Logo Search packages:      
Sourcecode: linux-2.6 version File versions  Download package

skfddi.c

/*
 * File Name:
 *   skfddi.c
 *
 * Copyright Information:
 *   Copyright SysKonnect 1998,1999.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * The information in this file is provided "AS IS" without warranty.
 *
 * Abstract:
 *   A Linux device driver supporting the SysKonnect FDDI PCI controller
 *   familie.
 *
 * Maintainers:
 *   CG    Christoph Goos (cgoos@syskonnect.de)
 *
 * Contributors:
 *   DM    David S. Miller
 *
 * Address all question to:
 *   linux@syskonnect.de
 *
 * The technical manual for the adapters is available from SysKonnect's
 * web pages: www.syskonnect.com
 * Goto "Support" and search Knowledge Base for "manual".
 *
 * Driver Architecture:
 *   The driver architecture is based on the DEC FDDI driver by
 *   Lawrence V. Stefani and several ethernet drivers.
 *   I also used an existing Windows NT miniport driver.
 *   All hardware dependent fuctions are handled by the SysKonnect
 *   Hardware Module.
 *   The only headerfiles that are directly related to this source
 *   are skfddi.c, h/types.h, h/osdef1st.h, h/targetos.h.
 *   The others belong to the SysKonnect FDDI Hardware Module and
 *   should better not be changed.
 *
 * Modification History:
 *              Date            Name    Description
 *              02-Mar-98       CG  Created.
 *
 *          10-Mar-99   CG    Support for 2.2.x added.
 *          25-Mar-99   CG    Corrected IRQ routing for SMP (APIC)
 *          26-Oct-99   CG    Fixed compilation error on 2.2.13
 *          12-Nov-99   CG    Source code release
 *          22-Nov-99   CG    Included in kernel source.
 *          07-May-00   DM    64 bit fixes, new dma interface
 *          31-Jul-03   DB    Audit copy_*_user in skfp_ioctl
 *                              Daniele Bellucci <bellucda@tiscali.it>
 *          03-Dec-03   SH    Convert to PCI device model
 *
 * Compilation options (-Dxxx):
 *              DRIVERDEBUG     print lots of messages to log file
 *              DUMPPACKETS     print received/transmitted packets to logfile
 * 
 * Tested cpu architectures:
 *    - i386
 *    - sparc64
 */

/* Version information string - should be updated prior to */
/* each new release!!! */
#define VERSION         "2.07"

static const char * const boot_msg = 
      "SysKonnect FDDI PCI Adapter driver v" VERSION " for\n"
      "  SK-55xx/SK-58xx adapters (SK-NET FDDI-FP/UP/LP)";

/* Include files */

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/fddidevice.h>
#include <linux/skbuff.h>
#include <linux/bitops.h>

#include <asm/byteorder.h>
#include <asm/io.h>
#include <asm/uaccess.h>

#include    "h/types.h"
#undef ADDR             // undo Linux definition
#include    "h/skfbi.h"
#include    "h/fddi.h"
#include    "h/smc.h"
#include    "h/smtstate.h"


// Define module-wide (static) routines
static int skfp_driver_init(struct net_device *dev);
static int skfp_open(struct net_device *dev);
static int skfp_close(struct net_device *dev);
static irqreturn_t skfp_interrupt(int irq, void *dev_id, struct pt_regs *regs);
static struct net_device_stats *skfp_ctl_get_stats(struct net_device *dev);
static void skfp_ctl_set_multicast_list(struct net_device *dev);
static void skfp_ctl_set_multicast_list_wo_lock(struct net_device *dev);
static int skfp_ctl_set_mac_address(struct net_device *dev, void *addr);
static int skfp_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
static int skfp_send_pkt(struct sk_buff *skb, struct net_device *dev);
static void send_queued_packets(struct s_smc *smc);
static void CheckSourceAddress(unsigned char *frame, unsigned char *hw_addr);
static void ResetAdapter(struct s_smc *smc);


// Functions needed by the hardware module
void *mac_drv_get_space(struct s_smc *smc, u_int size);
void *mac_drv_get_desc_mem(struct s_smc *smc, u_int size);
unsigned long mac_drv_virt2phys(struct s_smc *smc, void *virt);
unsigned long dma_master(struct s_smc *smc, void *virt, int len, int flag);
void dma_complete(struct s_smc *smc, volatile union s_fp_descr *descr,
              int flag);
void mac_drv_tx_complete(struct s_smc *smc, volatile struct s_smt_fp_txd *txd);
void llc_restart_tx(struct s_smc *smc);
void mac_drv_rx_complete(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
                   int frag_count, int len);
void mac_drv_requeue_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
                   int frag_count);
void mac_drv_fill_rxd(struct s_smc *smc);
void mac_drv_clear_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
                   int frag_count);
int mac_drv_rx_init(struct s_smc *smc, int len, int fc, char *look_ahead,
                int la_len);
void dump_data(unsigned char *Data, int length);

// External functions from the hardware module
extern u_int mac_drv_check_space(void);
extern void read_address(struct s_smc *smc, u_char * mac_addr);
extern void card_stop(struct s_smc *smc);
extern int mac_drv_init(struct s_smc *smc);
extern void hwm_tx_frag(struct s_smc *smc, char far * virt, u_long phys,
                  int len, int frame_status);
extern int hwm_tx_init(struct s_smc *smc, u_char fc, int frag_count,
                   int frame_len, int frame_status);
extern int init_smt(struct s_smc *smc, u_char * mac_addr);
extern void fddi_isr(struct s_smc *smc);
extern void hwm_rx_frag(struct s_smc *smc, char far * virt, u_long phys,
                  int len, int frame_status);
extern void mac_drv_rx_mode(struct s_smc *smc, int mode);
extern void mac_drv_clear_rx_queue(struct s_smc *smc);
extern void enable_tx_irq(struct s_smc *smc, u_short queue);

static struct pci_device_id skfddi_pci_tbl[] = {
      { PCI_VENDOR_ID_SK, PCI_DEVICE_ID_SK_FP, PCI_ANY_ID, PCI_ANY_ID, },
      { }               /* Terminating entry */
};
MODULE_DEVICE_TABLE(pci, skfddi_pci_tbl);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Mirko Lindner <mlindner@syskonnect.de>");

// Define module-wide (static) variables

static int num_boards;  /* total number of adapters configured */

#ifdef DRIVERDEBUG
#define PRINTK(s, args...) printk(s, ## args)
#else
#define PRINTK(s, args...)
#endif                        // DRIVERDEBUG

/*
 * =================
 * = skfp_init_one =
 * =================
 *   
 * Overview:
 *   Probes for supported FDDI PCI controllers
 *  
 * Returns:
 *   Condition code
 *       
 * Arguments:
 *   pdev - pointer to PCI device information
 *
 * Functional Description:
 *   This is now called by PCI driver registration process
 *   for each board found.
 *   
 * Return Codes:
 *   0           - This device (fddi0, fddi1, etc) configured successfully
 *   -ENODEV - No devices present, or no SysKonnect FDDI PCI device
 *                         present for this device name
 *
 *
 * Side Effects:
 *   Device structures for FDDI adapters (fddi0, fddi1, etc) are
 *   initialized and the board resources are read and stored in
 *   the device structure.
 */
static int skfp_init_one(struct pci_dev *pdev,
                        const struct pci_device_id *ent)
{
      struct net_device *dev;
      struct s_smc *smc;      /* board pointer */
      void __iomem *mem;
      int err;

      PRINTK(KERN_INFO "entering skfp_init_one\n");

      if (num_boards == 0) 
            printk("%s\n", boot_msg);

      err = pci_enable_device(pdev);
      if (err)
            return err;

      err = pci_request_regions(pdev, "skfddi");
      if (err)
            goto err_out1;

      pci_set_master(pdev);

#ifdef MEM_MAPPED_IO
      if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
            printk(KERN_ERR "skfp: region is not an MMIO resource\n");
            err = -EIO;
            goto err_out2;
      }

      mem = ioremap(pci_resource_start(pdev, 0), 0x4000);
#else
      if (!(pci_resource_flags(pdev, 1) & IO_RESOURCE_IO)) {
            printk(KERN_ERR "skfp: region is not PIO resource\n");
            err = -EIO;
            goto err_out2;
      }

      mem = ioport_map(pci_resource_start(pdev, 1), FP_IO_LEN);
#endif
      if (!mem) {
            printk(KERN_ERR "skfp:  Unable to map register, "
                        "FDDI adapter will be disabled.\n");
            err = -EIO;
            goto err_out2;
      }

      dev = alloc_fddidev(sizeof(struct s_smc));
      if (!dev) {
            printk(KERN_ERR "skfp: Unable to allocate fddi device, "
                        "FDDI adapter will be disabled.\n");
            err = -ENOMEM;
            goto err_out3;
      }

      dev->irq = pdev->irq;
      dev->get_stats = &skfp_ctl_get_stats;
      dev->open = &skfp_open;
      dev->stop = &skfp_close;
      dev->hard_start_xmit = &skfp_send_pkt;
      dev->set_multicast_list = &skfp_ctl_set_multicast_list;
      dev->set_mac_address = &skfp_ctl_set_mac_address;
      dev->do_ioctl = &skfp_ioctl;
      dev->header_cache_update = NULL;    /* not supported */

      SET_MODULE_OWNER(dev);
      SET_NETDEV_DEV(dev, &pdev->dev);

      /* Initialize board structure with bus-specific info */
      smc = netdev_priv(dev);
      smc->os.dev = dev;
      smc->os.bus_type = SK_BUS_TYPE_PCI;
      smc->os.pdev = *pdev;
      smc->os.QueueSkb = MAX_TX_QUEUE_LEN;
      smc->os.MaxFrameSize = MAX_FRAME_SIZE;
      smc->os.dev = dev;
      smc->hw.slot = -1;
      smc->hw.iop = mem;
      smc->os.ResetRequested = FALSE;
      skb_queue_head_init(&smc->os.SendSkbQueue);

      dev->base_addr = (unsigned long)mem;

      err = skfp_driver_init(dev);
      if (err)
            goto err_out4;

      err = register_netdev(dev);
      if (err)
            goto err_out5;

      ++num_boards;
      pci_set_drvdata(pdev, dev);

      if ((pdev->subsystem_device & 0xff00) == 0x5500 ||
          (pdev->subsystem_device & 0xff00) == 0x5800) 
            printk("%s: SysKonnect FDDI PCI adapter"
                   " found (SK-%04X)\n", dev->name,   
                   pdev->subsystem_device);
      else
            printk("%s: FDDI PCI adapter found\n", dev->name);

      return 0;
err_out5:
      if (smc->os.SharedMemAddr) 
            pci_free_consistent(pdev, smc->os.SharedMemSize,
                            smc->os.SharedMemAddr, 
                            smc->os.SharedMemDMA);
      pci_free_consistent(pdev, MAX_FRAME_SIZE,
                      smc->os.LocalRxBuffer, smc->os.LocalRxBufferDMA);
err_out4:
      free_netdev(dev);
err_out3:
#ifdef MEM_MAPPED_IO
      iounmap(mem);
#else
      ioport_unmap(mem);
#endif
err_out2:
      pci_release_regions(pdev);
err_out1:
      pci_disable_device(pdev);
      return err;
}

/*
 * Called for each adapter board from pci_unregister_driver
 */
static void __devexit skfp_remove_one(struct pci_dev *pdev)
{
      struct net_device *p = pci_get_drvdata(pdev);
      struct s_smc *lp = netdev_priv(p);

      unregister_netdev(p);

      if (lp->os.SharedMemAddr) {
            pci_free_consistent(&lp->os.pdev,
                            lp->os.SharedMemSize,
                            lp->os.SharedMemAddr,
                            lp->os.SharedMemDMA);
            lp->os.SharedMemAddr = NULL;
      }
      if (lp->os.LocalRxBuffer) {
            pci_free_consistent(&lp->os.pdev,
                            MAX_FRAME_SIZE,
                            lp->os.LocalRxBuffer,
                            lp->os.LocalRxBufferDMA);
            lp->os.LocalRxBuffer = NULL;
      }
#ifdef MEM_MAPPED_IO
      iounmap(lp->hw.iop);
#else
      ioport_unmap(lp->hw.iop);
#endif
      pci_release_regions(pdev);
      free_netdev(p);

      pci_disable_device(pdev);
      pci_set_drvdata(pdev, NULL);
}

/*
 * ====================
 * = skfp_driver_init =
 * ====================
 *   
 * Overview:
 *   Initializes remaining adapter board structure information
 *   and makes sure adapter is in a safe state prior to skfp_open().
 *  
 * Returns:
 *   Condition code
 *       
 * Arguments:
 *   dev - pointer to device information
 *
 * Functional Description:
 *   This function allocates additional resources such as the host memory
 *   blocks needed by the adapter.
 *   The adapter is also reset. The OS must call skfp_open() to open 
 *   the adapter and bring it on-line.
 *
 * Return Codes:
 *    0 - initialization succeeded
 *   -1 - initialization failed
 */
static  int skfp_driver_init(struct net_device *dev)
{
      struct s_smc *smc = netdev_priv(dev);
      skfddi_priv *bp = &smc->os;
      int err = -EIO;

      PRINTK(KERN_INFO "entering skfp_driver_init\n");

      // set the io address in private structures
      bp->base_addr = dev->base_addr;

      // Get the interrupt level from the PCI Configuration Table
      smc->hw.irq = dev->irq;

      spin_lock_init(&bp->DriverLock);
      
      // Allocate invalid frame
      bp->LocalRxBuffer = pci_alloc_consistent(&bp->pdev, MAX_FRAME_SIZE, &bp->LocalRxBufferDMA);
      if (!bp->LocalRxBuffer) {
            printk("could not allocate mem for ");
            printk("LocalRxBuffer: %d byte\n", MAX_FRAME_SIZE);
            goto fail;
      }

      // Determine the required size of the 'shared' memory area.
      bp->SharedMemSize = mac_drv_check_space();
      PRINTK(KERN_INFO "Memory for HWM: %ld\n", bp->SharedMemSize);
      if (bp->SharedMemSize > 0) {
            bp->SharedMemSize += 16;      // for descriptor alignment

            bp->SharedMemAddr = pci_alloc_consistent(&bp->pdev,
                                           bp->SharedMemSize,
                                           &bp->SharedMemDMA);
            if (!bp->SharedMemSize) {
                  printk("could not allocate mem for ");
                  printk("hardware module: %ld byte\n",
                         bp->SharedMemSize);
                  goto fail;
            }
            bp->SharedMemHeap = 0;  // Nothing used yet.

      } else {
            bp->SharedMemAddr = NULL;
            bp->SharedMemHeap = 0;
      }                 // SharedMemSize > 0

      memset(bp->SharedMemAddr, 0, bp->SharedMemSize);

      card_stop(smc);         // Reset adapter.

      PRINTK(KERN_INFO "mac_drv_init()..\n");
      if (mac_drv_init(smc) != 0) {
            PRINTK(KERN_INFO "mac_drv_init() failed.\n");
            goto fail;
      }
      read_address(smc, NULL);
      PRINTK(KERN_INFO "HW-Addr: %02x %02x %02x %02x %02x %02x\n",
             smc->hw.fddi_canon_addr.a[0],
             smc->hw.fddi_canon_addr.a[1],
             smc->hw.fddi_canon_addr.a[2],
             smc->hw.fddi_canon_addr.a[3],
             smc->hw.fddi_canon_addr.a[4],
             smc->hw.fddi_canon_addr.a[5]);
      memcpy(dev->dev_addr, smc->hw.fddi_canon_addr.a, 6);

      smt_reset_defaults(smc, 0);

      return (0);

fail:
      if (bp->SharedMemAddr) {
            pci_free_consistent(&bp->pdev,
                            bp->SharedMemSize,
                            bp->SharedMemAddr,
                            bp->SharedMemDMA);
            bp->SharedMemAddr = NULL;
      }
      if (bp->LocalRxBuffer) {
            pci_free_consistent(&bp->pdev, MAX_FRAME_SIZE,
                            bp->LocalRxBuffer, bp->LocalRxBufferDMA);
            bp->LocalRxBuffer = NULL;
      }
      return err;
}                       // skfp_driver_init


/*
 * =============
 * = skfp_open =
 * =============
 *   
 * Overview:
 *   Opens the adapter
 *  
 * Returns:
 *   Condition code
 *       
 * Arguments:
 *   dev - pointer to device information
 *
 * Functional Description:
 *   This function brings the adapter to an operational state.
 *
 * Return Codes:
 *   0           - Adapter was successfully opened
 *   -EAGAIN - Could not register IRQ
 */
static int skfp_open(struct net_device *dev)
{
      struct s_smc *smc = netdev_priv(dev);
      int err;

      PRINTK(KERN_INFO "entering skfp_open\n");
      /* Register IRQ - support shared interrupts by passing device ptr */
      err = request_irq(dev->irq, (void *) skfp_interrupt, IRQF_SHARED,
                    dev->name, dev);
      if (err)
            return err;

      /*
       * Set current address to factory MAC address
       *
       * Note: We've already done this step in skfp_driver_init.
       *       However, it's possible that a user has set a node
       *               address override, then closed and reopened the
       *               adapter.  Unless we reset the device address field
       *               now, we'll continue to use the existing modified
       *               address.
       */
      read_address(smc, NULL);
      memcpy(dev->dev_addr, smc->hw.fddi_canon_addr.a, 6);

      init_smt(smc, NULL);
      smt_online(smc, 1);
      STI_FBI();

      /* Clear local multicast address tables */
      mac_clear_multicast(smc);

      /* Disable promiscuous filter settings */
      mac_drv_rx_mode(smc, RX_DISABLE_PROMISC);

      netif_start_queue(dev);
      return (0);
}                       // skfp_open


/*
 * ==============
 * = skfp_close =
 * ==============
 *   
 * Overview:
 *   Closes the device/module.
 *  
 * Returns:
 *   Condition code
 *       
 * Arguments:
 *   dev - pointer to device information
 *
 * Functional Description:
 *   This routine closes the adapter and brings it to a safe state.
 *   The interrupt service routine is deregistered with the OS.
 *   The adapter can be opened again with another call to skfp_open().
 *
 * Return Codes:
 *   Always return 0.
 *
 * Assumptions:
 *   No further requests for this adapter are made after this routine is
 *   called.  skfp_open() can be called to reset and reinitialize the
 *   adapter.
 */
static int skfp_close(struct net_device *dev)
{
      struct s_smc *smc = netdev_priv(dev);
      skfddi_priv *bp = &smc->os;

      CLI_FBI();
      smt_reset_defaults(smc, 1);
      card_stop(smc);
      mac_drv_clear_tx_queue(smc);
      mac_drv_clear_rx_queue(smc);

      netif_stop_queue(dev);
      /* Deregister (free) IRQ */
      free_irq(dev->irq, dev);

      skb_queue_purge(&bp->SendSkbQueue);
      bp->QueueSkb = MAX_TX_QUEUE_LEN;

      return (0);
}                       // skfp_close


/*
 * ==================
 * = skfp_interrupt =
 * ==================
 *   
 * Overview:
 *   Interrupt processing routine
 *  
 * Returns:
 *   None
 *       
 * Arguments:
 *   irq        - interrupt vector
 *   dev_id     - pointer to device information
 *       regs   - pointer to registers structure
 *
 * Functional Description:
 *   This routine calls the interrupt processing routine for this adapter.  It
 *   disables and reenables adapter interrupts, as appropriate.  We can support
 *   shared interrupts since the incoming dev_id pointer provides our device
 *   structure context. All the real work is done in the hardware module.
 *
 * Return Codes:
 *   None
 *
 * Assumptions:
 *   The interrupt acknowledgement at the hardware level (eg. ACKing the PIC
 *   on Intel-based systems) is done by the operating system outside this
 *   routine.
 *
 *       System interrupts are enabled through this call.
 *
 * Side Effects:
 *   Interrupts are disabled, then reenabled at the adapter.
 */

irqreturn_t skfp_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
      struct net_device *dev = (struct net_device *) dev_id;
      struct s_smc *smc;      /* private board structure pointer */
      skfddi_priv *bp;

      if (dev == NULL) {
            printk("%s: irq %d for unknown device\n", dev->name, irq);
            return IRQ_NONE;
      }

      smc = netdev_priv(dev);
      bp = &smc->os;

      // IRQs enabled or disabled ?
      if (inpd(ADDR(B0_IMSK)) == 0) {
            // IRQs are disabled: must be shared interrupt
            return IRQ_NONE;
      }
      // Note: At this point, IRQs are enabled.
      if ((inpd(ISR_A) & smc->hw.is_imask) == 0) {    // IRQ?
            // Adapter did not issue an IRQ: must be shared interrupt
            return IRQ_NONE;
      }
      CLI_FBI();        // Disable IRQs from our adapter.
      spin_lock(&bp->DriverLock);

      // Call interrupt handler in hardware module (HWM).
      fddi_isr(smc);

      if (smc->os.ResetRequested) {
            ResetAdapter(smc);
            smc->os.ResetRequested = FALSE;
      }
      spin_unlock(&bp->DriverLock);
      STI_FBI();        // Enable IRQs from our adapter.

      return IRQ_HANDLED;
}                       // skfp_interrupt


/*
 * ======================
 * = skfp_ctl_get_stats =
 * ======================
 *   
 * Overview:
 *   Get statistics for FDDI adapter
 *  
 * Returns:
 *   Pointer to FDDI statistics structure
 *       
 * Arguments:
 *   dev - pointer to device information
 *
 * Functional Description:
 *   Gets current MIB objects from adapter, then
 *   returns FDDI statistics structure as defined
 *   in if_fddi.h.
 *
 *   Note: Since the FDDI statistics structure is
 *   still new and the device structure doesn't
 *   have an FDDI-specific get statistics handler,
 *   we'll return the FDDI statistics structure as
 *   a pointer to an Ethernet statistics structure.
 *   That way, at least the first part of the statistics
 *   structure can be decoded properly.
 *   We'll have to pay attention to this routine as the
 *   device structure becomes more mature and LAN media
 *   independent.
 *
 */
struct net_device_stats *skfp_ctl_get_stats(struct net_device *dev)
{
      struct s_smc *bp = netdev_priv(dev);

      /* Fill the bp->stats structure with driver-maintained counters */

      bp->os.MacStat.port_bs_flag[0] = 0x1234;
      bp->os.MacStat.port_bs_flag[1] = 0x5678;
// goos: need to fill out fddi statistic
#if 0
      /* Get FDDI SMT MIB objects */

/* Fill the bp->stats structure with the SMT MIB object values */

      memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id));
      bp->stats.smt_op_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id;
      bp->stats.smt_hi_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id;
      bp->stats.smt_lo_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id;
      memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data));
      bp->stats.smt_mib_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id;
      bp->stats.smt_mac_cts = bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct;
      bp->stats.smt_non_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct;
      bp->stats.smt_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_master_ct;
      bp->stats.smt_available_paths = bp->cmd_rsp_virt->smt_mib_get.smt_available_paths;
      bp->stats.smt_config_capabilities = bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities;
      bp->stats.smt_config_policy = bp->cmd_rsp_virt->smt_mib_get.smt_config_policy;
      bp->stats.smt_connection_policy = bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy;
      bp->stats.smt_t_notify = bp->cmd_rsp_virt->smt_mib_get.smt_t_notify;
      bp->stats.smt_stat_rpt_policy = bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy;
      bp->stats.smt_trace_max_expiration = bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration;
      bp->stats.smt_bypass_present = bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present;
      bp->stats.smt_ecm_state = bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state;
      bp->stats.smt_cf_state = bp->cmd_rsp_virt->smt_mib_get.smt_cf_state;
      bp->stats.smt_remote_disconnect_flag = bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag;
      bp->stats.smt_station_status = bp->cmd_rsp_virt->smt_mib_get.smt_station_status;
      bp->stats.smt_peer_wrap_flag = bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag;
      bp->stats.smt_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls;
      bp->stats.smt_transition_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls;
      bp->stats.mac_frame_status_functions = bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions;
      bp->stats.mac_t_max_capability = bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability;
      bp->stats.mac_tvx_capability = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability;
      bp->stats.mac_available_paths = bp->cmd_rsp_virt->smt_mib_get.mac_available_paths;
      bp->stats.mac_current_path = bp->cmd_rsp_virt->smt_mib_get.mac_current_path;
      memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN);
      memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN);
      memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN);
      memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN);
      bp->stats.mac_dup_address_test = bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test;
      bp->stats.mac_requested_paths = bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths;
      bp->stats.mac_downstream_port_type = bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type;
      memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN);
      bp->stats.mac_t_req = bp->cmd_rsp_virt->smt_mib_get.mac_t_req;
      bp->stats.mac_t_neg = bp->cmd_rsp_virt->smt_mib_get.mac_t_neg;
      bp->stats.mac_t_max = bp->cmd_rsp_virt->smt_mib_get.mac_t_max;
      bp->stats.mac_tvx_value = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value;
      bp->stats.mac_frame_error_threshold = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold;
      bp->stats.mac_frame_error_ratio = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio;
      bp->stats.mac_rmt_state = bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state;
      bp->stats.mac_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_da_flag;
      bp->stats.mac_una_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag;
      bp->stats.mac_frame_error_flag = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag;
      bp->stats.mac_ma_unitdata_available = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available;
      bp->stats.mac_hardware_present = bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present;
      bp->stats.mac_ma_unitdata_enable = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable;
      bp->stats.path_tvx_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound;
      bp->stats.path_t_max_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound;
      bp->stats.path_max_t_req = bp->cmd_rsp_virt->smt_mib_get.path_max_t_req;
      memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration));
      bp->stats.port_my_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[0];
      bp->stats.port_my_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[1];
      bp->stats.port_neighbor_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0];
      bp->stats.port_neighbor_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1];
      bp->stats.port_connection_policies[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0];
      bp->stats.port_connection_policies[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1];
      bp->stats.port_mac_indicated[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0];
      bp->stats.port_mac_indicated[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1];
      bp->stats.port_current_path[0] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[0];
      bp->stats.port_current_path[1] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[1];
      memcpy(&bp->stats.port_requested_paths[0 * 3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3);
      memcpy(&bp->stats.port_requested_paths[1 * 3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3);
      bp->stats.port_mac_placement[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0];
      bp->stats.port_mac_placement[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1];
      bp->stats.port_available_paths[0] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0];
      bp->stats.port_available_paths[1] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1];
      bp->stats.port_pmd_class[0] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0];
      bp->stats.port_pmd_class[1] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1];
      bp->stats.port_connection_capabilities[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0];
      bp->stats.port_connection_capabilities[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1];
      bp->stats.port_bs_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0];
      bp->stats.port_bs_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1];
      bp->stats.port_ler_estimate[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0];
      bp->stats.port_ler_estimate[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1];
      bp->stats.port_ler_cutoff[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0];
      bp->stats.port_ler_cutoff[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1];
      bp->stats.port_ler_alarm[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0];
      bp->stats.port_ler_alarm[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1];
      bp->stats.port_connect_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0];
      bp->stats.port_connect_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1];
      bp->stats.port_pcm_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0];
      bp->stats.port_pcm_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1];
      bp->stats.port_pc_withhold[0] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0];
      bp->stats.port_pc_withhold[1] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1];
      bp->stats.port_ler_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0];
      bp->stats.port_ler_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1];
      bp->stats.port_hardware_present[0] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0];
      bp->stats.port_hardware_present[1] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1];


      /* Fill the bp->stats structure with the FDDI counter values */

      bp->stats.mac_frame_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls;
      bp->stats.mac_copied_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls;
      bp->stats.mac_transmit_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls;
      bp->stats.mac_error_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls;
      bp->stats.mac_lost_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls;
      bp->stats.port_lct_fail_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls;
      bp->stats.port_lct_fail_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls;
      bp->stats.port_lem_reject_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls;
      bp->stats.port_lem_reject_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls;
      bp->stats.port_lem_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls;
      bp->stats.port_lem_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls;

#endif
      return ((struct net_device_stats *) &bp->os.MacStat);
}                       // ctl_get_stat


/*
 * ==============================
 * = skfp_ctl_set_multicast_list =
 * ==============================
 *   
 * Overview:
 *   Enable/Disable LLC frame promiscuous mode reception
 *   on the adapter and/or update multicast address table.
 *  
 * Returns:
 *   None
 *       
 * Arguments:
 *   dev - pointer to device information
 *
 * Functional Description:
 *   This function acquires the driver lock and only calls
 *   skfp_ctl_set_multicast_list_wo_lock then.
 *   This routine follows a fairly simple algorithm for setting the
 *   adapter filters and CAM:
 *
 *      if IFF_PROMISC flag is set
 *              enable promiscuous mode
 *      else
 *              disable promiscuous mode
 *              if number of multicast addresses <= max. multicast number
 *                      add mc addresses to adapter table
 *              else
 *                      enable promiscuous mode
 *              update adapter filters
 *
 * Assumptions:
 *   Multicast addresses are presented in canonical (LSB) format.
 *
 * Side Effects:
 *   On-board adapter filters are updated.
 */
static void skfp_ctl_set_multicast_list(struct net_device *dev)
{
      struct s_smc *smc = netdev_priv(dev);
      skfddi_priv *bp = &smc->os;
      unsigned long Flags;

      spin_lock_irqsave(&bp->DriverLock, Flags);
      skfp_ctl_set_multicast_list_wo_lock(dev);
      spin_unlock_irqrestore(&bp->DriverLock, Flags);
      return;
}                       // skfp_ctl_set_multicast_list



static void skfp_ctl_set_multicast_list_wo_lock(struct net_device *dev)
{
      struct s_smc *smc = netdev_priv(dev);
      struct dev_mc_list *dmi;      /* ptr to multicast addr entry */
      int i;

      /* Enable promiscuous mode, if necessary */
      if (dev->flags & IFF_PROMISC) {
            mac_drv_rx_mode(smc, RX_ENABLE_PROMISC);
            PRINTK(KERN_INFO "PROMISCUOUS MODE ENABLED\n");
      }
      /* Else, update multicast address table */
      else {
            mac_drv_rx_mode(smc, RX_DISABLE_PROMISC);
            PRINTK(KERN_INFO "PROMISCUOUS MODE DISABLED\n");

            // Reset all MC addresses
            mac_clear_multicast(smc);
            mac_drv_rx_mode(smc, RX_DISABLE_ALLMULTI);

            if (dev->flags & IFF_ALLMULTI) {
                  mac_drv_rx_mode(smc, RX_ENABLE_ALLMULTI);
                  PRINTK(KERN_INFO "ENABLE ALL MC ADDRESSES\n");
            } else if (dev->mc_count > 0) {
                  if (dev->mc_count <= FPMAX_MULTICAST) {
                        /* use exact filtering */

                        // point to first multicast addr
                        dmi = dev->mc_list;

                        for (i = 0; i < dev->mc_count; i++) {
                              mac_add_multicast(smc, 
                                            (struct fddi_addr *)dmi->dmi_addr, 
                                            1);

                              PRINTK(KERN_INFO "ENABLE MC ADDRESS:");
                              PRINTK(" %02x %02x %02x ",
                                     dmi->dmi_addr[0],
                                     dmi->dmi_addr[1],
                                     dmi->dmi_addr[2]);
                              PRINTK("%02x %02x %02x\n",
                                     dmi->dmi_addr[3],
                                     dmi->dmi_addr[4],
                                     dmi->dmi_addr[5]);
                              dmi = dmi->next;
                        }     // for

                  } else {    // more MC addresses than HW supports

                        mac_drv_rx_mode(smc, RX_ENABLE_ALLMULTI);
                        PRINTK(KERN_INFO "ENABLE ALL MC ADDRESSES\n");
                  }
            } else {    // no MC addresses

                  PRINTK(KERN_INFO "DISABLE ALL MC ADDRESSES\n");
            }

            /* Update adapter filters */
            mac_update_multicast(smc);
      }
      return;
}                       // skfp_ctl_set_multicast_list_wo_lock


/*
 * ===========================
 * = skfp_ctl_set_mac_address =
 * ===========================
 *   
 * Overview:
 *   set new mac address on adapter and update dev_addr field in device table.
 *  
 * Returns:
 *   None
 *       
 * Arguments:
 *   dev  - pointer to device information
 *   addr - pointer to sockaddr structure containing unicast address to set
 *
 * Assumptions:
 *   The address pointed to by addr->sa_data is a valid unicast
 *   address and is presented in canonical (LSB) format.
 */
static int skfp_ctl_set_mac_address(struct net_device *dev, void *addr)
{
      struct s_smc *smc = netdev_priv(dev);
      struct sockaddr *p_sockaddr = (struct sockaddr *) addr;
      skfddi_priv *bp = &smc->os;
      unsigned long Flags;


      memcpy(dev->dev_addr, p_sockaddr->sa_data, FDDI_K_ALEN);
      spin_lock_irqsave(&bp->DriverLock, Flags);
      ResetAdapter(smc);
      spin_unlock_irqrestore(&bp->DriverLock, Flags);

      return (0);       /* always return zero */
}                       // skfp_ctl_set_mac_address


/*
 * ==============
 * = skfp_ioctl =
 * ==============
 *   
 * Overview:
 *
 * Perform IOCTL call functions here. Some are privileged operations and the
 * effective uid is checked in those cases.
 *  
 * Returns:
 *   status value
 *   0 - success
 *   other - failure
 *       
 * Arguments:
 *   dev  - pointer to device information
 *   rq - pointer to ioctl request structure
 *   cmd - ?
 *
 */


static int skfp_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
      struct s_smc *smc = netdev_priv(dev);
      skfddi_priv *lp = &smc->os;
      struct s_skfp_ioctl ioc;
      int status = 0;

      if (copy_from_user(&ioc, rq->ifr_data, sizeof(struct s_skfp_ioctl)))
            return -EFAULT;

      switch (ioc.cmd) {
      case SKFP_GET_STATS:    /* Get the driver statistics */
            ioc.len = sizeof(lp->MacStat);
            status = copy_to_user(ioc.data, skfp_ctl_get_stats(dev), ioc.len)
                        ? -EFAULT : 0;
            break;
      case SKFP_CLR_STATS:    /* Zero out the driver statistics */
            if (!capable(CAP_NET_ADMIN)) {
                  memset(&lp->MacStat, 0, sizeof(lp->MacStat));
            } else {
                  status = -EPERM;
            }
            break;
      default:
            printk("ioctl for %s: unknow cmd: %04x\n", dev->name, ioc.cmd);
            status = -EOPNOTSUPP;

      }                 // switch

      return status;
}                       // skfp_ioctl


/*
 * =====================
 * = skfp_send_pkt     =
 * =====================
 *   
 * Overview:
 *   Queues a packet for transmission and try to transmit it.
 *  
 * Returns:
 *   Condition code
 *       
 * Arguments:
 *   skb - pointer to sk_buff to queue for transmission
 *   dev - pointer to device information
 *
 * Functional Description:
 *   Here we assume that an incoming skb transmit request
 *   is contained in a single physically contiguous buffer
 *   in which the virtual address of the start of packet
 *   (skb->data) can be converted to a physical address
 *   by using pci_map_single().
 *
 *   We have an internal queue for packets we can not send 
 *   immediately. Packets in this queue can be given to the 
 *   adapter if transmit buffers are freed.
 *
 *   We can't free the skb until after it's been DMA'd
 *   out by the adapter, so we'll keep it in the driver and
 *   return it in mac_drv_tx_complete.
 *
 * Return Codes:
 *   0 - driver has queued and/or sent packet
 *       1 - caller should requeue the sk_buff for later transmission
 *
 * Assumptions:
 *   The entire packet is stored in one physically
 *   contiguous buffer which is not cached and whose
 *   32-bit physical address can be determined.
 *
 *   It's vital that this routine is NOT reentered for the
 *   same board and that the OS is not in another section of
 *   code (eg. skfp_interrupt) for the same board on a
 *   different thread.
 *
 * Side Effects:
 *   None
 */
static int skfp_send_pkt(struct sk_buff *skb, struct net_device *dev)
{
      struct s_smc *smc = netdev_priv(dev);
      skfddi_priv *bp = &smc->os;

      PRINTK(KERN_INFO "skfp_send_pkt\n");

      /*
       * Verify that incoming transmit request is OK
       *
       * Note: The packet size check is consistent with other
       *               Linux device drivers, although the correct packet
       *               size should be verified before calling the
       *               transmit routine.
       */

      if (!(skb->len >= FDDI_K_LLC_ZLEN && skb->len <= FDDI_K_LLC_LEN)) {
            bp->MacStat.gen.tx_errors++;  /* bump error counter */
            // dequeue packets from xmt queue and send them
            netif_start_queue(dev);
            dev_kfree_skb(skb);
            return (0); /* return "success" */
      }
      if (bp->QueueSkb == 0) {      // return with tbusy set: queue full

            netif_stop_queue(dev);
            return 1;
      }
      bp->QueueSkb--;
      skb_queue_tail(&bp->SendSkbQueue, skb);
      send_queued_packets(netdev_priv(dev));
      if (bp->QueueSkb == 0) {
            netif_stop_queue(dev);
      }
      dev->trans_start = jiffies;
      return 0;

}                       // skfp_send_pkt


/*
 * =======================
 * = send_queued_packets =
 * =======================
 *   
 * Overview:
 *   Send packets from the driver queue as long as there are some and
 *   transmit resources are available.
 *  
 * Returns:
 *   None
 *       
 * Arguments:
 *   smc - pointer to smc (adapter) structure
 *
 * Functional Description:
 *   Take a packet from queue if there is any. If not, then we are done.
 *   Check if there are resources to send the packet. If not, requeue it
 *   and exit. 
 *   Set packet descriptor flags and give packet to adapter.
 *   Check if any send resources can be freed (we do not use the
 *   transmit complete interrupt).
 */
static void send_queued_packets(struct s_smc *smc)
{
      skfddi_priv *bp = &smc->os;
      struct sk_buff *skb;
      unsigned char fc;
      int queue;
      struct s_smt_fp_txd *txd;     // Current TxD.
      dma_addr_t dma_address;
      unsigned long Flags;

      int frame_status; // HWM tx frame status.

      PRINTK(KERN_INFO "send queued packets\n");
      for (;;) {
            // send first buffer from queue
            skb = skb_dequeue(&bp->SendSkbQueue);

            if (!skb) {
                  PRINTK(KERN_INFO "queue empty\n");
                  return;
            }           // queue empty !

            spin_lock_irqsave(&bp->DriverLock, Flags);
            fc = skb->data[0];
            queue = (fc & FC_SYNC_BIT) ? QUEUE_S : QUEUE_A0;
#ifdef ESS
            // Check if the frame may/must be sent as a synchronous frame.

            if ((fc & ~(FC_SYNC_BIT | FC_LLC_PRIOR)) == FC_ASYNC_LLC) {
                  // It's an LLC frame.
                  if (!smc->ess.sync_bw_available)
                        fc &= ~FC_SYNC_BIT; // No bandwidth available.

                  else {      // Bandwidth is available.

                        if (smc->mib.fddiESSSynchTxMode) {
                              // Send as sync. frame.
                              fc |= FC_SYNC_BIT;
                        }
                  }
            }
#endif                        // ESS
            frame_status = hwm_tx_init(smc, fc, 1, skb->len, queue);

            if ((frame_status & (LOC_TX | LAN_TX)) == 0) {
                  // Unable to send the frame.

                  if ((frame_status & RING_DOWN) != 0) {
                        // Ring is down.
                        PRINTK("Tx attempt while ring down.\n");
                  } else if ((frame_status & OUT_OF_TXD) != 0) {
                        PRINTK("%s: out of TXDs.\n", bp->dev->name);
                  } else {
                        PRINTK("%s: out of transmit resources",
                              bp->dev->name);
                  }

                  // Note: We will retry the operation as soon as
                  // transmit resources become available.
                  skb_queue_head(&bp->SendSkbQueue, skb);
                  spin_unlock_irqrestore(&bp->DriverLock, Flags);
                  return;     // Packet has been queued.

            }           // if (unable to send frame)

            bp->QueueSkb++;   // one packet less in local queue

            // source address in packet ?
            CheckSourceAddress(skb->data, smc->hw.fddi_canon_addr.a);

            txd = (struct s_smt_fp_txd *) HWM_GET_CURR_TXD(smc, queue);

            dma_address = pci_map_single(&bp->pdev, skb->data,
                                   skb->len, PCI_DMA_TODEVICE);
            if (frame_status & LAN_TX) {
                  txd->txd_os.skb = skb;              // save skb
                  txd->txd_os.dma_addr = dma_address; // save dma mapping
            }
            hwm_tx_frag(smc, skb->data, dma_address, skb->len,
                      frame_status | FIRST_FRAG | LAST_FRAG | EN_IRQ_EOF);

            if (!(frame_status & LAN_TX)) {           // local only frame
                  pci_unmap_single(&bp->pdev, dma_address,
                               skb->len, PCI_DMA_TODEVICE);
                  dev_kfree_skb_irq(skb);
            }
            spin_unlock_irqrestore(&bp->DriverLock, Flags);
      }                 // for

      return;                 // never reached

}                       // send_queued_packets


/************************
 * 
 * CheckSourceAddress
 *
 * Verify if the source address is set. Insert it if necessary.
 *
 ************************/
void CheckSourceAddress(unsigned char *frame, unsigned char *hw_addr)
{
      unsigned char SRBit;

      if ((((unsigned long) frame[1 + 6]) & ~0x01) != 0) // source routing bit

            return;
      if ((unsigned short) frame[1 + 10] != 0)
            return;
      SRBit = frame[1 + 6] & 0x01;
      memcpy(&frame[1 + 6], hw_addr, 6);
      frame[8] |= SRBit;
}                       // CheckSourceAddress


/************************
 *
 *    ResetAdapter
 *
 *    Reset the adapter and bring it back to operational mode.
 * Args
 *    smc - A pointer to the SMT context struct.
 * Out
 *    Nothing.
 *
 ************************/
static void ResetAdapter(struct s_smc *smc)
{

      PRINTK(KERN_INFO "[fddi: ResetAdapter]\n");

      // Stop the adapter.

      card_stop(smc);         // Stop all activity.

      // Clear the transmit and receive descriptor queues.
      mac_drv_clear_tx_queue(smc);
      mac_drv_clear_rx_queue(smc);

      // Restart the adapter.

      smt_reset_defaults(smc, 1);   // Initialize the SMT module.

      init_smt(smc, (smc->os.dev)->dev_addr);   // Initialize the hardware.

      smt_online(smc, 1);     // Insert into the ring again.
      STI_FBI();

      // Restore original receive mode (multicasts, promiscuous, etc.).
      skfp_ctl_set_multicast_list_wo_lock(smc->os.dev);
}                       // ResetAdapter


//--------------- functions called by hardware module ----------------

/************************
 *
 *    llc_restart_tx
 *
 *    The hardware driver calls this routine when the transmit complete
 *    interrupt bits (end of frame) for the synchronous or asynchronous
 *    queue is set.
 *
 * NOTE The hardware driver calls this function also if no packets are queued.
 *    The routine must be able to handle this case.
 * Args
 *    smc - A pointer to the SMT context struct.
 * Out
 *    Nothing.
 *
 ************************/
void llc_restart_tx(struct s_smc *smc)
{
      skfddi_priv *bp = &smc->os;

      PRINTK(KERN_INFO "[llc_restart_tx]\n");

      // Try to send queued packets
      spin_unlock(&bp->DriverLock);
      send_queued_packets(smc);
      spin_lock(&bp->DriverLock);
      netif_start_queue(bp->dev);// system may send again if it was blocked

}                       // llc_restart_tx


/************************
 *
 *    mac_drv_get_space
 *
 *    The hardware module calls this function to allocate the memory
 *    for the SMT MBufs if the define MB_OUTSIDE_SMC is specified.
 * Args
 *    smc - A pointer to the SMT context struct.
 *
 *    size - Size of memory in bytes to allocate.
 * Out
 *    != 0  A pointer to the virtual address of the allocated memory.
 *    == 0  Allocation error.
 *
 ************************/
void *mac_drv_get_space(struct s_smc *smc, unsigned int size)
{
      void *virt;

      PRINTK(KERN_INFO "mac_drv_get_space (%d bytes), ", size);
      virt = (void *) (smc->os.SharedMemAddr + smc->os.SharedMemHeap);

      if ((smc->os.SharedMemHeap + size) > smc->os.SharedMemSize) {
            printk("Unexpected SMT memory size requested: %d\n", size);
            return (NULL);
      }
      smc->os.SharedMemHeap += size;      // Move heap pointer.

      PRINTK(KERN_INFO "mac_drv_get_space end\n");
      PRINTK(KERN_INFO "virt addr: %lx\n", (ulong) virt);
      PRINTK(KERN_INFO "bus  addr: %lx\n", (ulong)
             (smc->os.SharedMemDMA +
            ((char *) virt - (char *)smc->os.SharedMemAddr)));
      return (virt);
}                       // mac_drv_get_space


/************************
 *
 *    mac_drv_get_desc_mem
 *
 *    This function is called by the hardware dependent module.
 *    It allocates the memory for the RxD and TxD descriptors.
 *
 *    This memory must be non-cached, non-movable and non-swappable.
 *    This memory should start at a physical page boundary.
 * Args
 *    smc - A pointer to the SMT context struct.
 *
 *    size - Size of memory in bytes to allocate.
 * Out
 *    != 0  A pointer to the virtual address of the allocated memory.
 *    == 0  Allocation error.
 *
 ************************/
void *mac_drv_get_desc_mem(struct s_smc *smc, unsigned int size)
{

      char *virt;

      PRINTK(KERN_INFO "mac_drv_get_desc_mem\n");

      // Descriptor memory must be aligned on 16-byte boundary.

      virt = mac_drv_get_space(smc, size);

      size = (u_int) (16 - (((unsigned long) virt) & 15UL));
      size = size % 16;

      PRINTK("Allocate %u bytes alignment gap ", size);
      PRINTK("for descriptor memory.\n");

      if (!mac_drv_get_space(smc, size)) {
            printk("fddi: Unable to align descriptor memory.\n");
            return (NULL);
      }
      return (virt + size);
}                       // mac_drv_get_desc_mem


/************************
 *
 *    mac_drv_virt2phys
 *
 *    Get the physical address of a given virtual address.
 * Args
 *    smc - A pointer to the SMT context struct.
 *
 *    virt - A (virtual) pointer into our 'shared' memory area.
 * Out
 *    Physical address of the given virtual address.
 *
 ************************/
unsigned long mac_drv_virt2phys(struct s_smc *smc, void *virt)
{
      return (smc->os.SharedMemDMA +
            ((char *) virt - (char *)smc->os.SharedMemAddr));
}                       // mac_drv_virt2phys


/************************
 *
 *    dma_master
 *
 *    The HWM calls this function, when the driver leads through a DMA
 *    transfer. If the OS-specific module must prepare the system hardware
 *    for the DMA transfer, it should do it in this function.
 *
 *    The hardware module calls this dma_master if it wants to send an SMT
 *    frame.  This means that the virt address passed in here is part of
 *      the 'shared' memory area.
 * Args
 *    smc - A pointer to the SMT context struct.
 *
 *    virt - The virtual address of the data.
 *
 *    len - The length in bytes of the data.
 *
 *    flag - Indicates the transmit direction and the buffer type:
 *          DMA_RD      (0x01)      system RAM ==> adapter buffer memory
 *          DMA_WR      (0x02)      adapter buffer memory ==> system RAM
 *          SMT_BUF (0x80)    SMT buffer
 *
 *    >> NOTE: SMT_BUF and DMA_RD are always set for PCI. <<
 * Out
 *    Returns the pyhsical address for the DMA transfer.
 *
 ************************/
u_long dma_master(struct s_smc * smc, void *virt, int len, int flag)
{
      return (smc->os.SharedMemDMA +
            ((char *) virt - (char *)smc->os.SharedMemAddr));
}                       // dma_master


/************************
 *
 *    dma_complete
 *
 *    The hardware module calls this routine when it has completed a DMA
 *    transfer. If the operating system dependent module has set up the DMA
 *    channel via dma_master() (e.g. Windows NT or AIX) it should clean up
 *    the DMA channel.
 * Args
 *    smc - A pointer to the SMT context struct.
 *
 *    descr - A pointer to a TxD or RxD, respectively.
 *
 *    flag - Indicates the DMA transfer direction / SMT buffer:
 *          DMA_RD      (0x01)      system RAM ==> adapter buffer memory
 *          DMA_WR      (0x02)      adapter buffer memory ==> system RAM
 *          SMT_BUF (0x80)    SMT buffer (managed by HWM)
 * Out
 *    Nothing.
 *
 ************************/
void dma_complete(struct s_smc *smc, volatile union s_fp_descr *descr, int flag)
{
      /* For TX buffers, there are two cases.  If it is an SMT transmit
       * buffer, there is nothing to do since we use consistent memory
       * for the 'shared' memory area.  The other case is for normal
       * transmit packets given to us by the networking stack, and in
       * that case we cleanup the PCI DMA mapping in mac_drv_tx_complete
       * below.
       *
       * For RX buffers, we have to unmap dynamic PCI DMA mappings here
       * because the hardware module is about to potentially look at
       * the contents of the buffer.  If we did not call the PCI DMA
       * unmap first, the hardware module could read inconsistent data.
       */
      if (flag & DMA_WR) {
            skfddi_priv *bp = &smc->os;
            volatile struct s_smt_fp_rxd *r = &descr->r;

            /* If SKB is NULL, we used the local buffer. */
            if (r->rxd_os.skb && r->rxd_os.dma_addr) {
                  int MaxFrameSize = bp->MaxFrameSize;

                  pci_unmap_single(&bp->pdev, r->rxd_os.dma_addr,
                               MaxFrameSize, PCI_DMA_FROMDEVICE);
                  r->rxd_os.dma_addr = 0;
            }
      }
}                       // dma_complete


/************************
 *
 *    mac_drv_tx_complete
 *
 *    Transmit of a packet is complete. Release the tx staging buffer.
 *
 * Args
 *    smc - A pointer to the SMT context struct.
 *
 *    txd - A pointer to the last TxD which is used by the frame.
 * Out
 *    Returns nothing.
 *
 ************************/
void mac_drv_tx_complete(struct s_smc *smc, volatile struct s_smt_fp_txd *txd)
{
      struct sk_buff *skb;

      PRINTK(KERN_INFO "entering mac_drv_tx_complete\n");
      // Check if this TxD points to a skb

      if (!(skb = txd->txd_os.skb)) {
            PRINTK("TXD with no skb assigned.\n");
            return;
      }
      txd->txd_os.skb = NULL;

      // release the DMA mapping
      pci_unmap_single(&smc->os.pdev, txd->txd_os.dma_addr,
                   skb->len, PCI_DMA_TODEVICE);
      txd->txd_os.dma_addr = 0;

      smc->os.MacStat.gen.tx_packets++;   // Count transmitted packets.
      smc->os.MacStat.gen.tx_bytes+=skb->len;   // Count bytes

      // free the skb
      dev_kfree_skb_irq(skb);

      PRINTK(KERN_INFO "leaving mac_drv_tx_complete\n");
}                       // mac_drv_tx_complete


/************************
 *
 * dump packets to logfile
 *
 ************************/
#ifdef DUMPPACKETS
void dump_data(unsigned char *Data, int length)
{
      int i, j;
      unsigned char s[255], sh[10];
      if (length > 64) {
            length = 64;
      }
      printk(KERN_INFO "---Packet start---\n");
      for (i = 0, j = 0; i < length / 8; i++, j += 8)
            printk(KERN_INFO "%02x %02x %02x %02x %02x %02x %02x %02x\n",
                   Data[j + 0], Data[j + 1], Data[j + 2], Data[j + 3],
                   Data[j + 4], Data[j + 5], Data[j + 6], Data[j + 7]);
      strcpy(s, "");
      for (i = 0; i < length % 8; i++) {
            sprintf(sh, "%02x ", Data[j + i]);
            strcat(s, sh);
      }
      printk(KERN_INFO "%s\n", s);
      printk(KERN_INFO "------------------\n");
}                       // dump_data
#else
#define dump_data(data,len)
#endif                        // DUMPPACKETS

/************************
 *
 *    mac_drv_rx_complete
 *
 *    The hardware module calls this function if an LLC frame is received
 *    in a receive buffer. Also the SMT, NSA, and directed beacon frames
 *    from the network will be passed to the LLC layer by this function
 *    if passing is enabled.
 *
 *    mac_drv_rx_complete forwards the frame to the LLC layer if it should
 *    be received. It also fills the RxD ring with new receive buffers if
 *    some can be queued.
 * Args
 *    smc - A pointer to the SMT context struct.
 *
 *    rxd - A pointer to the first RxD which is used by the receive frame.
 *
 *    frag_count - Count of RxDs used by the received frame.
 *
 *    len - Frame length.
 * Out
 *    Nothing.
 *
 ************************/
void mac_drv_rx_complete(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
                   int frag_count, int len)
{
      skfddi_priv *bp = &smc->os;
      struct sk_buff *skb;
      unsigned char *virt, *cp;
      unsigned short ri;
      u_int RifLength;

      PRINTK(KERN_INFO "entering mac_drv_rx_complete (len=%d)\n", len);
      if (frag_count != 1) {  // This is not allowed to happen.

            printk("fddi: Multi-fragment receive!\n");
            goto RequeueRxd;  // Re-use the given RXD(s).

      }
      skb = rxd->rxd_os.skb;
      if (!skb) {
            PRINTK(KERN_INFO "No skb in rxd\n");
            smc->os.MacStat.gen.rx_errors++;
            goto RequeueRxd;
      }
      virt = skb->data;

      // The DMA mapping was released in dma_complete above.

      dump_data(skb->data, len);

      /*
       * FDDI Frame format:
       * +-------+-------+-------+------------+--------+------------+
       * | FC[1] | DA[6] | SA[6] | RIF[0..18] | LLC[3] | Data[0..n] |
       * +-------+-------+-------+------------+--------+------------+
       *
       * FC = Frame Control
       * DA = Destination Address
       * SA = Source Address
       * RIF = Routing Information Field
       * LLC = Logical Link Control
       */

      // Remove Routing Information Field (RIF), if present.

      if ((virt[1 + 6] & FDDI_RII) == 0)
            RifLength = 0;
      else {
            int n;
// goos: RIF removal has still to be tested
            PRINTK(KERN_INFO "RIF found\n");
            // Get RIF length from Routing Control (RC) field.
            cp = virt + FDDI_MAC_HDR_LEN; // Point behind MAC header.

            ri = ntohs(*((unsigned short *) cp));
            RifLength = ri & FDDI_RCF_LEN_MASK;
            if (len < (int) (FDDI_MAC_HDR_LEN + RifLength)) {
                  printk("fddi: Invalid RIF.\n");
                  goto RequeueRxd;  // Discard the frame.

            }
            virt[1 + 6] &= ~FDDI_RII;     // Clear RII bit.
            // regions overlap

            virt = cp + RifLength;
            for (n = FDDI_MAC_HDR_LEN; n; n--)
                  *--virt = *--cp;
            // adjust sbd->data pointer
            skb_pull(skb, RifLength);
            len -= RifLength;
            RifLength = 0;
      }

      // Count statistics.
      smc->os.MacStat.gen.rx_packets++;   // Count indicated receive
                                    // packets.
      smc->os.MacStat.gen.rx_bytes+=len;  // Count bytes.

      // virt points to header again
      if (virt[1] & 0x01) {   // Check group (multicast) bit.

            smc->os.MacStat.gen.multicast++;
      }

      // deliver frame to system
      rxd->rxd_os.skb = NULL;
      skb_trim(skb, len);
      skb->protocol = fddi_type_trans(skb, bp->dev);
      skb->dev = bp->dev;     /* pass up device pointer */

      netif_rx(skb);
      bp->dev->last_rx = jiffies;

      HWM_RX_CHECK(smc, RX_LOW_WATERMARK);
      return;

      RequeueRxd:
      PRINTK(KERN_INFO "Rx: re-queue RXD.\n");
      mac_drv_requeue_rxd(smc, rxd, frag_count);
      smc->os.MacStat.gen.rx_errors++;    // Count receive packets
                                    // not indicated.

}                       // mac_drv_rx_complete


/************************
 *
 *    mac_drv_requeue_rxd
 *
 *    The hardware module calls this function to request the OS-specific
 *    module to queue the receive buffer(s) represented by the pointer
 *    to the RxD and the frag_count into the receive queue again. This
 *    buffer was filled with an invalid frame or an SMT frame.
 * Args
 *    smc - A pointer to the SMT context struct.
 *
 *    rxd - A pointer to the first RxD which is used by the receive frame.
 *
 *    frag_count - Count of RxDs used by the received frame.
 * Out
 *    Nothing.
 *
 ************************/
void mac_drv_requeue_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
                   int frag_count)
{
      volatile struct s_smt_fp_rxd *next_rxd;
      volatile struct s_smt_fp_rxd *src_rxd;
      struct sk_buff *skb;
      int MaxFrameSize;
      unsigned char *v_addr;
      dma_addr_t b_addr;

      if (frag_count != 1)    // This is not allowed to happen.

            printk("fddi: Multi-fragment requeue!\n");

      MaxFrameSize = smc->os.MaxFrameSize;
      src_rxd = rxd;
      for (; frag_count > 0; frag_count--) {
            next_rxd = src_rxd->rxd_next;
            rxd = HWM_GET_CURR_RXD(smc);

            skb = src_rxd->rxd_os.skb;
            if (skb == NULL) {      // this should not happen

                  PRINTK("Requeue with no skb in rxd!\n");
                  skb = alloc_skb(MaxFrameSize + 3, GFP_ATOMIC);
                  if (skb) {
                        // we got a skb
                        rxd->rxd_os.skb = skb;
                        skb_reserve(skb, 3);
                        skb_put(skb, MaxFrameSize);
                        v_addr = skb->data;
                        b_addr = pci_map_single(&smc->os.pdev,
                                          v_addr,
                                          MaxFrameSize,
                                          PCI_DMA_FROMDEVICE);
                        rxd->rxd_os.dma_addr = b_addr;
                  } else {
                        // no skb available, use local buffer
                        PRINTK("Queueing invalid buffer!\n");
                        rxd->rxd_os.skb = NULL;
                        v_addr = smc->os.LocalRxBuffer;
                        b_addr = smc->os.LocalRxBufferDMA;
                  }
            } else {
                  // we use skb from old rxd
                  rxd->rxd_os.skb = skb;
                  v_addr = skb->data;
                  b_addr = pci_map_single(&smc->os.pdev,
                                    v_addr,
                                    MaxFrameSize,
                                    PCI_DMA_FROMDEVICE);
                  rxd->rxd_os.dma_addr = b_addr;
            }
            hwm_rx_frag(smc, v_addr, b_addr, MaxFrameSize,
                      FIRST_FRAG | LAST_FRAG);

            src_rxd = next_rxd;
      }
}                       // mac_drv_requeue_rxd


/************************
 *
 *    mac_drv_fill_rxd
 *
 *    The hardware module calls this function at initialization time
 *    to fill the RxD ring with receive buffers. It is also called by
 *    mac_drv_rx_complete if rx_free is large enough to queue some new
 *    receive buffers into the RxD ring. mac_drv_fill_rxd queues new
 *    receive buffers as long as enough RxDs and receive buffers are
 *    available.
 * Args
 *    smc - A pointer to the SMT context struct.
 * Out
 *    Nothing.
 *
 ************************/
void mac_drv_fill_rxd(struct s_smc *smc)
{
      int MaxFrameSize;
      unsigned char *v_addr;
      unsigned long b_addr;
      struct sk_buff *skb;
      volatile struct s_smt_fp_rxd *rxd;

      PRINTK(KERN_INFO "entering mac_drv_fill_rxd\n");

      // Walk through the list of free receive buffers, passing receive
      // buffers to the HWM as long as RXDs are available.

      MaxFrameSize = smc->os.MaxFrameSize;
      // Check if there is any RXD left.
      while (HWM_GET_RX_FREE(smc) > 0) {
            PRINTK(KERN_INFO ".\n");

            rxd = HWM_GET_CURR_RXD(smc);
            skb = alloc_skb(MaxFrameSize + 3, GFP_ATOMIC);
            if (skb) {
                  // we got a skb
                  skb_reserve(skb, 3);
                  skb_put(skb, MaxFrameSize);
                  v_addr = skb->data;
                  b_addr = pci_map_single(&smc->os.pdev,
                                    v_addr,
                                    MaxFrameSize,
                                    PCI_DMA_FROMDEVICE);
                  rxd->rxd_os.dma_addr = b_addr;
            } else {
                  // no skb available, use local buffer
                  // System has run out of buffer memory, but we want to
                  // keep the receiver running in hope of better times.
                  // Multiple descriptors may point to this local buffer,
                  // so data in it must be considered invalid.
                  PRINTK("Queueing invalid buffer!\n");
                  v_addr = smc->os.LocalRxBuffer;
                  b_addr = smc->os.LocalRxBufferDMA;
            }

            rxd->rxd_os.skb = skb;

            // Pass receive buffer to HWM.
            hwm_rx_frag(smc, v_addr, b_addr, MaxFrameSize,
                      FIRST_FRAG | LAST_FRAG);
      }
      PRINTK(KERN_INFO "leaving mac_drv_fill_rxd\n");
}                       // mac_drv_fill_rxd


/************************
 *
 *    mac_drv_clear_rxd
 *
 *    The hardware module calls this function to release unused
 *    receive buffers.
 * Args
 *    smc - A pointer to the SMT context struct.
 *
 *    rxd - A pointer to the first RxD which is used by the receive buffer.
 *
 *    frag_count - Count of RxDs used by the receive buffer.
 * Out
 *    Nothing.
 *
 ************************/
void mac_drv_clear_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
                   int frag_count)
{

      struct sk_buff *skb;

      PRINTK("entering mac_drv_clear_rxd\n");

      if (frag_count != 1)    // This is not allowed to happen.

            printk("fddi: Multi-fragment clear!\n");

      for (; frag_count > 0; frag_count--) {
            skb = rxd->rxd_os.skb;
            if (skb != NULL) {
                  skfddi_priv *bp = &smc->os;
                  int MaxFrameSize = bp->MaxFrameSize;

                  pci_unmap_single(&bp->pdev, rxd->rxd_os.dma_addr,
                               MaxFrameSize, PCI_DMA_FROMDEVICE);

                  dev_kfree_skb(skb);
                  rxd->rxd_os.skb = NULL;
            }
            rxd = rxd->rxd_next;    // Next RXD.

      }
}                       // mac_drv_clear_rxd


/************************
 *
 *    mac_drv_rx_init
 *
 *    The hardware module calls this routine when an SMT or NSA frame of the
 *    local SMT should be delivered to the LLC layer.
 *
 *    It is necessary to have this function, because there is no other way to
 *    copy the contents of SMT MBufs into receive buffers.
 *
 *    mac_drv_rx_init allocates the required target memory for this frame,
 *    and receives the frame fragment by fragment by calling mac_drv_rx_frag.
 * Args
 *    smc - A pointer to the SMT context struct.
 *
 *    len - The length (in bytes) of the received frame (FC, DA, SA, Data).
 *
 *    fc - The Frame Control field of the received frame.
 *
 *    look_ahead - A pointer to the lookahead data buffer (may be NULL).
 *
 *    la_len - The length of the lookahead data stored in the lookahead
 *    buffer (may be zero).
 * Out
 *    Always returns zero (0).
 *
 ************************/
int mac_drv_rx_init(struct s_smc *smc, int len, int fc,
                char *look_ahead, int la_len)
{
      struct sk_buff *skb;

      PRINTK("entering mac_drv_rx_init(len=%d)\n", len);

      // "Received" a SMT or NSA frame of the local SMT.

      if (len != la_len || len < FDDI_MAC_HDR_LEN || !look_ahead) {
            PRINTK("fddi: Discard invalid local SMT frame\n");
            PRINTK("  len=%d, la_len=%d, (ULONG) look_ahead=%08lXh.\n",
                   len, la_len, (unsigned long) look_ahead);
            return (0);
      }
      skb = alloc_skb(len + 3, GFP_ATOMIC);
      if (!skb) {
            PRINTK("fddi: Local SMT: skb memory exhausted.\n");
            return (0);
      }
      skb_reserve(skb, 3);
      skb_put(skb, len);
      memcpy(skb->data, look_ahead, len);

      // deliver frame to system
      skb->protocol = fddi_type_trans(skb, smc->os.dev);
      skb->dev->last_rx = jiffies;
      netif_rx(skb);

      return (0);
}                       // mac_drv_rx_init


/************************
 *
 *    smt_timer_poll
 *
 *    This routine is called periodically by the SMT module to clean up the
 *    driver.
 *
 *    Return any queued frames back to the upper protocol layers if the ring
 *    is down.
 * Args
 *    smc - A pointer to the SMT context struct.
 * Out
 *    Nothing.
 *
 ************************/
void smt_timer_poll(struct s_smc *smc)
{
}                       // smt_timer_poll


/************************
 *
 *    ring_status_indication
 *
 *    This function indicates a change of the ring state.
 * Args
 *    smc - A pointer to the SMT context struct.
 *
 *    status - The current ring status.
 * Out
 *    Nothing.
 *
 ************************/
void ring_status_indication(struct s_smc *smc, u_long status)
{
      PRINTK("ring_status_indication( ");
      if (status & RS_RES15)
            PRINTK("RS_RES15 ");
      if (status & RS_HARDERROR)
            PRINTK("RS_HARDERROR ");
      if (status & RS_SOFTERROR)
            PRINTK("RS_SOFTERROR ");
      if (status & RS_BEACON)
            PRINTK("RS_BEACON ");
      if (status & RS_PATHTEST)
            PRINTK("RS_PATHTEST ");
      if (status & RS_SELFTEST)
            PRINTK("RS_SELFTEST ");
      if (status & RS_RES9)
            PRINTK("RS_RES9 ");
      if (status & RS_DISCONNECT)
            PRINTK("RS_DISCONNECT ");
      if (status & RS_RES7)
            PRINTK("RS_RES7 ");
      if (status & RS_DUPADDR)
            PRINTK("RS_DUPADDR ");
      if (status & RS_NORINGOP)
            PRINTK("RS_NORINGOP ");
      if (status & RS_VERSION)
            PRINTK("RS_VERSION ");
      if (status & RS_STUCKBYPASSS)
            PRINTK("RS_STUCKBYPASSS ");
      if (status & RS_EVENT)
            PRINTK("RS_EVENT ");
      if (status & RS_RINGOPCHANGE)
            PRINTK("RS_RINGOPCHANGE ");
      if (status & RS_RES0)
            PRINTK("RS_RES0 ");
      PRINTK("]\n");
}                       // ring_status_indication


/************************
 *
 *    smt_get_time
 *
 *    Gets the current time from the system.
 * Args
 *    None.
 * Out
 *    The current time in TICKS_PER_SECOND.
 *
 *    TICKS_PER_SECOND has the unit 'count of timer ticks per second'. It is
 *    defined in "targetos.h". The definition of TICKS_PER_SECOND must comply
 *    to the time returned by smt_get_time().
 *
 ************************/
unsigned long smt_get_time(void)
{
      return jiffies;
}                       // smt_get_time


/************************
 *
 *    smt_stat_counter
 *
 *    Status counter update (ring_op, fifo full).
 * Args
 *    smc - A pointer to the SMT context struct.
 *
 *    stat -      = 0: A ring operational change occurred.
 *          = 1: The FORMAC FIFO buffer is full / FIFO overflow.
 * Out
 *    Nothing.
 *
 ************************/
void smt_stat_counter(struct s_smc *smc, int stat)
{
//      BOOLEAN RingIsUp ;

      PRINTK(KERN_INFO "smt_stat_counter\n");
      switch (stat) {
      case 0:
            PRINTK(KERN_INFO "Ring operational change.\n");
            break;
      case 1:
            PRINTK(KERN_INFO "Receive fifo overflow.\n");
            smc->os.MacStat.gen.rx_errors++;
            break;
      default:
            PRINTK(KERN_INFO "Unknown status (%d).\n", stat);
            break;
      }
}                       // smt_stat_counter


/************************
 *
 *    cfm_state_change
 *
 *    Sets CFM state in custom statistics.
 * Args
 *    smc - A pointer to the SMT context struct.
 *
 *    c_state - Possible values are:
 *
 *          EC0_OUT, EC1_IN, EC2_TRACE, EC3_LEAVE, EC4_PATH_TEST,
 *          EC5_INSERT, EC6_CHECK, EC7_DEINSERT
 * Out
 *    Nothing.
 *
 ************************/
void cfm_state_change(struct s_smc *smc, int c_state)
{
#ifdef DRIVERDEBUG
      char *s;

      switch (c_state) {
      case SC0_ISOLATED:
            s = "SC0_ISOLATED";
            break;
      case SC1_WRAP_A:
            s = "SC1_WRAP_A";
            break;
      case SC2_WRAP_B:
            s = "SC2_WRAP_B";
            break;
      case SC4_THRU_A:
            s = "SC4_THRU_A";
            break;
      case SC5_THRU_B:
            s = "SC5_THRU_B";
            break;
      case SC7_WRAP_S:
            s = "SC7_WRAP_S";
            break;
      case SC9_C_WRAP_A:
            s = "SC9_C_WRAP_A";
            break;
      case SC10_C_WRAP_B:
            s = "SC10_C_WRAP_B";
            break;
      case SC11_C_WRAP_S:
            s = "SC11_C_WRAP_S";
            break;
      default:
            PRINTK(KERN_INFO "cfm_state_change: unknown %d\n", c_state);
            return;
      }
      PRINTK(KERN_INFO "cfm_state_change: %s\n", s);
#endif                        // DRIVERDEBUG
}                       // cfm_state_change


/************************
 *
 *    ecm_state_change
 *
 *    Sets ECM state in custom statistics.
 * Args
 *    smc - A pointer to the SMT context struct.
 *
 *    e_state - Possible values are:
 *
 *          SC0_ISOLATED, SC1_WRAP_A (5), SC2_WRAP_B (6), SC4_THRU_A (12),
 *          SC5_THRU_B (7), SC7_WRAP_S (8)
 * Out
 *    Nothing.
 *
 ************************/
void ecm_state_change(struct s_smc *smc, int e_state)
{
#ifdef DRIVERDEBUG
      char *s;

      switch (e_state) {
      case EC0_OUT:
            s = "EC0_OUT";
            break;
      case EC1_IN:
            s = "EC1_IN";
            break;
      case EC2_TRACE:
            s = "EC2_TRACE";
            break;
      case EC3_LEAVE:
            s = "EC3_LEAVE";
            break;
      case EC4_PATH_TEST:
            s = "EC4_PATH_TEST";
            break;
      case EC5_INSERT:
            s = "EC5_INSERT";
            break;
      case EC6_CHECK:
            s = "EC6_CHECK";
            break;
      case EC7_DEINSERT:
            s = "EC7_DEINSERT";
            break;
      default:
            s = "unknown";
            break;
      }
      PRINTK(KERN_INFO "ecm_state_change: %s\n", s);
#endif                        //DRIVERDEBUG
}                       // ecm_state_change


/************************
 *
 *    rmt_state_change
 *
 *    Sets RMT state in custom statistics.
 * Args
 *    smc - A pointer to the SMT context struct.
 *
 *    r_state - Possible values are:
 *
 *          RM0_ISOLATED, RM1_NON_OP, RM2_RING_OP, RM3_DETECT,
 *          RM4_NON_OP_DUP, RM5_RING_OP_DUP, RM6_DIRECTED, RM7_TRACE
 * Out
 *    Nothing.
 *
 ************************/
void rmt_state_change(struct s_smc *smc, int r_state)
{
#ifdef DRIVERDEBUG
      char *s;

      switch (r_state) {
      case RM0_ISOLATED:
            s = "RM0_ISOLATED";
            break;
      case RM1_NON_OP:
            s = "RM1_NON_OP - not operational";
            break;
      case RM2_RING_OP:
            s = "RM2_RING_OP - ring operational";
            break;
      case RM3_DETECT:
            s = "RM3_DETECT - detect dupl addresses";
            break;
      case RM4_NON_OP_DUP:
            s = "RM4_NON_OP_DUP - dupl. addr detected";
            break;
      case RM5_RING_OP_DUP:
            s = "RM5_RING_OP_DUP - ring oper. with dupl. addr";
            break;
      case RM6_DIRECTED:
            s = "RM6_DIRECTED - sending directed beacons";
            break;
      case RM7_TRACE:
            s = "RM7_TRACE - trace initiated";
            break;
      default:
            s = "unknown";
            break;
      }
      PRINTK(KERN_INFO "[rmt_state_change: %s]\n", s);
#endif                        // DRIVERDEBUG
}                       // rmt_state_change


/************************
 *
 *    drv_reset_indication
 *
 *    This function is called by the SMT when it has detected a severe
 *    hardware problem. The driver should perform a reset on the adapter
 *    as soon as possible, but not from within this function.
 * Args
 *    smc - A pointer to the SMT context struct.
 * Out
 *    Nothing.
 *
 ************************/
void drv_reset_indication(struct s_smc *smc)
{
      PRINTK(KERN_INFO "entering drv_reset_indication\n");

      smc->os.ResetRequested = TRUE;      // Set flag.

}                       // drv_reset_indication

static struct pci_driver skfddi_pci_driver = {
      .name       = "skfddi",
      .id_table   = skfddi_pci_tbl,
      .probe            = skfp_init_one,
      .remove           = __devexit_p(skfp_remove_one),
};

static int __init skfd_init(void)
{
      return pci_module_init(&skfddi_pci_driver);
}

static void __exit skfd_exit(void)
{
      pci_unregister_driver(&skfddi_pci_driver);
}

module_init(skfd_init);
module_exit(skfd_exit);

Generated by  Doxygen 1.6.0   Back to index