStatus = 0x3E,
      TxConfig = 0x40,
      RxConfig = 0x44,
      RxMissed = 0x4C,
      Cfg9346 = 0x50,
      Config0 = 0x51,
      Config1 = 0x52,
      Config2 = 0x53,
      Config3 = 0x54,
      Config4 = 0x55,
      Config5 = 0x56,
      MultiIntr = 0x5C,
      PHYAR = 0x60,
      TBICSR = 0x64,
      TBI_ANAR = 0x68,
      TBI_LPAR = 0x6A,
      PHYstatus = 0x6C,
      RxMaxSize = 0xDA,
      CPlusCmd = 0xE0,
      IntrMitigate = 0xE2,
      RxDescAddrLow = 0xE4,
      RxDescAddrHigh = 0xE8,
      EarlyTxThres = 0xEC,
      FuncEvent = 0xF0,
      FuncEventMask = 0xF4,
      FuncPresetState = 0xF8,
      FuncForceEvent = 0xFC,
};

enum RTL8169_register_content {
      /* InterruptStatusBits */
      SYSErr = 0x8000,
      PCSTimeout = 0x4000,
      SWInt = 0x0100,
      TxDescUnavail = 0x80,
      RxFIFOOver = 0x40,
      LinkChg = 0x20,
      RxOverflow = 0x10,
      TxErr = 0x08,
      TxOK = 0x04,
      RxErr = 0x02,
      RxOK = 0x01,

      /* RxStatusDesc */
      RxRES = 0x00200000,
      RxCRC = 0x00080000,
      RxRUNT = 0x00100000,
      RxRWT = 0x00400000,

      /* ChipCmdBits */
      CmdReset = 0x10,
      CmdRxEnb = 0x08,
      CmdTxEnb = 0x04,
      RxBufEmpty = 0x01,

      /* Cfg9346Bits */
      Cfg9346_Lock = 0x00,
      Cfg9346_Unlock = 0xC0,

      /* rx_mode_bits */
      AcceptErr = 0x20,
      AcceptRunt = 0x10,
      AcceptBroadcast = 0x08,
      AcceptMulticast = 0x04,
      AcceptMyPhys = 0x02,
      AcceptAllPhys = 0x01,

      /* RxConfigBits */
      RxCfgFIFOShift = 13,
      RxCfgDMAShift = 8,

      /* TxConfigBits */
      TxInterFrameGapShift = 24,
      TxDMAShift = 8,   /* DMA burst value (0-7) is shift this many bits */

      /* Config1 register p.24 */
      PMEnable    = (1 << 0), /* Power Management Enable */

      /* Config3 register p.25 */
      MagicPacket = (1 << 5), /* Wake up when receives a Magic Packet */
      LinkUp            = (1 << 4), /* Wake up when the cable connection is re-established */

      /* Config5 register p.27 */
      BWF         = (1 << 6), /* Accept Broadcast wakeup frame */
      MWF         = (1 << 5), /* Accept Multicast wakeup frame */
      UWF         = (1 << 4), /* Accept Unicast wakeup frame */
      LanWake           = (1 << 1), /* LanWake enable/disable */
      PMEStatus   = (1 << 0), /* PME status can be reset by PCI RST# */

      /* TBICSR p.28 */
      TBIReset    = 0x80000000,
      TBILoopback = 0x40000000,
      TBINwEnable = 0x20000000,
      TBINwRestart      = 0x10000000,
      TBILinkOk   = 0x02000000,
      TBINwComplete     = 0x01000000,

      /* CPlusCmd p.31 */
      RxVlan            = (1 << 6),
      RxChkSum    = (1 << 5),
      PCIDAC            = (1 << 4),
      PCIMulRW    = (1 << 3),

      /* rtl8169_PHYstatus */
      TBI_Enable = 0x80,
      TxFlowCtrl = 0x40,
      RxFlowCtrl = 0x20,
      _1000bpsF = 0x10,
      _100bps = 0x08,
      _10bps = 0x04,
      LinkStatus = 0x02,
      FullDup = 0x01,

      /* GIGABIT_PHY_registers */
      PHY_CTRL_REG = 0,
      PHY_STAT_REG = 1,
      PHY_AUTO_NEGO_REG = 4,
      PHY_1000_CTRL_REG = 9,

      /* GIGABIT_PHY_REG_BIT */
      PHY_Restart_Auto_Nego = 0x0200,
      PHY_Enable_Auto_Nego = 0x1000,

      /* PHY_STAT_REG = 1 */
      PHY_Auto_Neco_Comp = 0x0020,

      /* PHY_AUTO_NEGO_REG = 4 */
      PHY_Cap_10_Half = 0x0020,
      PHY_Cap_10_Full = 0x0040,
      PHY_Cap_100_Half = 0x0080,
      PHY_Cap_100_Full = 0x0100,

      /* PHY_1000_CTRL_REG = 9 */
      PHY_Cap_1000_Full = 0x0200,

      PHY_Cap_Null = 0x0,

      /* _MediaType */
      _10_Half = 0x01,
      _10_Full = 0x02,
      _100_Half = 0x04,
      _100_Full = 0x08,
      _1000_Full = 0x10,

      /* _TBICSRBit */
      TBILinkOK = 0x02000000,

      /* DumpCounterCommand */
      CounterDump = 0x8,
};

enum _DescStatusBit {
      DescOwn           = (1 << 31), /* Descriptor is owned by NIC */
      RingEnd           = (1 << 30), /* End of descriptor ring */
      FirstFrag   = (1 << 29), /* First segment of a packet */
      LastFrag    = (1 << 28), /* Final segment of a packet */

      /* Tx private */
      LargeSend   = (1 << 27), /* TCP Large Send Offload (TSO) */
      MSSShift    = 16,        /* MSS value position */
      MSSMask           = 0xfff,     /* MSS value + LargeSend bit: 12 bits */
      IPCS        = (1 << 18), /* Calculate IP checksum */
      UDPCS       = (1 << 17), /* Calculate UDP/IP checksum */
      TCPCS       = (1 << 16), /* Calculate TCP/IP checksum */
      TxVlanTag   = (1 << 17), /* Add VLAN tag */

      /* Rx private */
      PID1        = (1 << 18), /* Protocol ID bit 1/2 */
      PID0        = (1 << 17), /* Protocol ID bit 2/2 */

#define RxProtoUDP      (PID1)
#define RxProtoTCP      (PID0)
#define RxProtoIP (PID1 | PID0)
#define RxProtoMask     RxProtoIP

      IPFail            = (1 << 16), /* IP checksum failed */
      UDPFail           = (1 << 15), /* UDP/IP checksum failed */
      TCPFail           = (1 << 14), /* TCP/IP checksum failed */
      RxVlanTag   = (1 << 16), /* VLAN tag available */
};

#define RsvdMask  0x3fffc000

struct TxDesc {
      u32 opts1;
      u32 opts2;
      u64 addr;
};

struct RxDesc {
      u32 opts1;
      u32 opts2;
      u64 addr;
};

struct ring_info {
      struct sk_buff    *skb;
      u32         len;
      u8          __pad[sizeof(void *) - sizeof(u32)];
};

struct rtl8169_private {
      void __iomem *mmio_addr;      /* memory map physical address */
      struct pci_dev *pci_dev;      /* Index of PCI device */
      struct net_device_stats stats;      /* statistics of net device */
      spinlock_t lock;        /* spin lock flag */
      u32 msg_enable;
      int chipset;
      int mac_version;
      int phy_version;
      u32 cur_rx; /* Index into the Rx descriptor buffer of next Rx pkt. */
      u32 cur_tx; /* Index into the Tx descriptor buffer of next Rx pkt. */
      u32 dirty_rx;
      u32 dirty_tx;
      struct TxDesc *TxDescArray;   /* 256-aligned Tx descriptor ring */
      struct RxDesc *RxDescArray;   /* 256-aligned Rx descriptor ring */
      dma_addr_t TxPhyAddr;
      dma_addr_t RxPhyAddr;
      struct sk_buff *Rx_skbuff[NUM_RX_DESC];   /* Rx data buffers */
      struct ring_info tx_skb[NUM_TX_DESC];     /* Tx data buffers */
      unsigned rx_buf_sz;
      struct timer_list timer;
      u16 cp_cmd;
      u16 intr_mask;
      int phy_auto_nego_reg;
      int phy_1000_ctrl_reg;
#ifdef CONFIG_R8169_VLAN
      struct vlan_group *vlgrp;
#endif
      int (*set_speed)(struct net_device *, u8 autoneg, u16 speed, u8 duplex);
      void (*get_settings)(struct net_device *, struct ethtool_cmd *);
      void (*phy_reset_enable)(void __iomem *);
      unsigned int (*phy_reset_pending)(void __iomem *);
      unsigned int (*link_ok)(void __iomem *);
      struct work_struct task;
      unsigned wol_enabled : 1;
};

MODULE_AUTHOR("Realtek and the Linux r8169 crew <netdev@vger.kernel.org>");
MODULE_DESCRIPTION("RealTek RTL-8169 Gigabit Ethernet driver");
module_param_array(media, int, &num_media, 0);
MODULE_PARM_DESC(media, "force phy operation. Deprecated by ethtool (8).");
module_param(rx_copybreak, int, 0);
MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
module_param(use_dac, int, 0);
MODULE_PARM_DESC(use_dac, "Enable PCI DAC. Unsafe on 32 bit PCI slot.");
module_param_named(debug, debug.msg_enable, int, 0);
MODULE_PARM_DESC(debug, "Debug verbosity level (0=none, ..., 16=all)");
MODULE_LICENSE("GPL");
MODULE_VERSION(RTL8169_VERSION);

static int rtl8169_open(struct net_device *dev);
static int rtl8169_start_xmit(struct sk_buff *skb, struct net_device *dev);
static irqreturn_t rtl8169_interrupt(int irq, void *dev_instance,
                        struct pt_regs *regs);
static int rtl8169_init_ring(struct net_device *dev);
static void rtl8169_hw_start(struct net_device *dev);
static int rtl8169_close(struct net_device *dev);
static void rtl8169_set_rx_mode(struct net_device *dev);
static void rtl8169_tx_timeout(struct net_device *dev);
static struct net_device_stats *rtl8169_get_stats(struct net_device *dev);
static int rtl8169_rx_interrupt(struct net_device *, struct rtl8169_private *,
                        void __iomem *);
static int rtl8169_change_mtu(struct net_device *dev, int new_mtu);
static void rtl8169_down(struct net_device *dev);

#ifdef CONFIG_R8169_NAPI
static int rtl8169_poll(struct net_device *dev, int *budget);
#endif

static const u16 rtl8169_intr_mask =
      SYSErr | LinkChg | RxOverflow | RxFIFOOver | TxErr | TxOK | RxErr | RxOK;
static const u16 rtl8169_napi_event =
      RxOK | RxOverflow | RxFIFOOver | TxOK | TxErr;
static const unsigned int rtl8169_rx_config =
    (RX_FIFO_THRESH << RxCfgFIFOShift) | (RX_DMA_BURST << RxCfgDMAShift);

#define PHY_Cap_10_Half_Or_Less PHY_Cap_10_Half
#define PHY_Cap_10_Full_Or_Less PHY_Cap_10_Full | PHY_Cap_10_Half_Or_Less
#define PHY_Cap_100_Half_Or_Less PHY_Cap_100_Half | PHY_Cap_10_Full_Or_Less
#define PHY_Cap_100_Full_Or_Less PHY_Cap_100_Full | PHY_Cap_100_Half_Or_Less

static void mdio_write(void __iomem *ioaddr, int RegAddr, int value)
{
      int i;

      RTL_W32(PHYAR, 0x80000000 | (RegAddr & 0xFF) << 16 | value);

      for (i = 20; i > 0; i--) {
            /* Check if the RTL8169 has completed writing to the specified MII register */
            if (!(RTL_R32(PHYAR) & 0x80000000)) 
                  break;
            udelay(25);
      }
}

static int mdio_read(void __iomem *ioaddr, int RegAddr)
{
      int i, value = -1;

      RTL_W32(PHYAR, 0x0 | (RegAddr & 0xFF) << 16);

      for (i = 20; i > 0; i--) {
            /* Check if the RTL8169 has completed retrieving data from the specified MII register */
            if (RTL_R32(PHYAR) & 0x80000000) {
                  value = (int) (RTL_R32(PHYAR) & 0xFFFF);
                  break;
            }
            udelay(25);
      }
      return value;
}

static void rtl8169_irq_mask_and_ack(void __iomem *ioaddr)
{
      RTL_W16(IntrMask, 0x0000);

      RTL_W16(IntrStatus, 0xffff);
}

static void rtl8169_asic_down(void __iomem *ioaddr)
{
      RTL_W8(ChipCmd, 0x00);
      rtl8169_irq_mask_and_ack(ioaddr);
      RTL_R16(CPlusCmd);
}

static unsigned int rtl8169_tbi_reset_pending(void __iomem *ioaddr)
{
      return RTL_R32(TBICSR) & TBIReset;
}

static unsigned int rtl8169_xmii_reset_pending(void __iomem *ioaddr)
{
      return mdio_read(ioaddr, 0) & 0x8000;
}

static unsigned int rtl8169_tbi_link_ok(void __iomem *ioaddr)
{
      return RTL_R32(TBICSR) & TBILinkOk;
}

static unsigned int rtl8169_xmii_link_ok(void __iomem *ioaddr)
{
      return RTL_R8(PHYstatus) & LinkStatus;
}

static void rtl8169_tbi_reset_enable(void __iomem *ioaddr)
{
      RTL_W32(TBICSR, RTL_R32(TBICSR) | TBIReset);
}

static void rtl8169_xmii_reset_enable(void __iomem *ioaddr)
{
      unsigned int val;

      val = (mdio_read(ioaddr, PHY_CTRL_REG) | 0x8000) & 0xffff;
      mdio_write(ioaddr, PHY_CTRL_REG, val);
}

static void rtl8169_check_link_status(struct net_device *dev,
                              struct rtl8169_private *tp, void __iomem *ioaddr)
{
      unsigned long flags;

      spin_lock_irqsave(&tp->lock, flags);
      if (tp->link_ok(ioaddr)) {
            netif_carrier_on(dev);
            if (netif_msg_ifup(tp))
                  printk(KERN_INFO PFX "%s: link up\n", dev->name);
      } else {
            if (netif_msg_ifdown(tp))
                  printk(KERN_INFO PFX "%s: link down\n", dev->name);
            netif_carrier_off(dev);
      }
      spin_unlock_irqrestore(&tp->lock, flags);
}

static void rtl8169_link_option(int idx, u8 *autoneg, u16 *speed, u8 *duplex)
{
      struct {
            u16 speed;
            u8 duplex;
            u8 autoneg;
            u8 media;
      } link_settings[] = {
            { SPEED_10, DUPLEX_HALF, AUTONEG_DISABLE, _10_Half },
            { SPEED_10, DUPLEX_FULL, AUTONEG_DISABLE, _10_Full },
            { SPEED_100,      DUPLEX_HALF, AUTONEG_DISABLE, _100_Half },
            { SPEED_100,      DUPLEX_FULL, AUTONEG_DISABLE, _100_Full },
            { SPEED_1000,     DUPLEX_FULL, AUTONEG_DISABLE, _1000_Full },
            /* Make TBI happy */
            { SPEED_1000,     DUPLEX_FULL, AUTONEG_ENABLE,  0xff }
      }, *p;
      unsigned char option;
      
      option = ((idx < MAX_UNITS) && (idx >= 0)) ? media[idx] : 0xff;

      if ((option != 0xff) && !idx && netif_msg_drv(&debug))
            printk(KERN_WARNING PFX "media option is deprecated.\n");

      for (p = link_settings; p->media != 0xff; p++) {
            if (p->media == option)
                  break;
      }
      *autoneg = p->autoneg;
      *speed = p->speed;
      *duplex = p->duplex;
}

static void rtl8169_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
{
      struct rtl8169_private *tp = netdev_priv(dev);
      void __iomem *ioaddr = tp->mmio_addr;
      u8 options;

      wol->wolopts = 0;

#define WAKE_ANY (WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_BCAST | WAKE_MCAST)
      wol->supported = WAKE_ANY;

      spin_lock_irq(&tp->lock);

      options = RTL_R8(Config1);
      if (!(options & PMEnable))
            goto out_unlock;

      options = RTL_R8(Config3);
      if (options & LinkUp)
            wol->wolopts |= WAKE_PHY;
      if (options & MagicPacket)
            wol->wolopts |= WAKE_MAGIC;

      options = RTL_R8(Config5);
      if (options & UWF)
            wol->wolopts |= WAKE_UCAST;
      if (options & BWF)
              wol->wolopts |= WAKE_BCAST;
      if (options & MWF)
              wol->wolopts |= WAKE_MCAST;

out_unlock:
      spin_unlock_irq(&tp->lock);
}

static int rtl8169_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
{
      struct rtl8169_private *tp = netdev_priv(dev);
      void __iomem *ioaddr = tp->mmio_addr;
      int i;
      static struct {
            u32 opt;
            u16 reg;
            u8  mask;
      } cfg[] = {
            { WAKE_ANY,   Config1, PMEnable },
            { WAKE_PHY,   Config3, LinkUp },
            { WAKE_MAGIC, Config3, MagicPacket },
            { WAKE_UCAST, Config5, UWF },
            { WAKE_BCAST, Config5, BWF },
            { WAKE_MCAST, Config5, MWF },
            { WAKE_ANY,   Config5, LanWake }
      };

      spin_lock_irq(&tp->lock);

      RTL_W8(Cfg9346, Cfg9346_Unlock);

      for (i = 0; i < ARRAY_SIZE(cfg); i++) {
            u8 options = RTL_R8(cfg[i].reg) & ~cfg[i].mask;
            if (wol->wolopts & cfg[i].opt)
                  options |= cfg[i].mask;
            RTL_W8(cfg[i].reg, options);
      }

      RTL_W8(Cfg9346, Cfg9346_Lock);

      tp->wol_enabled = (wol->wolopts) ? 1 : 0;

      spin_unlock_irq(&tp->lock);

      return 0;
}

static void rtl8169_get_drvinfo(struct net_device *dev,
                        struct ethtool_drvinfo *info)
{
      struct rtl8169_private *tp = netdev_priv(dev);

      strcpy(info->driver, MODULENAME);
      strcpy(info->version, RTL8169_VERSION);
      strcpy(info->bus_info, pci_name(tp->pci_dev));
}

static int rtl8169_get_regs_len(struct net_device *dev)
{
      return R8169_REGS_SIZE;
}

static int rtl8169_set_speed_tbi(struct net_device *dev,
                         u8 autoneg, u16 speed, u8 duplex)
{
      struct rtl8169_private *tp = netdev_priv(dev);
      void __iomem *ioaddr = tp->mmio_addr;
      int ret = 0;
      u32 reg;

      reg = RTL_R32(TBICSR);
      if ((autoneg == AUTONEG_DISABLE) && (speed == SPEED_1000) &&
          (duplex == DUPLEX_FULL)) {
            RTL_W32(TBICSR, reg & ~(TBINwEnable | TBINwRestart));
      } else if (autoneg == AUTONEG_ENABLE)
            RTL_W32(TBICSR, reg | TBINwEnable | TBINwRestart);
      else {
            if (netif_msg_link(tp)) {
                  printk(KERN_WARNING "%s: "
                         "incorrect speed setting refused in TBI mode\n",
                         dev->name);
            }
            ret = -EOPNOTSUPP;
      }

      return ret;
}

static int rtl8169_set_speed_xmii(struct net_device *dev,
                          u8 autoneg, u16 speed, u8 duplex)
{
      struct rtl8169_private *tp = netdev_priv(dev);
      void __iomem *ioaddr = tp->mmio_addr;
      int auto_nego, giga_ctrl;

      auto_nego = mdio_read(ioaddr, PHY_AUTO_NEGO_REG);
      auto_nego &= ~(PHY_Cap_10_Half | PHY_Cap_10_Full |
                   PHY_Cap_100_Half | PHY_Cap_100_Full);
      giga_ctrl = mdio_read(ioaddr, PHY_1000_CTRL_REG);
      giga_ctrl &= ~(PHY_Cap_1000_Full | PHY_Cap_Null);

      if (autoneg == AUTONEG_ENABLE) {
            auto_nego |= (PHY_Cap_10_Half | PHY_Cap_10_Full |
                        PHY_Cap_100_Half | PHY_Cap_100_Full);
            giga_ctrl |= PHY_Cap_1000_Full;
      } else {
            if (speed == SPEED_10)
                  auto_nego |= PHY_Cap_10_Half | PHY_Cap_10_Full;
            else if (speed == SPEED_100)
                  auto_nego |= PHY_Cap_100_Half | PHY_Cap_100_Full;
            else if (speed == SPEED_1000)
                  giga_ctrl |= PHY_Cap_1000_Full;

            if (duplex == DUPLEX_HALF)
                  auto_nego &= ~(PHY_Cap_10_Full | PHY_Cap_100_Full);

            if (duplex == DUPLEX_FULL)
                  auto_nego &= ~(PHY_Cap_10_Half | PHY_Cap_100_Half);
      }

      tp->phy_auto_nego_reg = auto_nego;
      tp->phy_1000_ctrl_reg = giga_ctrl;

      mdio_write(ioaddr, PHY_AUTO_NEGO_REG, auto_nego);
      mdio_write(ioaddr, PHY_1000_CTRL_REG, giga_ctrl);
      mdio_write(ioaddr, PHY_CTRL_REG, PHY_Enable_Auto_Nego |
                               PHY_Restart_Auto_Nego);
      return 0;
}

static int rtl8169_set_speed(struct net_device *dev,
                       u8 autoneg, u16 speed, u8 duplex)
{
      struct rtl8169_private *tp = netdev_priv(dev);
      int ret;

      ret = tp->set_speed(dev, autoneg, speed, duplex);

      if (netif_running(dev) && (tp->phy_1000_ctrl_reg & PHY_Cap_1000_Full))
            mod_timer(&tp->timer, jiffies + RTL8169_PHY_TIMEOUT);

      return ret;
}

static int rtl8169_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
      struct rtl8169_private *tp = netdev_priv(dev);
      unsigned long flags;
      int ret;

      spin_lock_irqsave(&tp->lock, flags);
      ret = rtl8169_set_speed(dev, cmd->autoneg, cmd->speed, cmd->duplex);
      spin_unlock_irqrestore(&tp->lock, flags);
      
      return ret;
}

static u32 rtl8169_get_rx_csum(struct net_device *dev)
{
      struct rtl8169_private *tp = netdev_priv(dev);

      return tp->cp_cmd & RxChkSum;
}

static int rtl8169_set_rx_csum(struct net_device *dev, u32 data)
{
      struct rtl8169_private *tp = netdev_priv(dev);
      void __iomem *ioaddr = tp->mmio_addr;
      unsigned long flags;

      spin_lock_irqsave(&tp->lock, flags);

      if (data)
            tp->cp_cmd |= RxChkSum;
      else
            tp->cp_cmd &= ~RxChkSum;

      RTL_W16(CPlusCmd, tp->cp_cmd);
      RTL_R16(CPlusCmd);

      spin_unlock_irqrestore(&tp->lock, flags);

      return 0;
}

#ifdef CONFIG_R8169_VLAN

static inline u32 rtl8169_tx_vlan_tag(struct rtl8169_private *tp,
                              struct sk_buff *skb)
{
      return (tp->vlgrp && vlan_tx_tag_present(skb)) ?
            TxVlanTag | swab16(vlan_tx_tag_get(skb)) : 0x00;
}

static void rtl8169_vlan_rx_register(struct net_device *dev,
                             struct vlan_group *grp)
{
      struct rtl8169_private *tp = netdev_priv(dev);
      void __iomem *ioaddr = tp->mmio_addr;
      unsigned long flags;

      spin_lock_irqsave(&tp->lock, flags);
      tp->vlgrp = grp;
      if (tp->vlgrp)
            tp->cp_cmd |= RxVlan;
      else
            tp->cp_cmd &= ~RxVlan;
      RTL_W16(CPlusCmd, tp->cp_cmd);
      RTL_R16(CPlusCmd);
      spin_unlock_irqrestore(&tp->lock, flags);
}

static void rtl8169_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
{
      struct rtl8169_private *tp = netdev_priv(dev);
      unsigned long flags;

      spin_lock_irqsave(&tp->lock, flags);
      if (tp->vlgrp)
            tp->vlgrp->vlan_devices[vid] = NULL;
      spin_unlock_irqrestore(&tp->lock, flags);
}

static int rtl8169_rx_vlan_skb(struct rtl8169_private *tp, struct RxDesc *desc,
                         struct sk_buff *skb)
{
      u32 opts2 = le32_to_cpu(desc->opts2);
      int ret;

      if (tp->vlgrp && (opts2 & RxVlanTag)) {
            rtl8169_rx_hwaccel_skb(skb, tp->vlgrp,
                               swab16(opts2 & 0xffff));
            ret = 0;
      } else
            ret = -1;
      desc->opts2 = 0;
      return ret;
}

#else /* !CONFIG_R8169_VLAN */

static inline u32 rtl8169_tx_vlan_tag(struct rtl8169_private *tp,
                              struct sk_buff *skb)
{
      return 0;
}

static int rtl8169_rx_vlan_skb(struct rtl8169_private *tp, struct RxDesc *desc,
                         struct sk_buff *skb)
{
      return -1;
}

#endif

static void rtl8169_gset_tbi(struct net_device *dev, struct ethtool_cmd *cmd)
{
      struct rtl8169_private *tp = netdev_priv(dev);
      void __iomem *ioaddr = tp->mmio_addr;
      u32 status;

      cmd->supported =
            SUPPORTED_1000baseT_Full | SUPPORTED_Autoneg | SUPPORTED_FIBRE;
      cmd->port = PORT_FIBRE;
      cmd->transceiver = XCVR_INTERNAL;

      status = RTL_R32(TBICSR);
      cmd->advertising = (status & TBINwEnable) ?  ADVERTISED_Autoneg : 0;
      cmd->autoneg = !!(status & TBINwEnable);

      cmd->speed = SPEED_1000;
      cmd->duplex = DUPLEX_FULL; /* Always set */
}

static void rtl8169_gset_xmii(struct net_device *dev, struct ethtool_cmd *cmd)
{
      struct rtl8169_private *tp = netdev_priv(dev);
      void __iomem *ioaddr = tp->mmio_addr;
      u8 status;

      cmd->supported = SUPPORTED_10baseT_Half |
                   SUPPORTED_10baseT_Full |
                   SUPPORTED_100baseT_Half |
                   SUPPORTED_100baseT_Full |
                   SUPPORTED_1000baseT_Full |
                   SUPPORTED_Autoneg |
                     SUPPORTED_TP;

      cmd->autoneg = 1;
      cmd->advertising = ADVERTISED_TP | ADVERTISED_Autoneg;

      if (tp->phy_auto_nego_reg & PHY_Cap_10_Half)
            cmd->advertising |= ADVERTISED_10baseT_Half;
      if (tp->phy_auto_nego_reg & PHY_Cap_10_Full)
            cmd->advertising |= ADVERTISED_10baseT_Full;
      if (tp->phy_auto_nego_reg & PHY_Cap_100_Half)
            cmd->advertising |= ADVERTISED_100baseT_Half;
      if (tp->phy_auto_nego_reg & PHY_Cap_100_Full)
            cmd->advertising |= ADVERTISED_100baseT_Full;
      if (tp->phy_1000_ctrl_reg & PHY_Cap_1000_Full)
            cmd->advertising |= ADVERTISED_1000baseT_Full;

      status = RTL_R8(PHYstatus);

      if (status & _1000bpsF)
            cmd->speed = SPEED_1000;
      else if (status & _100bps)
            cmd->speed = SPEED_100;
      else if (status & _10bps)
            cmd->speed = SPEED_10;

      cmd->duplex = ((status & _1000bpsF) || (status & FullDup)) ?
                  DUPLEX_FULL : DUPLEX_HALF;
}

static int rtl8169_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
      struct rtl8169_private *tp = netdev_priv(dev);
      unsigned long flags;

      spin_lock_irqsave(&tp->lock, flags);

      tp->get_settings(dev, cmd);

      spin_unlock_irqrestore(&tp->lock, flags);
      return 0;
}

static void rtl8169_get_regs(struct net_device *dev, struct ethtool_regs *regs,
                       void *p)
{
        struct rtl8169_private *tp = netdev_priv(dev);
        unsigned long flags;

        if (regs->len > R8169_REGS_SIZE)
            regs->len = R8169_REGS_SIZE;

        spin_lock_irqsave(&tp->lock, flags);
        memcpy_fromio(p, tp->mmio_addr, regs->len);
        spin_unlock_irqrestore(&tp->lock, flags);
}

static u32 rtl8169_get_msglevel(struct net_device *dev)
{
      struct rtl8169_private *tp = netdev_priv(dev);

      return tp->msg_enable;
}

static void rtl8169_set_msglevel(struct net_device *dev, u32 value)
{
      struct rtl8169_private *tp = netdev_priv(dev);

      tp->msg_enable = value;
}

static const char rtl8169_gstrings[][ETH_GSTRING_LEN] = {
      "tx_packets",
      "rx_packets",
      "tx_errors",
      "rx_errors",
      "rx_missed",
      "align_errors",
      "tx_single_collisions",
      "tx_multi_collisions",
      "unicast",
      "broadcast",
      "multicast",
      "tx_aborted",
      "tx_underrun",
};

struct rtl8169_counters {
      u64   tx_packets;
      u64   rx_packets;
      u64   tx_errors;
      u32   rx_errors;
      u16   rx_missed;
      u16   align_errors;
      u32   tx_one_collision;
      u32   tx_multi_collision;
      u64   rx_unicast;
      u64   rx_broadcast;
      u32   rx_multicast;
      u16   tx_aborted;
      u16   tx_underun;
};

static int rtl8169_get_stats_count(struct net_device *dev)
{
      return ARRAY_SIZE(rtl8169_gstrings);
}

static void rtl8169_get_ethtool_stats(struct net_device *dev,
                              struct ethtool_stats *stats, u64 *data)
{
      struct rtl8169_private *tp = netdev_priv(dev);
      void __iomem *ioaddr = tp->mmio_addr;
      struct rtl8169_counters *counters;
      dma_addr_t paddr;
      u32 cmd;

      ASSERT_RTNL();

      counters = pci_alloc_consistent(tp->pci_dev, sizeof(*counters), &paddr);
      if (!counters)
            return;

      RTL_W32(CounterAddrHigh, (u64)paddr >> 32);
      cmd = (u64)paddr & DMA_32BIT_MASK;
      RTL_W32(CounterAddrLow, cmd);
      RTL_W32(CounterAddrLow, cmd | CounterDump);

      while (RTL_R32(CounterAddrLow) & CounterDump) {
            if (msleep_interruptible(1))
                  break;
      }

      RTL_W32(CounterAddrLow, 0);
      RTL_W32(CounterAddrHigh, 0);

      data[0]     = le64_to_cpu(counters->tx_packets);
      data[1] = le64_to_cpu(counters->rx_packets);
      data[2] = le64_to_cpu(counters->tx_errors);
      data[3] = le32_to_cpu(counters->rx_errors);
      data[4] = le16_to_cpu(counters->rx_missed);
      data[5] = le16_to_cpu(counters->align_errors);
      data[6] = le32_to_cpu(counters->tx_one_collision);
      data[7] = le32_to_cpu(counters->tx_multi_collision);
      data[8] = le64_to_cpu(counters->rx_unicast);
      data[9] = le64_to_cpu(counters->rx_broadcast);
      data[10] = le32_to_cpu(counters->rx_multicast);
      data[11] = le16_to_cpu(counters->tx_aborted);
      data[12] = le16_to_cpu(counters->tx_underun);

      pci_free_consistent(tp->pci_dev, sizeof(*counters), counters, paddr);
}

static void rtl8169_get_strings(struct net_device *dev, u32 stringset, u8 *data)
{
      switch(stringset) {
      case ETH_SS_STATS:
            memcpy(data, *rtl8169_gstrings, sizeof(rtl8169_gstrings));
            break;
      }
}


static struct ethtool_ops rtl8169_ethtool_ops = {
      .get_drvinfo            = rtl8169_get_drvinfo,
      .get_regs_len           = rtl8169_get_regs_len,
      .get_link         = ethtool_op_get_link,
      .get_settings           = rtl8169_get_settings,
      .set_settings           = rtl8169_set_settings,
      .get_msglevel           = rtl8169_get_msglevel,
      .set_msglevel           = rtl8169_set_msglevel,
      .get_rx_csum            = rtl8169_get_rx_csum,
      .set_rx_csum            = rtl8169_set_rx_csum,
      .get_tx_csum            = ethtool_op_get_tx_csum,
      .set_tx_csum            = ethtool_op_set_tx_csum,
      .get_sg                 = ethtool_op_get_sg,
      .set_sg                 = ethtool_op_set_sg,
      .get_tso          = ethtool_op_get_tso,
      .set_tso          = ethtool_op_set_tso,
      .get_regs         = rtl8169_get_regs,
      .get_wol          = rtl8169_get_wol,
      .set_wol          = rtl8169_set_wol,
      .get_strings            = rtl8169_get_strings,
      .get_stats_count  = rtl8169_get_stats_count,
      .get_ethtool_stats      = rtl8169_get_ethtool_stats,
      .get_perm_addr          = ethtool_op_get_perm_addr,
};

static void rtl8169_write_gmii_reg_bit(void __iomem *ioaddr, int reg, int bitnum,
                               int bitval)
{
      int val;

      val = mdio_read(ioaddr, reg);
      val = (bitval == 1) ?
            val | (bitval << bitnum) :  val & ~(0x0001 << bitnum);
      mdio_write(ioaddr, reg, val & 0xffff); 
}

static void rtl8169_get_mac_version(struct rtl8169_private *tp, void __iomem *ioaddr)
{
      const struct {
            u32 mask;
            int mac_version;
      } mac_info[] = {
            { 0x1 << 28,      RTL_GIGA_MAC_VER_X },
            { 0x1 << 26,      RTL_GIGA_MAC_VER_E },
            { 0x1 << 23,      RTL_GIGA_MAC_VER_D }, 
            { 0x00000000,     RTL_GIGA_MAC_VER_B } /* Catch-all */
      }, *p = mac_info;
      u32 reg;

      reg = RTL_R32(TxConfig) & 0x7c800000;
      while ((reg & p->mask) != p->mask)
            p++;
      tp->mac_version = p->mac_version;
}

static void rtl8169_print_mac_version(struct rtl8169_private *tp)
{
      struct {
            int version;
            char *msg;
      } mac_print[] = {
            { RTL_GIGA_MAC_VER_E, "RTL_GIGA_MAC_VER_E" },
            { RTL_GIGA_MAC_VER_D, "RTL_GIGA_MAC_VER_D" },
            { RTL_GIGA_MAC_VER_B, "RTL_GIGA_MAC_VER_B" },
            { 0, NULL }
      }, *p;

      for (p = mac_print; p->msg; p++) {
            if (tp->mac_version == p->version) {
                  dprintk("mac_version == %s (%04d)\n", p->msg,
                          p->version);
                  return;
            }
      }
      dprintk("mac_version == Unknown\n");
}

static void rtl8169_get_phy_version(struct rtl8169_private *tp, void __iomem *ioaddr)
{
      const struct {
            u16 mask;
            u16 set;
            int phy_version;
      } phy_info[] = {
            { 0x000f, 0x0002, RTL_GIGA_PHY_VER_G },
            { 0x000f, 0x0001, RTL_GIGA_PHY_VER_F },
            { 0x000f, 0x0000, RTL_GIGA_PHY_VER_E },
            { 0x0000, 0x0000, RTL_GIGA_PHY_VER_D } /* Catch-all */
      }, *p = phy_info;
      u16 reg;

      reg = mdio_read(ioaddr, 3) & 0xffff;
      while ((reg & p->mask) != p->set)
            p++;
      tp->phy_version = p->phy_version;
}

static void rtl8169_print_phy_version(struct rtl8169_private *tp)
{
      struct {
            int version;
            char *msg;
            u32 reg;
      } phy_print[] = {
            { RTL_GIGA_PHY_VER_G, "RTL_GIGA_PHY_VER_G", 0x0002 },
            { RTL_GIGA_PHY_VER_F, "RTL_GIGA_PHY_VER_F", 0x0001 },
            { RTL_GIGA_PHY_VER_E, "RTL_GIGA_PHY_VER_E", 0x0000 },
            { RTL_GIGA_PHY_VER_D, "RTL_GIGA_PHY_VER_D", 0x0000 },
            { 0, NULL, 0x0000 }
      }, *p;

      for (p = phy_print; p->msg; p++) {
            if (tp->phy_version == p->version) {
                  dprintk("phy_version == %s (%04x)\n", p->msg, p->reg);
                  return;
            }
      }
      dprintk("phy_version == Unknown\n");
}

static void rtl8169_hw_phy_config(struct net_device *dev)
{
      struct rtl8169_private *tp = netdev_priv(dev);
      void __iomem *ioaddr = tp->mmio_addr;
      struct {
            u16 regs[5]; /* Beware of bit-sign propagation */
      } phy_magic[5] = { {
            { 0x0000,   //w 4 15 12 0
              0x00a1,   //w 3 15 0 00a1
              0x0008,   //w 2 15 0 0008
              0x1020,   //w 1 15 0 1020
              0x1000 } },{    //w 0 15 0 1000
            { 0x7000,   //w 4 15 12 7
              0xff41,   //w 3 15 0 ff41
              0xde60,   //w 2 15 0 de60
              0x0140,   //w 1 15 0 0140
              0x0077 } },{    //w 0 15 0 0077
            { 0xa000,   //w 4 15 12 a
              0xdf01,   //w 3 15 0 df01
              0xdf20,   //w 2 15 0 df20
              0xff95,   //w 1 15 0 ff95
              0xfa00 } },{    //w 0 15 0 fa00
            { 0xb000,   //w 4 15 12 b
              0xff41,   //w 3 15 0 ff41
              0xde20,   //w 2 15 0 de20
              0x0140,   //w 1 15 0 0140
              0x00bb } },{    //w 0 15 0 00bb
            { 0xf000,   //w 4 15 12 f
              0xdf01,   //w 3 15 0 df01
              0xdf20,   //w 2 15 0 df20
              0xff95,   //w 1 15 0 ff95
              0xbf00 }  //w 0 15 0 bf00
            }
      }, *p = phy_magic;
      int i;

      rtl8169_print_mac_version(tp);
      rtl8169_print_phy_version(tp);

      if (tp->mac_version <= RTL_GIGA_MAC_VER_B)
            return;
      if (tp->phy_version >= RTL_GIGA_PHY_VER_H)
            return;

      dprintk("MAC version != 0 && PHY version == 0 or 1\n");
      dprintk("Do final_reg2.cfg\n");

      /* Shazam ! */

      if (tp->mac_version == RTL_GIGA_MAC_VER_X) {
            mdio_write(ioaddr, 31, 0x0001);
            mdio_write(ioaddr,  9, 0x273a);
            mdio_write(ioaddr, 14, 0x7bfb);
            mdio_write(ioaddr, 27, 0x841e);

            mdio_write(ioaddr, 31, 0x0002);
            mdio_write(ioaddr,  1, 0x90d0);
            mdio_write(ioaddr, 31, 0x0000);
            return;
      }

      /* phy config for RTL8169s mac_version C chip */
      mdio_write(ioaddr, 31, 0x0001);                 //w 31 2 0 1
      mdio_write(ioaddr, 21, 0x1000);                 //w 21 15 0 1000
      mdio_write(ioaddr, 24, 0x65c7);                 //w 24 15 0 65c7
      rtl8169_write_gmii_reg_bit(ioaddr, 4, 11, 0);   //w 4 11 11 0

      for (i = 0; i < ARRAY_SIZE(phy_magic); i++, p++) {
            int val, pos = 4;

            val = (mdio_read(ioaddr, pos) & 0x0fff) | (p->regs[0] & 0xffff);
            mdio_write(ioaddr, pos, val);
            while (--pos >= 0)
                  mdio_write(ioaddr, pos, p->regs[4 - pos] & 0xffff);
            rtl8169_write_gmii_reg_bit(ioaddr, 4, 11, 1); //w 4 11 11 1
            rtl8169_write_gmii_reg_bit(ioaddr, 4, 11, 0); //w 4 11 11 0
      }
      mdio_write(ioaddr, 31, 0x0000); //w 31 2 0 0
}

static void rtl8169_phy_timer(unsigned long __opaque)
{
      struct net_device *dev = (struct net_device *)__opaque;
      struct rtl8169_private *tp = netdev_priv(dev);
      struct timer_list *timer = &tp->timer;
      void __iomem *ioaddr = tp->mmio_addr;
      unsigned long timeout = RTL8169_PHY_TIMEOUT;

      assert(tp->mac_version > RTL_GIGA_MAC_VER_B);
      assert(tp->phy_version < RTL_GIGA_PHY_VER_H);

      if (!(tp->phy_1000_ctrl_reg & PHY_Cap_1000_Full))
            return;

      spin_lock_irq(&tp->lock);

      if (tp->phy_reset_pending(ioaddr)) {
            /* 
             * A busy loop could burn quite a few cycles on nowadays CPU.
             * Let's delay the execution of the timer for a few ticks.
             */
            timeout = HZ/10;
            goto out_mod_timer;
      }

      if (tp->link_ok(ioaddr))
            goto out_unlock;

      if (netif_msg_link(tp))
            printk(KERN_WARNING "%s: PHY reset until link up\n", dev->name);

      tp->phy_reset_enable(ioaddr);

out_mod_timer:
      mod_timer(timer, jiffies + timeout);
out_unlock:
      spin_unlock_irq(&tp->lock);
}

static inline void rtl8169_delete_timer(struct net_device *dev)
{
      struct rtl8169_private *tp = netdev_priv(dev);
      struct timer_list *timer = &tp->timer;

      if ((tp->mac_version <= RTL_GIGA_MAC_VER_B) ||
          (tp->phy_version >= RTL_GIGA_PHY_VER_H))
            return;

      del_timer_sync(timer);
}

static inline void rtl8169_request_timer(struct net_device *dev)
{
      struct rtl8169_private *tp = netdev_priv(dev);
      struct timer_list *timer = &tp->timer;

      if ((tp->mac_version <= RTL_GIGA_MAC_VER_B) ||
          (tp->phy_version >= RTL_GIGA_PHY_VER_H))
            return;

      init_timer(timer);
      timer->expires = jiffies + RTL8169_PHY_TIMEOUT;
      timer->data = (unsigned long)(dev);
      timer->function = rtl8169_phy_timer;
      add_timer(timer);
}

#ifdef CONFIG_NET_POLL_CONTROLLER
/*
 * Polling 'interrupt' - used by things like netconsole to send skbs
 * without having to re-enable interrupts. It's not called while
 * the interrupt routine is executing.
 */
static void rtl8169_netpoll(struct net_device *dev)
{
      struct rtl8169_private *tp = netdev_priv(dev);
      struct pci_dev *pdev = tp->pci_dev;

      disable_irq(pdev->irq);
      rtl8169_interrupt(pdev->irq, dev, NULL);
      enable_irq(pdev->irq);
}
#endif

static void rtl8169_release_board(struct pci_dev *pdev, struct net_device *dev,
                          void __iomem *ioaddr)
{
      iounmap(ioaddr);
      pci_release_regions(pdev);
      pci_disable_device(pdev);
      free_netdev(dev);
}

static int __devinit
rtl8169_init_board(struct pci_dev *pdev, struct net_device **dev_out,
               void __iomem **ioaddr_out)
{
      void __iomem *ioaddr;
      struct net_device *dev;
      struct rtl8169_private *tp;
      int rc = -ENOMEM, i, acpi_idle_state = 0, pm_cap;

      assert(ioaddr_out != NULL);

      /* dev zeroed in alloc_etherdev */
      dev = alloc_etherdev(sizeof (*tp));
      if (dev == NULL) {
            if (netif_msg_drv(&debug))
                  dev_err(&pdev->dev, "unable to alloc new ethernet\n");
            goto err_out;
      }

      SET_MODULE_OWNER(dev);
      SET_NETDEV_DEV(dev, &pdev->dev);
      tp = netdev_priv(dev);
      tp->msg_enable = netif_msg_init(debug.msg_enable, R8169_MSG_DEFAULT);

      /* enable device (incl. PCI PM wakeup and hotplug setup) */
      rc = pci_enable_device(pdev);
      if (rc < 0) {
            if (netif_msg_probe(tp))
                  dev_err(&pdev->dev, "enable failure\n");
            goto err_out_free_dev;
      }

      rc = pci_set_mwi(pdev);
      if (rc < 0)
            goto err_out_disable;

      /* save power state before pci_enable_device overwrites it */
      pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
      if (pm_cap) {
            u16 pwr_command;

            pci_read_config_word(pdev, pm_cap + PCI_PM_CTRL, &pwr_command);
            acpi_idle_state = pwr_command & PCI_PM_CTRL_STATE_MASK;
      } else {
            if (netif_msg_probe(tp))
                  dev_err(&pdev->dev,
                         "PowerManagement capability not found.\n");
      }

      /* make sure PCI base addr 1 is MMIO */
      if (!(pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
            if (netif_msg_probe(tp))
                  dev_err(&pdev->dev,
                         "region #1 not an MMIO resource, aborting\n");
            rc = -ENODEV;
            goto err_out_mwi;
      }
      /* check for weird/broken PCI region reporting */
      if (pci_resource_len(pdev, 1) < R8169_REGS_SIZE) {
            if (netif_msg_probe(tp))
                  dev_err(&pdev->dev,
                         "Invalid PCI region size(s), aborting\n");
            rc = -ENODEV;
            goto err_out_mwi;
      }

      rc = pci_request_regions(pdev, MODULENAME);
      if (rc < 0) {
            if (netif_msg_probe(tp))
                  dev_err(&pdev->dev, "could not request regions.\n");
            goto err_out_mwi;
      }

      tp->cp_cmd = PCIMulRW | RxChkSum;

      if ((sizeof(dma_addr_t) > 4) &&
          !pci_set_dma_mask(pdev, DMA_64BIT_MASK) && use_dac) {
            tp->cp_cmd |= PCIDAC;
            dev->features |= NETIF_F_HIGHDMA;
      } else {
            rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
            if (rc < 0) {
                  if (netif_msg_probe(tp))
                        dev_err(&pdev->dev,
                               "DMA configuration failed.\n");
                  goto err_out_free_res;
            }
      }

      pci_set_master(pdev);

      /* ioremap MMIO region */
      ioaddr = ioremap(pci_resource_start(pdev, 1), R8169_REGS_SIZE);
      if (ioaddr == NULL) {
            if (netif_msg_probe(tp))
                  dev_err(&pdev->dev, "cannot remap MMIO, aborting\n");
            rc = -EIO;
            goto err_out_free_res;
      }

      /* Unneeded ? Don't mess with Mrs. Murphy. */
      rtl8169_irq_mask_and_ack(ioaddr);

      /* Soft reset the chip. */
      RTL_W8(ChipCmd, CmdReset);

      /* Check that the chip has finished the reset. */
      for (i = 1000; i > 0; i--) {
            if ((RTL_R8(ChipCmd) & CmdReset) == 0)
                  break;
            udelay(10);
      }

      /* Identify chip attached to board */
      rtl8169_get_mac_version(tp, ioaddr);
      rtl8169_get_phy_version(tp, ioaddr);

      rtl8169_print_mac_version(tp);
      rtl8169_print_phy_version(tp);

      for (i = ARRAY_SIZE(rtl_chip_info) - 1; i >= 0; i--) {
            if (tp->mac_version == rtl_chip_info[i].mac_version)
                  break;
      }
      if (i < 0) {
            /* Unknown chip: assume array element #0, original RTL-8169 */
            if (netif_msg_probe(tp)) {
                  dev_printk(KERN_DEBUG, &pdev->dev,
                         "unknown chip version, assuming %s\n",
                         rtl_chip_info[0].name);
            }
            i++;
      }
      tp->chipset = i;

      RTL_W8(Cfg9346, Cfg9346_Unlock);
      RTL_W8(Config1, RTL_R8(Config1) | PMEnable);
      RTL_W8(Config5, RTL_R8(Config5) & PMEStatus);
      RTL_W8(Cfg9346, Cfg9346_Lock);

      *ioaddr_out = ioaddr;
      *dev_out = dev;
out:
      return rc;

err_out_free_res:
      pci_release_regions(pdev);

err_out_mwi:
      pci_clear_mwi(pdev);

err_out_disable:
      pci_disable_device(pdev);

err_out_free_dev:
      free_netdev(dev);
err_out:
      *ioaddr_out = NULL;
      *dev_out = NULL;
      goto out;
}

static int __devinit
rtl8169_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
{
      struct net_device *dev = NULL;
      struct rtl8169_private *tp;
      void __iomem *ioaddr = NULL;
      static int board_idx = -1;
      u8 autoneg, duplex;
      u16 speed;
      int i, rc;

      assert(pdev != NULL);
      assert(ent != NULL);

      board_idx++;

      if (netif_msg_drv(&debug)) {
            printk(KERN_INFO "%s Gigabit Ethernet driver %s loaded\n",
                   MODULENAME, RTL8169_VERSION);
      }

      rc = rtl8169_init_board(pdev, &dev, &ioaddr);
      if (rc)
            return rc;

      tp = netdev_priv(dev);
      assert(ioaddr != NULL);

      if (RTL_R8(PHYstatus) & TBI_Enable) {
            tp->set_speed = rtl8169_set_speed_tbi;
            tp->get_settings = rtl8169_gset_tbi;
            tp->phy_reset_enable = rtl8169_tbi_reset_enable;
            tp->phy_reset_pending = rtl8169_tbi_reset_pending;
            tp->link_ok = rtl8169_tbi_link_ok;

            tp->phy_1000_ctrl_reg = PHY_Cap_1000_Full; /* Implied by TBI */
      } else {
            tp->set_speed = rtl8169_set_speed_xmii;
            tp->get_settings = rtl8169_gset_xmii;
            tp->phy_reset_enable = rtl8169_xmii_reset_enable;
            tp->phy_reset_pending = rtl8169_xmii_reset_pending;
            tp->link_ok = rtl8169_xmii_link_ok;
      }

      /* Get MAC address.  FIXME: read EEPROM */
      for (i = 0; i < MAC_ADDR_LEN; i++)
            dev->dev_addr[i] = RTL_R8(MAC0 + i);
      memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);

      dev->open = rtl8169_open;
      dev->hard_start_xmit = rtl8169_start_xmit;
      dev->get_stats = rtl8169_get_stats;
      SET_ETHTOOL_OPS(dev, &rtl8169_ethtool_ops);
      dev->stop = rtl8169_close;
      dev->tx_timeout = rtl8169_tx_timeout;
      dev->set_multicast_list = rtl8169_set_rx_mode;
      dev->watchdog_timeo = RTL8169_TX_TIMEOUT;
      dev->irq = pdev->irq;
      dev->base_addr = (unsigned long) ioaddr;
      dev->change_mtu = rtl8169_change_mtu;

#ifdef CONFIG_R8169_NAPI
      dev->poll = rtl8169_poll;
      dev->weight = R8169_NAPI_WEIGHT;
#endif

#ifdef CONFIG_R8169_VLAN
      dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
      dev->vlan_rx_register = rtl8169_vlan_rx_register;
      dev->vlan_rx_kill_vid = rtl8169_vlan_rx_kill_vid;
#endif

#ifdef CONFIG_NET_POLL_CONTROLLER
      dev->poll_controller = rtl8169_netpoll;
#endif

      tp->intr_mask = 0xffff;
      tp->pci_dev = pdev;
      tp->mmio_addr = ioaddr;

      spin_lock_init(&tp->lock);

      rc = register_netdev(dev);
      if (rc) {
            rtl8169_release_board(pdev, dev, ioaddr);
            return rc;
      }

      if (netif_msg_probe(tp)) {
            printk(KERN_DEBUG "%s: Identified chip type is '%s'.\n",
                   dev->name, rtl_chip_info[tp->chipset].name);
      }

      pci_set_drvdata(pdev, dev);

      if (netif_msg_probe(tp)) {
            printk(KERN_INFO "%s: %s at 0x%lx, "
                   "%2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x, "
                   "IRQ %d\n",
                   dev->name,
                   rtl_chip_info[ent->driver_data].name,
                   dev->base_addr,
                   dev->dev_addr[0], dev->dev_addr[1],
                   dev->dev_addr[2], dev->dev_addr[3],
                   dev->dev_addr[4], dev->dev_addr[5], dev->irq);
      }

      rtl8169_hw_phy_config(dev);

      dprintk("Set MAC Reg C+CR Offset 0x82h = 0x01h\n");
      RTL_W8(0x82, 0x01);

      if (tp->mac_version < RTL_GIGA_MAC_VER_E) {
            dprintk("Set PCI Latency=0x40\n");
            pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0x40);
      }

      if (tp->mac_version == RTL_GIGA_MAC_VER_D) {
            dprintk("Set MAC Reg C+CR Offset 0x82h = 0x01h\n");
            RTL_W8(0x82, 0x01);
            dprintk("Set PHY Reg 0x0bh = 0x00h\n");
            mdio_write(ioaddr, 0x0b, 0x0000); //w 0x0b 15 0 0
      }

      rtl8169_link_option(board_idx, &autoneg, &speed, &duplex);

      rtl8169_set_speed(dev, autoneg, speed, duplex);
      
      if ((RTL_R8(PHYstatus) & TBI_Enable) && netif_msg_link(tp))
            printk(KERN_INFO PFX "%s: TBI auto-negotiating\n", dev->name);

      return 0;
}

static void __devexit
rtl8169_remove_one(struct pci_dev *pdev)
{
      struct net_device *dev = pci_get_drvdata(pdev);
      struct rtl8169_private *tp = netdev_priv(dev);

      assert(dev != NULL);
      assert(tp != NULL);

      unregister_netdev(dev);
      rtl8169_release_board(pdev, dev, tp->mmio_addr);
      pci_set_drvdata(pdev, NULL);
}

static void rtl8169_set_rxbufsize(struct rtl8169_private *tp,
                          struct net_device *dev)
{
      unsigned int mtu = dev->mtu;

      tp->rx_buf_sz = (mtu > RX_BUF_SIZE) ? mtu + ETH_HLEN + 8 : RX_BUF_SIZE;
}

static int rtl8169_open(struct net_device *dev)
{
      struct rtl8169_private *tp = netdev_priv(dev);
      struct pci_dev *pdev = tp->pci_dev;
      int retval;

      rtl8169_set_rxbufsize(tp, dev);

      retval =
          request_irq(dev->irq, rtl8169_interrupt, IRQF_SHARED, dev->name, dev);
      if (retval < 0)
            goto out;

      retval = -ENOMEM;

      /*
       * Rx and Tx desscriptors needs 256 bytes alignment.
       * pci_alloc_consistent provides more.
       */
      tp->TxDescArray = pci_alloc_consistent(pdev, R8169_TX_RING_BYTES,
                                     &tp->TxPhyAddr);
      if (!tp->TxDescArray)
            goto err_free_irq;

      tp->RxDescArray = pci_alloc_consistent(pdev, R8169_RX_RING_BYTES,
                                     &tp->RxPhyAddr);
      if (!tp->RxDescArray)
            goto err_free_tx;

      retval = rtl8169_init_ring(dev);
      if (retval < 0)
            goto err_free_rx;

      INIT_WORK(&tp->task, NULL, dev);

      rtl8169_hw_start(dev);

      rtl8169_request_timer(dev);

      rtl8169_check_link_status(dev, tp, tp->mmio_addr);
out:
      return retval;

err_free_rx:
      pci_free_consistent(pdev, R8169_RX_RING_BYTES, tp->RxDescArray,
                      tp->RxPhyAddr);
err_free_tx:
      pci_free_consistent(pdev, R8169_TX_RING_BYTES, tp->TxDescArray,
                      tp->TxPhyAddr);
err_free_irq:
      free_irq(dev->irq, dev);
      goto out;
}

static void rtl8169_hw_reset(void __iomem *ioaddr)
{
      /* Disable interrupts */
      rtl8169_irq_mask_and_ack(ioaddr);

      /* Reset the chipset */
      RTL_W8(ChipCmd, CmdReset);

      /* PCI commit */
      RTL_R8(ChipCmd);
}

static void
rtl8169_hw_start(struct net_device *dev)
{
      struct rtl8169_private *tp = netdev_priv(dev);
      void __iomem *ioaddr = tp->mmio_addr;
      u32 i;

      /* Soft reset the chip. */
      RTL_W8(ChipCmd, CmdReset);

      /* Check that the chip has finished the reset. */
      for (i = 1000; i > 0; i--) {
            if ((RTL_R8(ChipCmd) & CmdReset) == 0)
                  break;
            udelay(10);
      }

      RTL_W8(Cfg9346, Cfg9346_Unlock);
      RTL_W8(ChipCmd, CmdTxEnb | CmdRxEnb);
      RTL_W8(EarlyTxThres, EarlyTxThld);

      /* Low hurts. Let's disable the filtering. */
      RTL_W16(RxMaxSize, 16383);

      /* Set Rx Config register */
      i = rtl8169_rx_config |
            (RTL_R32(RxConfig) & rtl_chip_info[tp->chipset].RxConfigMask);
      RTL_W32(RxConfig, i);

      /* Set DMA burst size and Interframe Gap Time */
      RTL_W32(TxConfig,
            (TX_DMA_BURST << TxDMAShift) | (InterFrameGap <<
                                    TxInterFrameGapShift));
      tp->cp_cmd |= RTL_R16(CPlusCmd);
      RTL_W16(CPlusCmd, tp->cp_cmd);

      if ((tp->mac_version == RTL_GIGA_MAC_VER_D) ||
          (tp->mac_version == RTL_GIGA_MAC_VER_E)) {
            dprintk(KERN_INFO PFX "Set MAC Reg C+CR Offset 0xE0. "
                  "Bit-3 and bit-14 MUST be 1\n");
            tp->cp_cmd |= (1 << 14) | PCIMulRW;
            RTL_W16(CPlusCmd, tp->cp_cmd);
      }

      /*
       * Undocumented corner. Supposedly:
       * (TxTimer << 12) | (TxPackets << 8) | (RxTimer << 4) | RxPackets
       */
      RTL_W16(IntrMitigate, 0x0000);

      RTL_W32(TxDescStartAddrLow, ((u64) tp->TxPhyAddr & DMA_32BIT_MASK));
      RTL_W32(TxDescStartAddrHigh, ((u64) tp->TxPhyAddr >> 32));
      RTL_W32(RxDescAddrLow, ((u64) tp->RxPhyAddr & DMA_32BIT_MASK));
      RTL_W32(RxDescAddrHigh, ((u64) tp->RxPhyAddr >> 32));
      RTL_W8(Cfg9346, Cfg9346_Lock);
      udelay(10);

      RTL_W32(RxMissed, 0);

      rtl8169_set_rx_mode(dev);

      /* no early-rx interrupts */
      RTL_W16(MultiIntr, RTL_R16(MultiIntr) & 0xF000);

      /* Enable all known interrupts by setting the interrupt mask. */
      RTL_W16(IntrMask, rtl8169_intr_mask);

      netif_start_queue(dev);
}

static int rtl8169_change_mtu(struct net_device *dev, int new_mtu)
{
      struct rtl8169_private *tp = netdev_priv(dev);
      int ret = 0;

      if (new_mtu < ETH_ZLEN || new_mtu > SafeMtu)
            return -EINVAL;

      dev->mtu = new_mtu;

      if (!netif_running(dev))
            goto out;

      rtl8169_down(dev);

      rtl8169_set_rxbufsize(tp, dev);

      ret = rtl8169_init_ring(dev);
      if (ret < 0)
            goto out;

      netif_poll_enable(dev);

      rtl8169_hw_start(dev);

      rtl8169_request_timer(dev);

out:
      return ret;
}

static inline void rtl8169_make_unusable_by_asic(struct RxDesc *desc)
{
      desc->addr = 0x0badbadbadbadbadull;
      desc->opts1 &= ~cpu_to_le32(DescOwn | RsvdMask);
}

static void rtl8169_free_rx_skb(struct rtl8169_private *tp,
                        struct sk_buff **sk_buff, struct RxDesc *desc)
{
      struct pci_dev *pdev = tp->pci_dev;

      pci_unmap_single(pdev, le64_to_cpu(desc->addr), tp->rx_buf_sz,
                   PCI_DMA_FROMDEVICE);
      dev_kfree_skb(*sk_buff);
      *sk_buff = NULL;
      rtl8169_make_unusable_by_asic(desc);
}

static inline void rtl8169_mark_to_asic(struct RxDesc *desc, u32 rx_buf_sz)
{
      u32 eor = le32_to_cpu(desc->opts1) & RingEnd;

      desc->opts1 = cpu_to_le32(DescOwn | eor | rx_buf_sz);
}

static inline void rtl8169_map_to_asic(struct RxDesc *desc, dma_addr_t mapping,
                               u32 rx_buf_sz)
{
      desc->addr = cpu_to_le64(mapping);
      wmb();
      rtl8169_mark_to_asic(desc, rx_buf_sz);
}

static int rtl8169_alloc_rx_skb(struct pci_dev *pdev, struct sk_buff **sk_buff,
                        struct RxDesc *desc, int rx_buf_sz)
{
      struct sk_buff *skb;
      dma_addr_t mapping;
      int ret = 0;

      skb = dev_alloc_skb(rx_buf_sz + NET_IP_ALIGN);
      if (!skb)
            goto err_out;

      skb_reserve(skb, NET_IP_ALIGN);
      *sk_buff = skb;

      mapping = pci_map_single(pdev, skb->data, rx_buf_sz,
                         PCI_DMA_FROMDEVICE);

      rtl8169_map_to_asic(desc, mapping, rx_buf_sz);

out:
      return ret;

err_out:
      ret = -ENOMEM;
      rtl8169_make_unusable_by_asic(desc);
      goto out;
}

static void rtl8169_rx_clear(struct rtl8169_private *tp)
{
      int i;

      for (i = 0; i < NUM_RX_DESC; i++) {
            if (tp->Rx_skbuff[i]) {
                  rtl8169_free_rx_skb(tp, tp->Rx_skbuff + i,
                                  tp->RxDescArray + i);
            }
      }
}

static u32 rtl8169_rx_fill(struct rtl8169_private *tp, struct net_device *dev,
                     u32 start, u32 end)
{
      u32 cur;
      
      for (cur = start; end - cur > 0; cur++) {
            int ret, i = cur % NUM_RX_DESC;

            if (tp->Rx_skbuff[i])
                  continue;
                  
            ret = rtl8169_alloc_rx_skb(tp->pci_dev, tp->Rx_skbuff + i,
                                 tp->RxDescArray + i, tp->rx_buf_sz);
            if (ret < 0)
                  break;
      }
      return cur - start;
}

static inline void rtl8169_mark_as_last_descriptor(struct RxDesc *desc)
{
      desc->opts1 |= cpu_to_le32(RingEnd);
}

static void rtl8169_init_ring_indexes(struct rtl8169_private *tp)
{
      tp->dirty_tx = tp->dirty_rx = tp->cur_tx = tp->cur_rx = 0;
}

static int rtl8169_init_ring(struct net_device *dev)
{
      struct rtl8169_private *tp = netdev_priv(dev);

      rtl8169_init_ring_indexes(tp);

      memset(tp->tx_skb, 0x0, NUM_TX_DESC * sizeof(struct ring_info));
      memset(tp->Rx_skbuff, 0x0, NUM_RX_DESC * sizeof(struct sk_buff *));

      if (rtl8169_rx_fill(tp, dev, 0, NUM_RX_DESC) != NUM_RX_DESC)
            goto err_out;

      rtl8169_mark_as_last_descriptor(tp->RxDescArray + NUM_RX_DESC - 1);

      return 0;

err_out:
      rtl8169_rx_clear(tp);
      return -ENOMEM;
}

static void rtl8169_unmap_tx_skb(struct pci_dev *pdev, struct ring_info *tx_skb,
                         struct TxDesc *desc)
{
      unsigned int len = tx_skb->len;

      pci_unmap_single(pdev, le64_to_cpu(desc->addr), len, PCI_DMA_TODEVICE);
      desc->opts1 = 0x00;
      desc->opts2 = 0x00;
      desc->addr = 0x00;
      tx_skb->len = 0;
}

static void rtl8169_tx_clear(struct rtl8169_private *tp)
{
      unsigned int i;

      for (i = tp->dirty_tx; i < tp->dirty_tx + NUM_TX_DESC; i++) {
            unsigned int entry = i % NUM_TX_DESC;
            struct ring_info *tx_skb = tp->tx_skb + entry;
            unsigned int len = tx_skb->len;

            if (len) {
                  struct sk_buff *skb = tx_skb->skb;

                  rtl8169_unmap_tx_skb(tp->pci_dev, tx_skb,
                                   tp->TxDescArray + entry);
                  if (skb) {
                        dev_kfree_skb(skb);
                        tx_skb->skb = NULL;
                  }
                  tp->stats.tx_dropped++;
            }
      }
      tp->cur_tx = tp->dirty_tx = 0;
}

static void rtl8169_schedule_work(struct net_device *dev, void (*task)(void *))
{
      struct rtl8169_private *tp = netdev_priv(dev);

      PREPARE_WORK(&tp->task, task, dev);
      schedule_delayed_work(&tp->task, 4);
}

static void rtl8169_wait_for_quiescence(struct net_device *dev)
{
      struct rtl8169_private *tp = netdev_priv(dev);
      void __iomem *ioaddr = tp->mmio_addr;

      synchronize_irq(dev->irq);

      /* Wait for any pending NAPI task to complete */
      netif_poll_disable(dev);

      rtl8169_irq_mask_and_ack(ioaddr);

      netif_poll_enable(dev);
}

static void rtl8169_reinit_task(void *_data)
{
      struct net_device *dev = _data;
      int ret;

      if (netif_running(dev)) {
            rtl8169_wait_for_quiescence(dev);
            rtl8169_close(dev);
      }

      ret = rtl8169_open(dev);
      if (unlikely(ret < 0)) {
            if (net_ratelimit()) {
                  struct rtl8169_private *tp = netdev_priv(dev);

                  if (netif_msg_drv(tp)) {
                        printk(PFX KERN_ERR
                               "%s: reinit failure (status = %d)."
                               " Rescheduling.\n", dev->name, ret);
                  }
            }
            rtl8169_schedule_work(dev, rtl8169_reinit_task);
      }
}

static void rtl8169_reset_task(void *_data)
{
      struct net_device *dev = _data;
      struct rtl8169_private *tp = netdev_priv(dev);

      if (!netif_running(dev))
            return;

      rtl8169_wait_for_quiescence(dev);

      rtl8169_rx_interrupt(dev, tp, tp->mmio_addr);
      rtl8169_tx_clear(tp);

      if (tp->dirty_rx == tp->cur_rx) {
            rtl8169_init_ring_indexes(tp);
            rtl8169_hw_start(dev);
            netif_wake_queue(dev);
      } else {
            if (net_ratelimit()) {
                  struct rtl8169_private *tp = netdev_priv(dev);

                  if (netif_msg_intr(tp)) {
                        printk(PFX KERN_EMERG
                               "%s: Rx buffers shortage\n", dev->name);
                  }
            }
            rtl8169_schedule_work(dev, rtl8169_reset_task);
      }
}

static void rtl8169_tx_timeout(struct net_device *dev)
{
      struct rtl8169_private *tp = netdev_priv(dev);

      rtl8169_hw_reset(tp->mmio_addr);

      /* Let's wait a bit while any (async) irq lands on */
      rtl8169_schedule_work(dev, rtl8169_reset_task);
}

static int rtl8169_xmit_frags(struct rtl8169_private *tp, struct sk_buff *skb,
                        u32 opts1)
{
      struct skb_shared_info *info = skb_shinfo(skb);
      unsigned int cur_frag, entry;
      struct TxDesc *txd;

      entry = tp->cur_tx;
      for (cur_frag = 0; cur_frag < info->nr_frags; cur_frag++) {
            skb_frag_t *frag = info->frags + cur_frag;
            dma_addr_t mapping;
            u32 status, len;
            void *addr;

            entry = (entry + 1) % NUM_TX_DESC;

            txd = tp->TxDescArray + entry;
            len = frag->size;
            addr = ((void *) page_address(frag->page)) + frag->page_offset;
            mapping = pci_map_single(tp->pci_dev, addr, len, PCI_DMA_TODEVICE);

            /* anti gcc 2.95.3 bugware (sic) */
            status = opts1 | len | (RingEnd * !((entry + 1) % NUM_TX_DESC));

            txd->opts1 = cpu_to_le32(status);
            txd->addr = cpu_to_le64(mapping);

            tp->tx_skb[entry].len = len;
      }

      if (cur_frag) {
            tp->tx_skb[entry].skb = skb;
            txd->opts1 |= cpu_to_le32(LastFrag);
      }

      return cur_frag;
}

static inline u32 rtl8169_tso_csum(struct sk_buff *skb, struct net_device *dev)
{
      if (dev->features & NETIF_F_TSO) {
            u32 mss = skb_shinfo(skb)->gso_size;

            if (mss)
                  return LargeSend | ((mss & MSSMask) << MSSShift);
      }
      if (skb->ip_summed == CHECKSUM_HW) {
            const struct iphdr *ip = skb->nh.iph;

            if (ip->protocol == IPPROTO_TCP)
                  return IPCS | TCPCS;
            else if (ip->protocol == IPPROTO_UDP)
                  return IPCS | UDPCS;
            WARN_ON(1); /* we need a WARN() */
      }
      return 0;
}

static int rtl8169_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
      struct rtl8169_private *tp = netdev_priv(dev);
      unsigned int frags, entry = tp->cur_tx % NUM_TX_DESC;
      struct TxDesc *txd = tp->TxDescArray + entry;
      void __iomem *ioaddr = tp->mmio_addr;
      dma_addr_t mapping;
      u32 status, len;
      u32 opts1;
      int ret = 0;
      
      if (unlikely(TX_BUFFS_AVAIL(tp) < skb_shinfo(skb)->nr_frags)) {
            if (netif_msg_drv(tp)) {
                  printk(KERN_ERR
                         "%s: BUG! Tx Ring full when queue awake!\n",
                         dev->name);
            }
            goto err_stop;
      }

      if (unlikely(le32_to_cpu(txd->opts1) & DescOwn))
            goto err_stop;

      opts1 = DescOwn | rtl8169_tso_csum(skb, dev);

      frags = rtl8169_xmit_frags(tp, skb, opts1);
      if (frags) {
            len = skb_headlen(skb);
            opts1 |= FirstFrag;
      } else {
            len = skb->len;

            if (unlikely(len < ETH_ZLEN)) {
                  if (skb_padto(skb, ETH_ZLEN))
                        goto err_update_stats;
                  len = ETH_ZLEN;
            }

            opts1 |= FirstFrag | LastFrag;
            tp->tx_skb[entry].skb = skb;
      }

      mapping = pci_map_single(tp->pci_dev, skb->data, len, PCI_DMA_TODEVICE);

      tp->tx_skb[entry].len = len;
      txd->addr = cpu_to_le64(mapping);
      txd->opts2 = cpu_to_le32(rtl8169_tx_vlan_tag(tp, skb));

      wmb();

      /* anti gcc 2.95.3 bugware (sic) */
      status = opts1 | len | (RingEnd * !((entry + 1) % NUM_TX_DESC));
      txd->opts1 = cpu_to_le32(status);

      dev->trans_start = jiffies;

      tp->cur_tx += frags + 1;

      smp_wmb();

      RTL_W8(TxPoll, 0x40);   /* set polling bit */

      if (TX_BUFFS_AVAIL(tp) < MAX_SKB_FRAGS) {
            netif_stop_queue(dev);
            smp_rmb();
            if (TX_BUFFS_AVAIL(tp) >= MAX_SKB_FRAGS)
                  netif_wake_queue(dev);
      }

out:
      return ret;

err_stop:
      netif_stop_queue(dev);
      ret = 1;
err_update_stats:
      tp->stats.tx_dropped++;
      goto out;
}

static void rtl8169_pcierr_interrupt(struct net_device *dev)
{
      struct rtl8169_private *tp = netdev_priv(dev);
      struct pci_dev *pdev = tp->pci_dev;
      void __iomem *ioaddr = tp->mmio_addr;
      u16 pci_status, pci_cmd;

      pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
      pci_read_config_word(pdev, PCI_STATUS, &pci_status);

      if (netif_msg_intr(tp)) {
            printk(KERN_ERR
                   "%s: PCI error (cmd = 0x%04x, status = 0x%04x).\n",
                   dev->name, pci_cmd, pci_status);
      }

      /*
       * The recovery sequence below admits a very elaborated explanation:
       * - it seems to work;
       * - I did not see what else could be done.
       *
       * Feel free to adjust to your needs.
       */
      pci_write_config_word(pdev, PCI_COMMAND,
                        pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);

      pci_write_config_word(pdev, PCI_STATUS,
            pci_status & (PCI_STATUS_DETECTED_PARITY |
            PCI_STATUS_SIG_SYSTEM_ERROR | PCI_STATUS_REC_MASTER_ABORT |
            PCI_STATUS_REC_TARGET_ABORT | PCI_STATUS_SIG_TARGET_ABORT));

      /* The infamous DAC f*ckup only happens at boot time */
      if ((tp->cp_cmd & PCIDAC) && !tp->dirty_rx && !tp->cur_rx) {
            if (netif_msg_intr(tp))
                  printk(KERN_INFO "%s: disabling PCI DAC.\n", dev->name);
            tp->cp_cmd &= ~PCIDAC;
            RTL_W16(CPlusCmd, tp->cp_cmd);
            dev->features &= ~NETIF_F_HIGHDMA;
            rtl8169_schedule_work(dev, rtl8169_reinit_task);
      }

      rtl8169_hw_reset(ioaddr);
}

static void
rtl8169_tx_interrupt(struct net_device *dev, struct rtl8169_private *tp,
                 void __iomem *ioaddr)
{
      unsigned int dirty_tx, tx_left;

      assert(dev != NULL);
      assert(tp != NULL);
      assert(ioaddr != NULL);

      dirty_tx = tp->dirty_tx;
      smp_rmb();
      tx_left = tp->cur_tx - dirty_tx;

      while (tx_left > 0) {
            unsigned int entry = dirty_tx % NUM_TX_DESC;
            struct ring_info *tx_skb = tp->tx_skb + entry;
            u32 len = tx_skb->len;
            u32 status;

            rmb();
            status = le32_to_cpu(tp->TxDescArray[entry].opts1);
            if (status & DescOwn)
                  break;

            tp->stats.tx_bytes += len;
            tp->stats.tx_packets++;

            rtl8169_unmap_tx_skb(tp->pci_dev, tx_skb, tp->TxDescArray + entry);

            if (status & LastFrag) {
                  dev_kfree_skb_irq(tx_skb->skb);
                  tx_skb->skb = NULL;
            }
            dirty_tx++;
            tx_left--;
      }

      if (tp->dirty_tx != dirty_tx) {
            tp->dirty_tx = dirty_tx;
            smp_wmb();
            if (netif_queue_stopped(dev) &&
                (TX_BUFFS_AVAIL(tp) >= MAX_SKB_FRAGS)) {
                  netif_wake_queue(dev);
            }
      }
}

static inline int rtl8169_fragmented_frame(u32 status)
{
      return (status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag);
}

static inline void rtl8169_rx_csum(struct sk_buff *skb, struct RxDesc *desc)
{
      u32 opts1 = le32_to_cpu(desc->opts1);
      u32 status = opts1 & RxProtoMask;

      if (((status == RxProtoTCP) && !(opts1 & TCPFail)) ||
          ((status == RxProtoUDP) && !(opts1 & UDPFail)) ||
          ((status == RxProtoIP) && !(opts1 & IPFail)))
            skb->ip_summed = CHECKSUM_UNNECESSARY;
      else
            skb->ip_summed = CHECKSUM_NONE;
}

static inline int rtl8169_try_rx_copy(struct sk_buff **sk_buff, int pkt_size,
                              struct RxDesc *desc, int rx_buf_sz)
{
      int ret = -1;

      if (pkt_size < rx_copybreak) {
            struct sk_buff *skb;

            skb = dev_alloc_skb(pkt_size + NET_IP_ALIGN);
            if (skb) {
                  skb_reserve(skb, NET_IP_ALIGN);
                  eth_copy_and_sum(skb, sk_buff[0]->data, pkt_size, 0);
                  *sk_buff = skb;
                  rtl8169_mark_to_asic(desc, rx_buf_sz);
                  ret = 0;
            }
      }
      return ret;
}

static int
rtl8169_rx_interrupt(struct net_device *dev, struct rtl8169_private *tp,
                 void __iomem *ioaddr)
{
      unsigned int cur_rx, rx_left;
      unsigned int delta, count;

      assert(dev != NULL);
      assert(tp != NULL);
      assert(ioaddr != NULL);

      cur_rx = tp->cur_rx;
      rx_left = NUM_RX_DESC + tp->dirty_rx - cur_rx;
      rx_left = rtl8169_rx_quota(rx_left, (u32) dev->quota);

      for (; rx_left > 0; rx_left--, cur_rx++) {
            unsigned int entry = cur_rx % NUM_RX_DESC;
            struct RxDesc *desc = tp->RxDescArray + entry;
            u32 status;

            rmb();
            status = le32_to_cpu(desc->opts1);

            if (status & DescOwn)
                  break;
            if (unlikely(status & RxRES)) {
                  if (netif_msg_rx_err(tp)) {
                        printk(KERN_INFO
                               "%s: Rx ERROR. status = %08x\n",
                               dev->name, status);
                  }
                  tp->stats.rx_errors++;
                  if (status & (RxRWT | RxRUNT))
                        tp->stats.rx_length_errors++;
                  if (status & RxCRC)
                        tp->stats.rx_crc_errors++;
                  rtl8169_mark_to_asic(desc, tp->rx_buf_sz);
            } else {
                  struct sk_buff *skb = tp->Rx_skbuff[entry];
                  int pkt_size = (status & 0x00001FFF) - 4;
                  void (*pci_action)(struct pci_dev *, dma_addr_t,
                        size_t, int) = pci_dma_sync_single_for_device;

                  /*
                   * The driver does not support incoming fragmented
                   * frames. They are seen as a symptom of over-mtu
                   * sized frames.
                   */
                  if (unlikely(rtl8169_fragmented_frame(status))) {
                        tp->stats.rx_dropped++;
                        tp->stats.rx_length_errors++;
                        rtl8169_mark_to_asic(desc, tp->rx_buf_sz);
                        continue;
                  }

                  rtl8169_rx_csum(skb, desc);
                  
                  pci_dma_sync_single_for_cpu(tp->pci_dev,
                        le64_to_cpu(desc->addr), tp->rx_buf_sz,
                        PCI_DMA_FROMDEVICE);

                  if (rtl8169_try_rx_copy(&skb, pkt_size, desc,
                                    tp->rx_buf_sz)) {
                        pci_action = pci_unmap_single;
                        tp->Rx_skbuff[entry] = NULL;
                  }

                  pci_action(tp->pci_dev, le64_to_cpu(desc->addr),
                           tp->rx_buf_sz, PCI_DMA_FROMDEVICE);

                  skb->dev = dev;
                  skb_put(skb, pkt_size);
                  skb->protocol = eth_type_trans(skb, dev);

                  if (rtl8169_rx_vlan_skb(tp, desc, skb) < 0)
                        rtl8169_rx_skb(skb);

                  dev->last_rx = jiffies;
                  tp->stats.rx_bytes += pkt_size;
                  tp->stats.rx_packets++;
            }
      }

      count = cur_rx - tp->cur_rx;
      tp->cur_rx = cur_rx;

      delta = rtl8169_rx_fill(tp, dev, tp->dirty_rx, tp->cur_rx);
      if (!delta && count && netif_msg_intr(tp))
            printk(KERN_INFO "%s: no Rx buffer allocated\n", dev->name);
      tp->dirty_rx += delta;

      /*
       * FIXME: until there is periodic timer to try and refill the ring,
       * a temporary shortage may definitely kill the Rx process.
       * - disable the asic to try and avoid an overflow and kick it again
       *   after refill ?
       * - how do others driver handle this condition (Uh oh...).
       */
      if ((tp->dirty_rx + NUM_RX_DESC == tp->cur_rx) && netif_msg_intr(tp))
            printk(KERN_EMERG "%s: Rx buffers exhausted\n", dev->name);

      return count;
}

/* The interrupt handler does all of the Rx thread work and cleans up after the Tx thread. */
static irqreturn_t
rtl8169_interrupt(int irq, void *dev_instance, struct pt_regs *regs)
{
      struct net_device *dev = (struct net_device *) dev_instance;
      struct rtl8169_private *tp = netdev_priv(dev);
      int boguscnt = max_interrupt_work;
      void __iomem *ioaddr = tp->mmio_addr;
      int status;
      int handled = 0;

      do {
            status = RTL_R16(IntrStatus);

            /* hotplug/major error/no more work/shared irq */
            if ((status == 0xFFFF) || !status)
                  break;

            handled = 1;

            if (unlikely(!netif_running(dev))) {
                  rtl8169_asic_down(ioaddr);
                  goto out;
            }

            status &= tp->intr_mask;
            RTL_W16(IntrStatus,
                  (status & RxFIFOOver) ? (status | RxOverflow) : status);

            if (!(status & rtl8169_intr_mask))
                  break;

            if (unlikely(status & SYSErr)) {
                  rtl8169_pcierr_interrupt(dev);
                  break;
            }

            if (status & LinkChg)
                  rtl8169_check_link_status(dev, tp, ioaddr);

#ifdef CONFIG_R8169_NAPI
            RTL_W16(IntrMask, rtl8169_intr_mask & ~rtl8169_napi_event);
            tp->intr_mask = ~rtl8169_napi_event;

            if (likely(netif_rx_schedule_prep(dev)))
                  __netif_rx_schedule(dev);
            else if (netif_msg_intr(tp)) {
                  printk(KERN_INFO "%s: interrupt %04x taken in poll\n",
                         dev->name, status);    
            }
            break;
#else
            /* Rx interrupt */
            if (status & (RxOK | RxOverflow | RxFIFOOver)) {
                  rtl8169_rx_interrupt(dev, tp, ioaddr);
            }
            /* Tx interrupt */
            if (status & (TxOK | TxErr))
                  rtl8169_tx_interrupt(dev, tp, ioaddr);
#endif

            boguscnt--;
      } while (boguscnt > 0);

      if (boguscnt <= 0) {
            if (netif_msg_intr(tp) && net_ratelimit() ) {
                  printk(KERN_WARNING
                         "%s: Too much work at interrupt!\n", dev->name);
            }
            /* Clear all interrupt sources. */
            RTL_W16(IntrStatus, 0xffff);
      }
out:
      return IRQ_RETVAL(handled);
}

#ifdef CONFIG_R8169_NAPI
static int rtl8169_poll(struct net_device *dev, int *budget)
{
      unsigned int work_done, work_to_do = min(*budget, dev->quota);
      struct rtl8169_private *tp = netdev_priv(dev);
      void __iomem *ioaddr = tp->mmio_addr;

      work_done = rtl8169_rx_interrupt(dev, tp, ioaddr);
      rtl8169_tx_interrupt(dev, tp, ioaddr);

      *budget -= work_done;
      dev->quota -= work_done;

      if (work_done < work_to_do) {
            netif_rx_complete(dev);
            tp->intr_mask = 0xffff;
            /*
             * 20040426: the barrier is not strictly required but the
             * behavior of the irq handler could be less predictable
             * without it. Btw, the lack of flush for the posted pci
             * write is safe - FR
             */
            smp_wmb();
            RTL_W16(IntrMask, rtl8169_intr_mask);
      }

      return (work_done >= work_to_do);
}
#endif

static void rtl8169_down(struct net_device *dev)
{
      struct rtl8169_private *tp = netdev_priv(dev);
      void __iomem *ioaddr = tp->mmio_addr;
      unsigned int poll_locked = 0;

      rtl8169_delete_timer(dev);

      netif_stop_queue(dev);

      flush_scheduled_work();

core_down:
      spin_lock_irq(&tp->lock);

      rtl8169_asic_down(ioaddr);

      /* Update the error counts. */
      tp->stats.rx_missed_errors += RTL_R32(RxMissed);
      RTL_W32(RxMissed, 0);

      spin_unlock_irq(&tp->lock);

      synchronize_irq(dev->irq);

      if (!poll_locked) {
            netif_poll_disable(dev);
            poll_locked++;
      }

      /* Give a racing hard_start_xmit a few cycles to complete. */
      synchronize_sched();  /* FIXME: should this be synchronize_irq()? */

      /*
       * And now for the 50k$ question: are IRQ disabled or not ?
       *
       * Two paths lead here:
       * 1) dev->close
       *    -> netif_running() is available to sync the current code and the
       *       IRQ handler. See rtl8169_interrupt for details.
       * 2) dev->change_mtu
       *    -> rtl8169_poll can not be issued again and re-enable the
       *       interruptions. Let's simply issue the IRQ down sequence again.
       */
      if (RTL_R16(IntrMask))
            goto core_down;

      rtl8169_tx_clear(tp);

      rtl8169_rx_clear(tp);
}

static int rtl8169_close(struct net_device *dev)
{
      struct rtl8169_private *tp = netdev_priv(dev);
      struct pci_dev *pdev = tp->pci_dev;

      rtl8169_down(dev);

      free_irq(dev->irq, dev);

      netif_poll_enable(dev);

      pci_free_consistent(pdev, R8169_RX_RING_BYTES, tp->RxDescArray,
                      tp->RxPhyAddr);
      pci_free_consistent(pdev, R8169_TX_RING_BYTES, tp->TxDescArray,
                      tp->TxPhyAddr);
      tp->TxDescArray = NULL;
      tp->RxDescArray = NULL;

      return 0;
}

static void
rtl8169_set_rx_mode(struct net_device *dev)
{
      struct rtl8169_private *tp = netdev_priv(dev);
      void __iomem *ioaddr = tp->mmio_addr;
      unsigned long flags;
      u32 mc_filter[2]; /* Multicast hash filter */
      int i, rx_mode;
      u32 tmp = 0;

      if (dev->flags & IFF_PROMISC) {
            /* Unconditionally log net taps. */
            if (netif_msg_link(tp)) {
                  printk(KERN_NOTICE "%s: Promiscuous mode enabled.\n",
                         dev->name);
            }
            rx_mode =
                AcceptBroadcast | AcceptMulticast | AcceptMyPhys |
                AcceptAllPhys;
            mc_filter[1] = mc_filter[0] = 0xffffffff;
      } else if ((dev->mc_count > multicast_filter_limit)
               || (dev->flags & IFF_ALLMULTI)) {
            /* Too many to filter perfectly -- accept all multicasts. */
            rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
            mc_filter[1] = mc_filter[0] = 0xffffffff;
      } else {
            struct dev_mc_list *mclist;
            rx_mode = AcceptBroadcast | AcceptMyPhys;
            mc_filter[1] = mc_filter[0] = 0;
            for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
                 i++, mclist = mclist->next) {
                  int bit_nr = ether_crc(ETH_ALEN, mclist->dmi_addr) >> 26;
                  mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
                  rx_mode |= AcceptMulticast;
            }
      }

      spin_lock_irqsave(&tp->lock, flags);

      tmp = rtl8169_rx_config | rx_mode |
            (RTL_R32(RxConfig) & rtl_chip_info[tp->chipset].RxConfigMask);

      RTL_W32(RxConfig, tmp);
      RTL_W32(MAR0 + 0, mc_filter[0]);
      RTL_W32(MAR0 + 4, mc_filter[1]);

      spin_unlock_irqrestore(&tp->lock, flags);
}

/**
 *  rtl8169_get_stats - Get rtl8169 read/write statistics
 *  @dev: The Ethernet Device to get statistics for
 *
 *  Get TX/RX statistics for rtl8169
 */
static struct net_device_stats *rtl8169_get_stats(struct net_device *dev)
{
      struct rtl8169_private *tp = netdev_priv(dev);
      void __iomem *ioaddr = tp->mmio_addr;
      unsigned long flags;

      if (netif_running(dev)) {
            spin_lock_irqsave(&tp->lock, flags);
            tp->stats.rx_missed_errors += RTL_R32(RxMissed);
            RTL_W32(RxMissed, 0);
            spin_unlock_irqrestore(&tp->lock, flags);
      }
            
      return &tp->stats;
}

#ifdef CONFIG_PM

static int rtl8169_suspend(struct pci_dev *pdev, pm_message_t state)
{
      struct net_device *dev = pci_get_drvdata(pdev);
      struct rtl8169_private *tp = netdev_priv(dev);
      void __iomem *ioaddr = tp->mmio_addr;

      if (!netif_running(dev))
            goto out;

      netif_device_detach(dev);
      netif_stop_queue(dev);

      spin_lock_irq(&tp->lock);

      rtl8169_asic_down(ioaddr);

      tp->stats.rx_missed_errors += RTL_R32(RxMissed);
      RTL_W32(RxMissed, 0);

      spin_unlock_irq(&tp->lock);

      pci_save_state(pdev);
      pci_enable_wake(pdev, pci_choose_state(pdev, state), tp->wol_enabled);
      pci_set_power_state(pdev, pci_choose_state(pdev, state));
out:
      return 0;
}

static int rtl8169_resume(struct pci_dev *pdev)
{
      struct net_device *dev = pci_get_drvdata(pdev);

      if (!netif_running(dev))
            goto out;

      netif_device_attach(dev);

      pci_set_power_state(pdev, PCI_D0);
      pci_restore_state(pdev);
      pci_enable_wake(pdev, PCI_D0, 0);

      rtl8169_schedule_work(dev, rtl8169_reset_task);
out:
      return 0;
}

#endif /* CONFIG_PM */

static struct pci_driver rtl8169_pci_driver = {
      .name       = MODULENAME,
      .id_table   = rtl8169_pci_tbl,
      .probe            = rtl8169_init_one,
      .remove           = __devexit_p(rtl8169_remove_one),
#ifdef CONFIG_PM
      .suspend    = rtl8169_suspend,
      .resume           = rtl8169_resume,
#endif
};

static int __init
rtl8169_init_module(void)
{
      return pci_module_init(&rtl8169_pci_driver);
}

static void __exit
rtl8169_cleanup_module(void)
{
      pci_unregister_driver(&rtl8169_pci_driver);
}

module_init(rtl8169_init_module);
module_exit(rtl8169_cleanup_module);

Generated by  Doxygen 1.6.0   Back to index