Logo Search packages:      
Sourcecode: linux-2.6 version File versions  Download package

skge.c

/*
 * New driver for Marvell Yukon chipset and SysKonnect Gigabit
 * Ethernet adapters. Based on earlier sk98lin, e100 and
 * FreeBSD if_sk drivers.
 *
 * This driver intentionally does not support all the features
 * of the original driver such as link fail-over and link management because
 * those should be done at higher levels.
 *
 * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

#include <linux/in.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/pci.h>
#include <linux/if_vlan.h>
#include <linux/ip.h>
#include <linux/delay.h>
#include <linux/crc32.h>
#include <linux/dma-mapping.h>
#include <linux/mii.h>
#include <asm/irq.h>

#include "skge.h"

#define DRV_NAME        "skge"
#define DRV_VERSION           "1.6"
#define PFX             DRV_NAME " "

#define DEFAULT_TX_RING_SIZE  128
#define DEFAULT_RX_RING_SIZE  512
#define MAX_TX_RING_SIZE      1024
#define TX_LOW_WATER          (MAX_SKB_FRAGS + 1)
#define MAX_RX_RING_SIZE      4096
#define RX_COPY_THRESHOLD     128
#define RX_BUF_SIZE           1536
#define PHY_RETRIES             1000
#define ETH_JUMBO_MTU         9000
#define TX_WATCHDOG           (5 * HZ)
#define NAPI_WEIGHT           64
#define BLINK_MS        250

MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
MODULE_AUTHOR("Stephen Hemminger <shemminger@osdl.org>");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);

static const u32 default_msg
      = NETIF_MSG_DRV| NETIF_MSG_PROBE| NETIF_MSG_LINK
        | NETIF_MSG_IFUP| NETIF_MSG_IFDOWN;

static int debug = -1;  /* defaults above */
module_param(debug, int, 0);
MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");

static const struct pci_device_id skge_id_table[] = {
      { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940) },
      { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940B) },
      { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_GE) },
      { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_YU) },
      { PCI_DEVICE(PCI_VENDOR_ID_DLINK, PCI_DEVICE_ID_DLINK_DGE510T), },
      { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) },    /* DGE-530T */
      { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },
      { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */
      { PCI_DEVICE(PCI_VENDOR_ID_CNET, PCI_DEVICE_ID_CNET_GIGACARD) },
      { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1064) },
      { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015, },
      { 0 }
};
MODULE_DEVICE_TABLE(pci, skge_id_table);

static int skge_up(struct net_device *dev);
static int skge_down(struct net_device *dev);
static void skge_phy_reset(struct skge_port *skge);
static void skge_tx_clean(struct skge_port *skge);
static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
static void genesis_get_stats(struct skge_port *skge, u64 *data);
static void yukon_get_stats(struct skge_port *skge, u64 *data);
static void yukon_init(struct skge_hw *hw, int port);
static void genesis_mac_init(struct skge_hw *hw, int port);
static void genesis_link_up(struct skge_port *skge);

/* Avoid conditionals by using array */
static const int txqaddr[] = { Q_XA1, Q_XA2 };
static const int rxqaddr[] = { Q_R1, Q_R2 };
static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };

static int skge_get_regs_len(struct net_device *dev)
{
      return 0x4000;
}

/*
 * Returns copy of whole control register region
 * Note: skip RAM address register because accessing it will
 *     cause bus hangs!
 */
static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
                    void *p)
{
      const struct skge_port *skge = netdev_priv(dev);
      const void __iomem *io = skge->hw->regs;

      regs->version = 1;
      memset(p, 0, regs->len);
      memcpy_fromio(p, io, B3_RAM_ADDR);

      memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
                  regs->len - B3_RI_WTO_R1);
}

/* Wake on Lan only supported on Yukon chips with rev 1 or above */
static int wol_supported(const struct skge_hw *hw)
{
      return !((hw->chip_id == CHIP_ID_GENESIS ||
              (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)));
}

static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
{
      struct skge_port *skge = netdev_priv(dev);

      wol->supported = wol_supported(skge->hw) ? WAKE_MAGIC : 0;
      wol->wolopts = skge->wol ? WAKE_MAGIC : 0;
}

static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
{
      struct skge_port *skge = netdev_priv(dev);
      struct skge_hw *hw = skge->hw;

      if (wol->wolopts != WAKE_MAGIC && wol->wolopts != 0)
            return -EOPNOTSUPP;

      if (wol->wolopts == WAKE_MAGIC && !wol_supported(hw))
            return -EOPNOTSUPP;

      skge->wol = wol->wolopts == WAKE_MAGIC;

      if (skge->wol) {
            memcpy_toio(hw->regs + WOL_MAC_ADDR, dev->dev_addr, ETH_ALEN);

            skge_write16(hw, WOL_CTRL_STAT,
                       WOL_CTL_ENA_PME_ON_MAGIC_PKT |
                       WOL_CTL_ENA_MAGIC_PKT_UNIT);
      } else
            skge_write16(hw, WOL_CTRL_STAT, WOL_CTL_DEFAULT);

      return 0;
}

/* Determine supported/advertised modes based on hardware.
 * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
 */
static u32 skge_supported_modes(const struct skge_hw *hw)
{
      u32 supported;

      if (hw->copper) {
            supported = SUPPORTED_10baseT_Half
                  | SUPPORTED_10baseT_Full
                  | SUPPORTED_100baseT_Half
                  | SUPPORTED_100baseT_Full
                  | SUPPORTED_1000baseT_Half
                  | SUPPORTED_1000baseT_Full
                  | SUPPORTED_Autoneg| SUPPORTED_TP;

            if (hw->chip_id == CHIP_ID_GENESIS)
                  supported &= ~(SUPPORTED_10baseT_Half
                                   | SUPPORTED_10baseT_Full
                                   | SUPPORTED_100baseT_Half
                                   | SUPPORTED_100baseT_Full);

            else if (hw->chip_id == CHIP_ID_YUKON)
                  supported &= ~SUPPORTED_1000baseT_Half;
      } else
            supported = SUPPORTED_1000baseT_Full | SUPPORTED_FIBRE
                  | SUPPORTED_Autoneg;

      return supported;
}

static int skge_get_settings(struct net_device *dev,
                       struct ethtool_cmd *ecmd)
{
      struct skge_port *skge = netdev_priv(dev);
      struct skge_hw *hw = skge->hw;

      ecmd->transceiver = XCVR_INTERNAL;
      ecmd->supported = skge_supported_modes(hw);

      if (hw->copper) {
            ecmd->port = PORT_TP;
            ecmd->phy_address = hw->phy_addr;
      } else
            ecmd->port = PORT_FIBRE;

      ecmd->advertising = skge->advertising;
      ecmd->autoneg = skge->autoneg;
      ecmd->speed = skge->speed;
      ecmd->duplex = skge->duplex;
      return 0;
}

static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
{
      struct skge_port *skge = netdev_priv(dev);
      const struct skge_hw *hw = skge->hw;
      u32 supported = skge_supported_modes(hw);

      if (ecmd->autoneg == AUTONEG_ENABLE) {
            ecmd->advertising = supported;
            skge->duplex = -1;
            skge->speed = -1;
      } else {
            u32 setting;

            switch (ecmd->speed) {
            case SPEED_1000:
                  if (ecmd->duplex == DUPLEX_FULL)
                        setting = SUPPORTED_1000baseT_Full;
                  else if (ecmd->duplex == DUPLEX_HALF)
                        setting = SUPPORTED_1000baseT_Half;
                  else
                        return -EINVAL;
                  break;
            case SPEED_100:
                  if (ecmd->duplex == DUPLEX_FULL)
                        setting = SUPPORTED_100baseT_Full;
                  else if (ecmd->duplex == DUPLEX_HALF)
                        setting = SUPPORTED_100baseT_Half;
                  else
                        return -EINVAL;
                  break;

            case SPEED_10:
                  if (ecmd->duplex == DUPLEX_FULL)
                        setting = SUPPORTED_10baseT_Full;
                  else if (ecmd->duplex == DUPLEX_HALF)
                        setting = SUPPORTED_10baseT_Half;
                  else
                        return -EINVAL;
                  break;
            default:
                  return -EINVAL;
            }

            if ((setting & supported) == 0)
                  return -EINVAL;

            skge->speed = ecmd->speed;
            skge->duplex = ecmd->duplex;
      }

      skge->autoneg = ecmd->autoneg;
      skge->advertising = ecmd->advertising;

      if (netif_running(dev))
            skge_phy_reset(skge);

      return (0);
}

static void skge_get_drvinfo(struct net_device *dev,
                       struct ethtool_drvinfo *info)
{
      struct skge_port *skge = netdev_priv(dev);

      strcpy(info->driver, DRV_NAME);
      strcpy(info->version, DRV_VERSION);
      strcpy(info->fw_version, "N/A");
      strcpy(info->bus_info, pci_name(skge->hw->pdev));
}

static const struct skge_stat {
      char     name[ETH_GSTRING_LEN];
      u16      xmac_offset;
      u16      gma_offset;
} skge_stats[] = {
      { "tx_bytes",           XM_TXO_OK_HI,  GM_TXO_OK_HI },
      { "rx_bytes",           XM_RXO_OK_HI,  GM_RXO_OK_HI },

      { "tx_broadcast", XM_TXF_BC_OK,  GM_TXF_BC_OK },
      { "rx_broadcast", XM_RXF_BC_OK,  GM_RXF_BC_OK },
      { "tx_multicast", XM_TXF_MC_OK,  GM_TXF_MC_OK },
      { "rx_multicast", XM_RXF_MC_OK,  GM_RXF_MC_OK },
      { "tx_unicast",         XM_TXF_UC_OK,  GM_TXF_UC_OK },
      { "rx_unicast",         XM_RXF_UC_OK,  GM_RXF_UC_OK },
      { "tx_mac_pause", XM_TXF_MPAUSE, GM_TXF_MPAUSE },
      { "rx_mac_pause", XM_RXF_MPAUSE, GM_RXF_MPAUSE },

      { "collisions",         XM_TXF_SNG_COL, GM_TXF_SNG_COL },
      { "multi_collisions",   XM_TXF_MUL_COL, GM_TXF_MUL_COL },
      { "aborted",            XM_TXF_ABO_COL, GM_TXF_ABO_COL },
      { "late_collision",     XM_TXF_LAT_COL, GM_TXF_LAT_COL },
      { "fifo_underrun",      XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
      { "fifo_overflow",      XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },

      { "rx_toolong",         XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
      { "rx_jabber",          XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
      { "rx_runt",            XM_RXE_RUNT,      GM_RXE_FRAG },
      { "rx_too_long",  XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
      { "rx_fcs_error", XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
};

static int skge_get_stats_count(struct net_device *dev)
{
      return ARRAY_SIZE(skge_stats);
}

static void skge_get_ethtool_stats(struct net_device *dev,
                           struct ethtool_stats *stats, u64 *data)
{
      struct skge_port *skge = netdev_priv(dev);

      if (skge->hw->chip_id == CHIP_ID_GENESIS)
            genesis_get_stats(skge, data);
      else
            yukon_get_stats(skge, data);
}

/* Use hardware MIB variables for critical path statistics and
 * transmit feedback not reported at interrupt.
 * Other errors are accounted for in interrupt handler.
 */
static struct net_device_stats *skge_get_stats(struct net_device *dev)
{
      struct skge_port *skge = netdev_priv(dev);
      u64 data[ARRAY_SIZE(skge_stats)];

      if (skge->hw->chip_id == CHIP_ID_GENESIS)
            genesis_get_stats(skge, data);
      else
            yukon_get_stats(skge, data);

      skge->net_stats.tx_bytes = data[0];
      skge->net_stats.rx_bytes = data[1];
      skge->net_stats.tx_packets = data[2] + data[4] + data[6];
      skge->net_stats.rx_packets = data[3] + data[5] + data[7];
      skge->net_stats.multicast = data[3] + data[5];
      skge->net_stats.collisions = data[10];
      skge->net_stats.tx_aborted_errors = data[12];

      return &skge->net_stats;
}

static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
{
      int i;

      switch (stringset) {
      case ETH_SS_STATS:
            for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
                  memcpy(data + i * ETH_GSTRING_LEN,
                         skge_stats[i].name, ETH_GSTRING_LEN);
            break;
      }
}

static void skge_get_ring_param(struct net_device *dev,
                        struct ethtool_ringparam *p)
{
      struct skge_port *skge = netdev_priv(dev);

      p->rx_max_pending = MAX_RX_RING_SIZE;
      p->tx_max_pending = MAX_TX_RING_SIZE;
      p->rx_mini_max_pending = 0;
      p->rx_jumbo_max_pending = 0;

      p->rx_pending = skge->rx_ring.count;
      p->tx_pending = skge->tx_ring.count;
      p->rx_mini_pending = 0;
      p->rx_jumbo_pending = 0;
}

static int skge_set_ring_param(struct net_device *dev,
                         struct ethtool_ringparam *p)
{
      struct skge_port *skge = netdev_priv(dev);
      int err;

      if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
          p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE)
            return -EINVAL;

      skge->rx_ring.count = p->rx_pending;
      skge->tx_ring.count = p->tx_pending;

      if (netif_running(dev)) {
            skge_down(dev);
            err = skge_up(dev);
            if (err)
                  dev_close(dev);
      }

      return 0;
}

static u32 skge_get_msglevel(struct net_device *netdev)
{
      struct skge_port *skge = netdev_priv(netdev);
      return skge->msg_enable;
}

static void skge_set_msglevel(struct net_device *netdev, u32 value)
{
      struct skge_port *skge = netdev_priv(netdev);
      skge->msg_enable = value;
}

static int skge_nway_reset(struct net_device *dev)
{
      struct skge_port *skge = netdev_priv(dev);

      if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
            return -EINVAL;

      skge_phy_reset(skge);
      return 0;
}

static int skge_set_sg(struct net_device *dev, u32 data)
{
      struct skge_port *skge = netdev_priv(dev);
      struct skge_hw *hw = skge->hw;

      if (hw->chip_id == CHIP_ID_GENESIS && data)
            return -EOPNOTSUPP;
      return ethtool_op_set_sg(dev, data);
}

static int skge_set_tx_csum(struct net_device *dev, u32 data)
{
      struct skge_port *skge = netdev_priv(dev);
      struct skge_hw *hw = skge->hw;

      if (hw->chip_id == CHIP_ID_GENESIS && data)
            return -EOPNOTSUPP;

      return ethtool_op_set_tx_csum(dev, data);
}

static u32 skge_get_rx_csum(struct net_device *dev)
{
      struct skge_port *skge = netdev_priv(dev);

      return skge->rx_csum;
}

/* Only Yukon supports checksum offload. */
static int skge_set_rx_csum(struct net_device *dev, u32 data)
{
      struct skge_port *skge = netdev_priv(dev);

      if (skge->hw->chip_id == CHIP_ID_GENESIS && data)
            return -EOPNOTSUPP;

      skge->rx_csum = data;
      return 0;
}

static void skge_get_pauseparam(struct net_device *dev,
                        struct ethtool_pauseparam *ecmd)
{
      struct skge_port *skge = netdev_priv(dev);

      ecmd->tx_pause = (skge->flow_control == FLOW_MODE_LOC_SEND)
            || (skge->flow_control == FLOW_MODE_SYMMETRIC);
      ecmd->rx_pause = (skge->flow_control == FLOW_MODE_REM_SEND)
            || (skge->flow_control == FLOW_MODE_SYMMETRIC);

      ecmd->autoneg = skge->autoneg;
}

static int skge_set_pauseparam(struct net_device *dev,
                         struct ethtool_pauseparam *ecmd)
{
      struct skge_port *skge = netdev_priv(dev);

      skge->autoneg = ecmd->autoneg;
      if (ecmd->rx_pause && ecmd->tx_pause)
            skge->flow_control = FLOW_MODE_SYMMETRIC;
      else if (ecmd->rx_pause && !ecmd->tx_pause)
            skge->flow_control = FLOW_MODE_REM_SEND;
      else if (!ecmd->rx_pause && ecmd->tx_pause)
            skge->flow_control = FLOW_MODE_LOC_SEND;
      else
            skge->flow_control = FLOW_MODE_NONE;

      if (netif_running(dev))
            skge_phy_reset(skge);
      return 0;
}

/* Chip internal frequency for clock calculations */
static inline u32 hwkhz(const struct skge_hw *hw)
{
      return (hw->chip_id == CHIP_ID_GENESIS) ? 53125 : 78125;
}

/* Chip HZ to microseconds */
static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
{
      return (ticks * 1000) / hwkhz(hw);
}

/* Microseconds to chip HZ */
static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
{
      return hwkhz(hw) * usec / 1000;
}

static int skge_get_coalesce(struct net_device *dev,
                       struct ethtool_coalesce *ecmd)
{
      struct skge_port *skge = netdev_priv(dev);
      struct skge_hw *hw = skge->hw;
      int port = skge->port;

      ecmd->rx_coalesce_usecs = 0;
      ecmd->tx_coalesce_usecs = 0;

      if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
            u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
            u32 msk = skge_read32(hw, B2_IRQM_MSK);

            if (msk & rxirqmask[port])
                  ecmd->rx_coalesce_usecs = delay;
            if (msk & txirqmask[port])
                  ecmd->tx_coalesce_usecs = delay;
      }

      return 0;
}

/* Note: interrupt timer is per board, but can turn on/off per port */
static int skge_set_coalesce(struct net_device *dev,
                       struct ethtool_coalesce *ecmd)
{
      struct skge_port *skge = netdev_priv(dev);
      struct skge_hw *hw = skge->hw;
      int port = skge->port;
      u32 msk = skge_read32(hw, B2_IRQM_MSK);
      u32 delay = 25;

      if (ecmd->rx_coalesce_usecs == 0)
            msk &= ~rxirqmask[port];
      else if (ecmd->rx_coalesce_usecs < 25 ||
             ecmd->rx_coalesce_usecs > 33333)
            return -EINVAL;
      else {
            msk |= rxirqmask[port];
            delay = ecmd->rx_coalesce_usecs;
      }

      if (ecmd->tx_coalesce_usecs == 0)
            msk &= ~txirqmask[port];
      else if (ecmd->tx_coalesce_usecs < 25 ||
             ecmd->tx_coalesce_usecs > 33333)
            return -EINVAL;
      else {
            msk |= txirqmask[port];
            delay = min(delay, ecmd->rx_coalesce_usecs);
      }

      skge_write32(hw, B2_IRQM_MSK, msk);
      if (msk == 0)
            skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
      else {
            skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
            skge_write32(hw, B2_IRQM_CTRL, TIM_START);
      }
      return 0;
}

enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
static void skge_led(struct skge_port *skge, enum led_mode mode)
{
      struct skge_hw *hw = skge->hw;
      int port = skge->port;

      mutex_lock(&hw->phy_mutex);
      if (hw->chip_id == CHIP_ID_GENESIS) {
            switch (mode) {
            case LED_MODE_OFF:
                  xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
                  skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
                  skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
                  skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
                  break;

            case LED_MODE_ON:
                  skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
                  skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);

                  skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
                  skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);

                  break;

            case LED_MODE_TST:
                  skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
                  skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
                  skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);

                  xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
                  break;
            }
      } else {
            switch (mode) {
            case LED_MODE_OFF:
                  gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
                  gm_phy_write(hw, port, PHY_MARV_LED_OVER,
                             PHY_M_LED_MO_DUP(MO_LED_OFF)  |
                             PHY_M_LED_MO_10(MO_LED_OFF)   |
                             PHY_M_LED_MO_100(MO_LED_OFF)  |
                             PHY_M_LED_MO_1000(MO_LED_OFF) |
                             PHY_M_LED_MO_RX(MO_LED_OFF));
                  break;
            case LED_MODE_ON:
                  gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
                             PHY_M_LED_PULS_DUR(PULS_170MS) |
                             PHY_M_LED_BLINK_RT(BLINK_84MS) |
                             PHY_M_LEDC_TX_CTRL |
                             PHY_M_LEDC_DP_CTRL);

                  gm_phy_write(hw, port, PHY_MARV_LED_OVER,
                             PHY_M_LED_MO_RX(MO_LED_OFF) |
                             (skge->speed == SPEED_100 ?
                              PHY_M_LED_MO_100(MO_LED_ON) : 0));
                  break;
            case LED_MODE_TST:
                  gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
                  gm_phy_write(hw, port, PHY_MARV_LED_OVER,
                             PHY_M_LED_MO_DUP(MO_LED_ON)  |
                             PHY_M_LED_MO_10(MO_LED_ON)   |
                             PHY_M_LED_MO_100(MO_LED_ON)  |
                             PHY_M_LED_MO_1000(MO_LED_ON) |
                             PHY_M_LED_MO_RX(MO_LED_ON));
            }
      }
      mutex_unlock(&hw->phy_mutex);
}

/* blink LED's for finding board */
static int skge_phys_id(struct net_device *dev, u32 data)
{
      struct skge_port *skge = netdev_priv(dev);
      unsigned long ms;
      enum led_mode mode = LED_MODE_TST;

      if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
            ms = jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT / HZ) * 1000;
      else
            ms = data * 1000;

      while (ms > 0) {
            skge_led(skge, mode);
            mode ^= LED_MODE_TST;

            if (msleep_interruptible(BLINK_MS))
                  break;
            ms -= BLINK_MS;
      }

      /* back to regular LED state */
      skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);

      return 0;
}

static struct ethtool_ops skge_ethtool_ops = {
      .get_settings     = skge_get_settings,
      .set_settings     = skge_set_settings,
      .get_drvinfo      = skge_get_drvinfo,
      .get_regs_len     = skge_get_regs_len,
      .get_regs   = skge_get_regs,
      .get_wol    = skge_get_wol,
      .set_wol    = skge_set_wol,
      .get_msglevel     = skge_get_msglevel,
      .set_msglevel     = skge_set_msglevel,
      .nway_reset = skge_nway_reset,
      .get_link   = ethtool_op_get_link,
      .get_ringparam    = skge_get_ring_param,
      .set_ringparam    = skge_set_ring_param,
      .get_pauseparam = skge_get_pauseparam,
      .set_pauseparam = skge_set_pauseparam,
      .get_coalesce     = skge_get_coalesce,
      .set_coalesce     = skge_set_coalesce,
      .get_sg           = ethtool_op_get_sg,
      .set_sg           = skge_set_sg,
      .get_tx_csum      = ethtool_op_get_tx_csum,
      .set_tx_csum      = skge_set_tx_csum,
      .get_rx_csum      = skge_get_rx_csum,
      .set_rx_csum      = skge_set_rx_csum,
      .get_strings      = skge_get_strings,
      .phys_id    = skge_phys_id,
      .get_stats_count = skge_get_stats_count,
      .get_ethtool_stats = skge_get_ethtool_stats,
      .get_perm_addr    = ethtool_op_get_perm_addr,
};

/*
 * Allocate ring elements and chain them together
 * One-to-one association of board descriptors with ring elements
 */
static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
{
      struct skge_tx_desc *d;
      struct skge_element *e;
      int i;

      ring->start = kcalloc(sizeof(*e), ring->count, GFP_KERNEL);
      if (!ring->start)
            return -ENOMEM;

      for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
            e->desc = d;
            if (i == ring->count - 1) {
                  e->next = ring->start;
                  d->next_offset = base;
            } else {
                  e->next = e + 1;
                  d->next_offset = base + (i+1) * sizeof(*d);
            }
      }
      ring->to_use = ring->to_clean = ring->start;

      return 0;
}

/* Allocate and setup a new buffer for receiving */
static void skge_rx_setup(struct skge_port *skge, struct skge_element *e,
                    struct sk_buff *skb, unsigned int bufsize)
{
      struct skge_rx_desc *rd = e->desc;
      u64 map;

      map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
                       PCI_DMA_FROMDEVICE);

      rd->dma_lo = map;
      rd->dma_hi = map >> 32;
      e->skb = skb;
      rd->csum1_start = ETH_HLEN;
      rd->csum2_start = ETH_HLEN;
      rd->csum1 = 0;
      rd->csum2 = 0;

      wmb();

      rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
      pci_unmap_addr_set(e, mapaddr, map);
      pci_unmap_len_set(e, maplen, bufsize);
}

/* Resume receiving using existing skb,
 * Note: DMA address is not changed by chip.
 *     MTU not changed while receiver active.
 */
static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
{
      struct skge_rx_desc *rd = e->desc;

      rd->csum2 = 0;
      rd->csum2_start = ETH_HLEN;

      wmb();

      rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
}


/* Free all  buffers in receive ring, assumes receiver stopped */
static void skge_rx_clean(struct skge_port *skge)
{
      struct skge_hw *hw = skge->hw;
      struct skge_ring *ring = &skge->rx_ring;
      struct skge_element *e;

      e = ring->start;
      do {
            struct skge_rx_desc *rd = e->desc;
            rd->control = 0;
            if (e->skb) {
                  pci_unmap_single(hw->pdev,
                               pci_unmap_addr(e, mapaddr),
                               pci_unmap_len(e, maplen),
                               PCI_DMA_FROMDEVICE);
                  dev_kfree_skb(e->skb);
                  e->skb = NULL;
            }
      } while ((e = e->next) != ring->start);
}


/* Allocate buffers for receive ring
 * For receive:  to_clean is next received frame.
 */
static int skge_rx_fill(struct skge_port *skge)
{
      struct skge_ring *ring = &skge->rx_ring;
      struct skge_element *e;

      e = ring->start;
      do {
            struct sk_buff *skb;

            skb = alloc_skb(skge->rx_buf_size + NET_IP_ALIGN, GFP_KERNEL);
            if (!skb)
                  return -ENOMEM;

            skb_reserve(skb, NET_IP_ALIGN);
            skge_rx_setup(skge, e, skb, skge->rx_buf_size);
      } while ( (e = e->next) != ring->start);

      ring->to_clean = ring->start;
      return 0;
}

static void skge_link_up(struct skge_port *skge)
{
      skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
                LED_BLK_OFF|LED_SYNC_OFF|LED_ON);

      netif_carrier_on(skge->netdev);
      netif_wake_queue(skge->netdev);

      if (netif_msg_link(skge))
            printk(KERN_INFO PFX
                   "%s: Link is up at %d Mbps, %s duplex, flow control %s\n",
                   skge->netdev->name, skge->speed,
                   skge->duplex == DUPLEX_FULL ? "full" : "half",
                   (skge->flow_control == FLOW_MODE_NONE) ? "none" :
                   (skge->flow_control == FLOW_MODE_LOC_SEND) ? "tx only" :
                   (skge->flow_control == FLOW_MODE_REM_SEND) ? "rx only" :
                   (skge->flow_control == FLOW_MODE_SYMMETRIC) ? "tx and rx" :
                   "unknown");
}

static void skge_link_down(struct skge_port *skge)
{
      skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
      netif_carrier_off(skge->netdev);
      netif_stop_queue(skge->netdev);

      if (netif_msg_link(skge))
            printk(KERN_INFO PFX "%s: Link is down.\n", skge->netdev->name);
}

static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
{
      int i;

      xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
      *val = xm_read16(hw, port, XM_PHY_DATA);

      for (i = 0; i < PHY_RETRIES; i++) {
            if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
                  goto ready;
            udelay(1);
      }

      return -ETIMEDOUT;
 ready:
      *val = xm_read16(hw, port, XM_PHY_DATA);

      return 0;
}

static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
{
      u16 v = 0;
      if (__xm_phy_read(hw, port, reg, &v))
            printk(KERN_WARNING PFX "%s: phy read timed out\n",
                   hw->dev[port]->name);
      return v;
}

static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
{
      int i;

      xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
      for (i = 0; i < PHY_RETRIES; i++) {
            if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
                  goto ready;
            udelay(1);
      }
      return -EIO;

 ready:
      xm_write16(hw, port, XM_PHY_DATA, val);
      for (i = 0; i < PHY_RETRIES; i++) {
            if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
                  return 0;
            udelay(1);
      }
      return -ETIMEDOUT;
}

static void genesis_init(struct skge_hw *hw)
{
      /* set blink source counter */
      skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
      skge_write8(hw, B2_BSC_CTRL, BSC_START);

      /* configure mac arbiter */
      skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);

      /* configure mac arbiter timeout values */
      skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
      skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
      skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
      skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);

      skge_write8(hw, B3_MA_RCINI_RX1, 0);
      skge_write8(hw, B3_MA_RCINI_RX2, 0);
      skge_write8(hw, B3_MA_RCINI_TX1, 0);
      skge_write8(hw, B3_MA_RCINI_TX2, 0);

      /* configure packet arbiter timeout */
      skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
      skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
      skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
      skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
      skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
}

static void genesis_reset(struct skge_hw *hw, int port)
{
      const u8 zero[8]  = { 0 };

      skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);

      /* reset the statistics module */
      xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
      xm_write16(hw, port, XM_IMSK, 0xffff);    /* disable XMAC IRQs */
      xm_write32(hw, port, XM_MODE, 0);         /* clear Mode Reg */
      xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */
      xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */

      /* disable Broadcom PHY IRQ */
      xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);

      xm_outhash(hw, port, XM_HSM, zero);
}


/* Convert mode to MII values  */
static const u16 phy_pause_map[] = {
      [FLOW_MODE_NONE] =      0,
      [FLOW_MODE_LOC_SEND] =  PHY_AN_PAUSE_ASYM,
      [FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
      [FLOW_MODE_REM_SEND]  = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
};


/* Check status of Broadcom phy link */
static void bcom_check_link(struct skge_hw *hw, int port)
{
      struct net_device *dev = hw->dev[port];
      struct skge_port *skge = netdev_priv(dev);
      u16 status;

      /* read twice because of latch */
      (void) xm_phy_read(hw, port, PHY_BCOM_STAT);
      status = xm_phy_read(hw, port, PHY_BCOM_STAT);

      if ((status & PHY_ST_LSYNC) == 0) {
            u16 cmd = xm_read16(hw, port, XM_MMU_CMD);
            cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
            xm_write16(hw, port, XM_MMU_CMD, cmd);
            /* dummy read to ensure writing */
            (void) xm_read16(hw, port, XM_MMU_CMD);

            if (netif_carrier_ok(dev))
                  skge_link_down(skge);
      } else {
            if (skge->autoneg == AUTONEG_ENABLE &&
                (status & PHY_ST_AN_OVER)) {
                  u16 lpa = xm_phy_read(hw, port, PHY_BCOM_AUNE_LP);
                  u16 aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);

                  if (lpa & PHY_B_AN_RF) {
                        printk(KERN_NOTICE PFX "%s: remote fault\n",
                               dev->name);
                        return;
                  }

                  /* Check Duplex mismatch */
                  switch (aux & PHY_B_AS_AN_RES_MSK) {
                  case PHY_B_RES_1000FD:
                        skge->duplex = DUPLEX_FULL;
                        break;
                  case PHY_B_RES_1000HD:
                        skge->duplex = DUPLEX_HALF;
                        break;
                  default:
                        printk(KERN_NOTICE PFX "%s: duplex mismatch\n",
                               dev->name);
                        return;
                  }


                  /* We are using IEEE 802.3z/D5.0 Table 37-4 */
                  switch (aux & PHY_B_AS_PAUSE_MSK) {
                  case PHY_B_AS_PAUSE_MSK:
                        skge->flow_control = FLOW_MODE_SYMMETRIC;
                        break;
                  case PHY_B_AS_PRR:
                        skge->flow_control = FLOW_MODE_REM_SEND;
                        break;
                  case PHY_B_AS_PRT:
                        skge->flow_control = FLOW_MODE_LOC_SEND;
                        break;
                  default:
                        skge->flow_control = FLOW_MODE_NONE;
                  }

                  skge->speed = SPEED_1000;
            }

            if (!netif_carrier_ok(dev))
                  genesis_link_up(skge);
      }
}

/* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
 * Phy on for 100 or 10Mbit operation
 */
static void bcom_phy_init(struct skge_port *skge, int jumbo)
{
      struct skge_hw *hw = skge->hw;
      int port = skge->port;
      int i;
      u16 id1, r, ext, ctl;

      /* magic workaround patterns for Broadcom */
      static const struct {
            u16 reg;
            u16 val;
      } A1hack[] = {
            { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
            { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
            { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
            { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
      }, C0hack[] = {
            { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
            { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
      };

      /* read Id from external PHY (all have the same address) */
      id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);

      /* Optimize MDIO transfer by suppressing preamble. */
      r = xm_read16(hw, port, XM_MMU_CMD);
      r |=  XM_MMU_NO_PRE;
      xm_write16(hw, port, XM_MMU_CMD,r);

      switch (id1) {
      case PHY_BCOM_ID1_C0:
            /*
             * Workaround BCOM Errata for the C0 type.
             * Write magic patterns to reserved registers.
             */
            for (i = 0; i < ARRAY_SIZE(C0hack); i++)
                  xm_phy_write(hw, port,
                             C0hack[i].reg, C0hack[i].val);

            break;
      case PHY_BCOM_ID1_A1:
            /*
             * Workaround BCOM Errata for the A1 type.
             * Write magic patterns to reserved registers.
             */
            for (i = 0; i < ARRAY_SIZE(A1hack); i++)
                  xm_phy_write(hw, port,
                             A1hack[i].reg, A1hack[i].val);
            break;
      }

      /*
       * Workaround BCOM Errata (#10523) for all BCom PHYs.
       * Disable Power Management after reset.
       */
      r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
      r |= PHY_B_AC_DIS_PM;
      xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);

      /* Dummy read */
      xm_read16(hw, port, XM_ISRC);

      ext = PHY_B_PEC_EN_LTR; /* enable tx led */
      ctl = PHY_CT_SP1000;    /* always 1000mbit */

      if (skge->autoneg == AUTONEG_ENABLE) {
            /*
             * Workaround BCOM Errata #1 for the C5 type.
             * 1000Base-T Link Acquisition Failure in Slave Mode
             * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
             */
            u16 adv = PHY_B_1000C_RD;
            if (skge->advertising & ADVERTISED_1000baseT_Half)
                  adv |= PHY_B_1000C_AHD;
            if (skge->advertising & ADVERTISED_1000baseT_Full)
                  adv |= PHY_B_1000C_AFD;
            xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);

            ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
      } else {
            if (skge->duplex == DUPLEX_FULL)
                  ctl |= PHY_CT_DUP_MD;
            /* Force to slave */
            xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
      }

      /* Set autonegotiation pause parameters */
      xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
                 phy_pause_map[skge->flow_control] | PHY_AN_CSMA);

      /* Handle Jumbo frames */
      if (jumbo) {
            xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
                       PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);

            ext |= PHY_B_PEC_HIGH_LA;

      }

      xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
      xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);

      /* Use link status change interrupt */
      xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);

      bcom_check_link(hw, port);
}

static void genesis_mac_init(struct skge_hw *hw, int port)
{
      struct net_device *dev = hw->dev[port];
      struct skge_port *skge = netdev_priv(dev);
      int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
      int i;
      u32 r;
      const u8 zero[6]  = { 0 };

      for (i = 0; i < 10; i++) {
            skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
                       MFF_SET_MAC_RST);
            if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
                  goto reset_ok;
            udelay(1);
      }

      printk(KERN_WARNING PFX "%s: genesis reset failed\n", dev->name);

 reset_ok:
      /* Unreset the XMAC. */
      skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);

      /*
       * Perform additional initialization for external PHYs,
       * namely for the 1000baseTX cards that use the XMAC's
       * GMII mode.
       */
      /* Take external Phy out of reset */
      r = skge_read32(hw, B2_GP_IO);
      if (port == 0)
            r |= GP_DIR_0|GP_IO_0;
      else
            r |= GP_DIR_2|GP_IO_2;

      skge_write32(hw, B2_GP_IO, r);


      /* Enable GMII interface */
      xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);

      bcom_phy_init(skge, jumbo);

      /* Set Station Address */
      xm_outaddr(hw, port, XM_SA, dev->dev_addr);

      /* We don't use match addresses so clear */
      for (i = 1; i < 16; i++)
            xm_outaddr(hw, port, XM_EXM(i), zero);

      /* Clear MIB counters */
      xm_write16(hw, port, XM_STAT_CMD,
                  XM_SC_CLR_RXC | XM_SC_CLR_TXC);
      /* Clear two times according to Errata #3 */
      xm_write16(hw, port, XM_STAT_CMD,
                  XM_SC_CLR_RXC | XM_SC_CLR_TXC);

      /* configure Rx High Water Mark (XM_RX_HI_WM) */
      xm_write16(hw, port, XM_RX_HI_WM, 1450);

      /* We don't need the FCS appended to the packet. */
      r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
      if (jumbo)
            r |= XM_RX_BIG_PK_OK;

      if (skge->duplex == DUPLEX_HALF) {
            /*
             * If in manual half duplex mode the other side might be in
             * full duplex mode, so ignore if a carrier extension is not seen
             * on frames received
             */
            r |= XM_RX_DIS_CEXT;
      }
      xm_write16(hw, port, XM_RX_CMD, r);


      /* We want short frames padded to 60 bytes. */
      xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);

      /*
       * Bump up the transmit threshold. This helps hold off transmit
       * underruns when we're blasting traffic from both ports at once.
       */
      xm_write16(hw, port, XM_TX_THR, 512);

      /*
       * Enable the reception of all error frames. This is is
       * a necessary evil due to the design of the XMAC. The
       * XMAC's receive FIFO is only 8K in size, however jumbo
       * frames can be up to 9000 bytes in length. When bad
       * frame filtering is enabled, the XMAC's RX FIFO operates
       * in 'store and forward' mode. For this to work, the
       * entire frame has to fit into the FIFO, but that means
       * that jumbo frames larger than 8192 bytes will be
       * truncated. Disabling all bad frame filtering causes
       * the RX FIFO to operate in streaming mode, in which
       * case the XMAC will start transferring frames out of the
       * RX FIFO as soon as the FIFO threshold is reached.
       */
      xm_write32(hw, port, XM_MODE, XM_DEF_MODE);


      /*
       * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
       *    - Enable all bits excepting 'Octets Rx OK Low CntOv'
       *      and 'Octets Rx OK Hi Cnt Ov'.
       */
      xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);

      /*
       * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
       *    - Enable all bits excepting 'Octets Tx OK Low CntOv'
       *      and 'Octets Tx OK Hi Cnt Ov'.
       */
      xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);

      /* Configure MAC arbiter */
      skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);

      /* configure timeout values */
      skge_write8(hw, B3_MA_TOINI_RX1, 72);
      skge_write8(hw, B3_MA_TOINI_RX2, 72);
      skge_write8(hw, B3_MA_TOINI_TX1, 72);
      skge_write8(hw, B3_MA_TOINI_TX2, 72);

      skge_write8(hw, B3_MA_RCINI_RX1, 0);
      skge_write8(hw, B3_MA_RCINI_RX2, 0);
      skge_write8(hw, B3_MA_RCINI_TX1, 0);
      skge_write8(hw, B3_MA_RCINI_TX2, 0);

      /* Configure Rx MAC FIFO */
      skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
      skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
      skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);

      /* Configure Tx MAC FIFO */
      skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
      skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
      skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);

      if (jumbo) {
            /* Enable frame flushing if jumbo frames used */
            skge_write16(hw, SK_REG(port,RX_MFF_CTRL1), MFF_ENA_FLUSH);
      } else {
            /* enable timeout timers if normal frames */
            skge_write16(hw, B3_PA_CTRL,
                       (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
      }
}

static void genesis_stop(struct skge_port *skge)
{
      struct skge_hw *hw = skge->hw;
      int port = skge->port;
      u32 reg;

      genesis_reset(hw, port);

      /* Clear Tx packet arbiter timeout IRQ */
      skge_write16(hw, B3_PA_CTRL,
                 port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);

      /*
       * If the transfer sticks at the MAC the STOP command will not
       * terminate if we don't flush the XMAC's transmit FIFO !
       */
      xm_write32(hw, port, XM_MODE,
                  xm_read32(hw, port, XM_MODE)|XM_MD_FTF);


      /* Reset the MAC */
      skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);

      /* For external PHYs there must be special handling */
      reg = skge_read32(hw, B2_GP_IO);
      if (port == 0) {
            reg |= GP_DIR_0;
            reg &= ~GP_IO_0;
      } else {
            reg |= GP_DIR_2;
            reg &= ~GP_IO_2;
      }
      skge_write32(hw, B2_GP_IO, reg);
      skge_read32(hw, B2_GP_IO);

      xm_write16(hw, port, XM_MMU_CMD,
                  xm_read16(hw, port, XM_MMU_CMD)
                  & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));

      xm_read16(hw, port, XM_MMU_CMD);
}


static void genesis_get_stats(struct skge_port *skge, u64 *data)
{
      struct skge_hw *hw = skge->hw;
      int port = skge->port;
      int i;
      unsigned long timeout = jiffies + HZ;

      xm_write16(hw, port,
                  XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);

      /* wait for update to complete */
      while (xm_read16(hw, port, XM_STAT_CMD)
             & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
            if (time_after(jiffies, timeout))
                  break;
            udelay(10);
      }

      /* special case for 64 bit octet counter */
      data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
            | xm_read32(hw, port, XM_TXO_OK_LO);
      data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
            | xm_read32(hw, port, XM_RXO_OK_LO);

      for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
            data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
}

static void genesis_mac_intr(struct skge_hw *hw, int port)
{
      struct skge_port *skge = netdev_priv(hw->dev[port]);
      u16 status = xm_read16(hw, port, XM_ISRC);

      if (netif_msg_intr(skge))
            printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
                   skge->netdev->name, status);

      if (status & XM_IS_TXF_UR) {
            xm_write32(hw, port, XM_MODE, XM_MD_FTF);
            ++skge->net_stats.tx_fifo_errors;
      }
      if (status & XM_IS_RXF_OV) {
            xm_write32(hw, port, XM_MODE, XM_MD_FRF);
            ++skge->net_stats.rx_fifo_errors;
      }
}

static void genesis_link_up(struct skge_port *skge)
{
      struct skge_hw *hw = skge->hw;
      int port = skge->port;
      u16 cmd;
      u32 mode, msk;

      cmd = xm_read16(hw, port, XM_MMU_CMD);

      /*
       * enabling pause frame reception is required for 1000BT
       * because the XMAC is not reset if the link is going down
       */
      if (skge->flow_control == FLOW_MODE_NONE ||
          skge->flow_control == FLOW_MODE_LOC_SEND)
            /* Disable Pause Frame Reception */
            cmd |= XM_MMU_IGN_PF;
      else
            /* Enable Pause Frame Reception */
            cmd &= ~XM_MMU_IGN_PF;

      xm_write16(hw, port, XM_MMU_CMD, cmd);

      mode = xm_read32(hw, port, XM_MODE);
      if (skge->flow_control == FLOW_MODE_SYMMETRIC ||
          skge->flow_control == FLOW_MODE_LOC_SEND) {
            /*
             * Configure Pause Frame Generation
             * Use internal and external Pause Frame Generation.
             * Sending pause frames is edge triggered.
             * Send a Pause frame with the maximum pause time if
             * internal oder external FIFO full condition occurs.
             * Send a zero pause time frame to re-start transmission.
             */
            /* XM_PAUSE_DA = '010000C28001' (default) */
            /* XM_MAC_PTIME = 0xffff (maximum) */
            /* remember this value is defined in big endian (!) */
            xm_write16(hw, port, XM_MAC_PTIME, 0xffff);

            mode |= XM_PAUSE_MODE;
            skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
      } else {
            /*
             * disable pause frame generation is required for 1000BT
             * because the XMAC is not reset if the link is going down
             */
            /* Disable Pause Mode in Mode Register */
            mode &= ~XM_PAUSE_MODE;

            skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
      }

      xm_write32(hw, port, XM_MODE, mode);

      msk = XM_DEF_MSK;
      /* disable GP0 interrupt bit for external Phy */
      msk |= XM_IS_INP_ASS;

      xm_write16(hw, port, XM_IMSK, msk);
      xm_read16(hw, port, XM_ISRC);

      /* get MMU Command Reg. */
      cmd = xm_read16(hw, port, XM_MMU_CMD);
      if (skge->duplex == DUPLEX_FULL)
            cmd |= XM_MMU_GMII_FD;

      /*
       * Workaround BCOM Errata (#10523) for all BCom Phys
       * Enable Power Management after link up
       */
      xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
                 xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
                 & ~PHY_B_AC_DIS_PM);
      xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);

      /* enable Rx/Tx */
      xm_write16(hw, port, XM_MMU_CMD,
                  cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
      skge_link_up(skge);
}


static inline void bcom_phy_intr(struct skge_port *skge)
{
      struct skge_hw *hw = skge->hw;
      int port = skge->port;
      u16 isrc;

      isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
      if (netif_msg_intr(skge))
            printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x\n",
                   skge->netdev->name, isrc);

      if (isrc & PHY_B_IS_PSE)
            printk(KERN_ERR PFX "%s: uncorrectable pair swap error\n",
                   hw->dev[port]->name);

      /* Workaround BCom Errata:
       *    enable and disable loopback mode if "NO HCD" occurs.
       */
      if (isrc & PHY_B_IS_NO_HDCL) {
            u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
            xm_phy_write(hw, port, PHY_BCOM_CTRL,
                          ctrl | PHY_CT_LOOP);
            xm_phy_write(hw, port, PHY_BCOM_CTRL,
                          ctrl & ~PHY_CT_LOOP);
      }

      if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
            bcom_check_link(hw, port);

}

static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
{
      int i;

      gma_write16(hw, port, GM_SMI_DATA, val);
      gma_write16(hw, port, GM_SMI_CTRL,
                   GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
      for (i = 0; i < PHY_RETRIES; i++) {
            udelay(1);

            if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
                  return 0;
      }

      printk(KERN_WARNING PFX "%s: phy write timeout\n",
             hw->dev[port]->name);
      return -EIO;
}

static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
{
      int i;

      gma_write16(hw, port, GM_SMI_CTRL,
                   GM_SMI_CT_PHY_AD(hw->phy_addr)
                   | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);

      for (i = 0; i < PHY_RETRIES; i++) {
            udelay(1);
            if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
                  goto ready;
      }

      return -ETIMEDOUT;
 ready:
      *val = gma_read16(hw, port, GM_SMI_DATA);
      return 0;
}

static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
{
      u16 v = 0;
      if (__gm_phy_read(hw, port, reg, &v))
            printk(KERN_WARNING PFX "%s: phy read timeout\n",
             hw->dev[port]->name);
      return v;
}

/* Marvell Phy Initialization */
static void yukon_init(struct skge_hw *hw, int port)
{
      struct skge_port *skge = netdev_priv(hw->dev[port]);
      u16 ctrl, ct1000, adv;

      if (skge->autoneg == AUTONEG_ENABLE) {
            u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);

            ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
                    PHY_M_EC_MAC_S_MSK);
            ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);

            ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);

            gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
      }

      ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
      if (skge->autoneg == AUTONEG_DISABLE)
            ctrl &= ~PHY_CT_ANE;

      ctrl |= PHY_CT_RESET;
      gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);

      ctrl = 0;
      ct1000 = 0;
      adv = PHY_AN_CSMA;

      if (skge->autoneg == AUTONEG_ENABLE) {
            if (hw->copper) {
                  if (skge->advertising & ADVERTISED_1000baseT_Full)
                        ct1000 |= PHY_M_1000C_AFD;
                  if (skge->advertising & ADVERTISED_1000baseT_Half)
                        ct1000 |= PHY_M_1000C_AHD;
                  if (skge->advertising & ADVERTISED_100baseT_Full)
                        adv |= PHY_M_AN_100_FD;
                  if (skge->advertising & ADVERTISED_100baseT_Half)
                        adv |= PHY_M_AN_100_HD;
                  if (skge->advertising & ADVERTISED_10baseT_Full)
                        adv |= PHY_M_AN_10_FD;
                  if (skge->advertising & ADVERTISED_10baseT_Half)
                        adv |= PHY_M_AN_10_HD;
            } else      /* special defines for FIBER (88E1011S only) */
                  adv |= PHY_M_AN_1000X_AHD | PHY_M_AN_1000X_AFD;

            /* Set Flow-control capabilities */
            adv |= phy_pause_map[skge->flow_control];

            /* Restart Auto-negotiation */
            ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
      } else {
            /* forced speed/duplex settings */
            ct1000 = PHY_M_1000C_MSE;

            if (skge->duplex == DUPLEX_FULL)
                  ctrl |= PHY_CT_DUP_MD;

            switch (skge->speed) {
            case SPEED_1000:
                  ctrl |= PHY_CT_SP1000;
                  break;
            case SPEED_100:
                  ctrl |= PHY_CT_SP100;
                  break;
            }

            ctrl |= PHY_CT_RESET;
      }

      gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);

      gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
      gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);

      /* Enable phy interrupt on autonegotiation complete (or link up) */
      if (skge->autoneg == AUTONEG_ENABLE)
            gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
      else
            gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
}

static void yukon_reset(struct skge_hw *hw, int port)
{
      gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
      gma_write16(hw, port, GM_MC_ADDR_H1, 0);  /* clear MC hash */
      gma_write16(hw, port, GM_MC_ADDR_H2, 0);
      gma_write16(hw, port, GM_MC_ADDR_H3, 0);
      gma_write16(hw, port, GM_MC_ADDR_H4, 0);

      gma_write16(hw, port, GM_RX_CTRL,
                   gma_read16(hw, port, GM_RX_CTRL)
                   | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
}

/* Apparently, early versions of Yukon-Lite had wrong chip_id? */
static int is_yukon_lite_a0(struct skge_hw *hw)
{
      u32 reg;
      int ret;

      if (hw->chip_id != CHIP_ID_YUKON)
            return 0;

      reg = skge_read32(hw, B2_FAR);
      skge_write8(hw, B2_FAR + 3, 0xff);
      ret = (skge_read8(hw, B2_FAR + 3) != 0);
      skge_write32(hw, B2_FAR, reg);
      return ret;
}

static void yukon_mac_init(struct skge_hw *hw, int port)
{
      struct skge_port *skge = netdev_priv(hw->dev[port]);
      int i;
      u32 reg;
      const u8 *addr = hw->dev[port]->dev_addr;

      /* WA code for COMA mode -- set PHY reset */
      if (hw->chip_id == CHIP_ID_YUKON_LITE &&
          hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
            reg = skge_read32(hw, B2_GP_IO);
            reg |= GP_DIR_9 | GP_IO_9;
            skge_write32(hw, B2_GP_IO, reg);
      }

      /* hard reset */
      skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
      skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);

      /* WA code for COMA mode -- clear PHY reset */
      if (hw->chip_id == CHIP_ID_YUKON_LITE &&
          hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
            reg = skge_read32(hw, B2_GP_IO);
            reg |= GP_DIR_9;
            reg &= ~GP_IO_9;
            skge_write32(hw, B2_GP_IO, reg);
      }

      /* Set hardware config mode */
      reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
            GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
      reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;

      /* Clear GMC reset */
      skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
      skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
      skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);

      if (skge->autoneg == AUTONEG_DISABLE) {
            reg = GM_GPCR_AU_ALL_DIS;
            gma_write16(hw, port, GM_GP_CTRL,
                         gma_read16(hw, port, GM_GP_CTRL) | reg);

            switch (skge->speed) {
            case SPEED_1000:
                  reg &= ~GM_GPCR_SPEED_100;
                  reg |= GM_GPCR_SPEED_1000;
                  break;
            case SPEED_100:
                  reg &= ~GM_GPCR_SPEED_1000;
                  reg |= GM_GPCR_SPEED_100;
                  break;
            case SPEED_10:
                  reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
                  break;
            }

            if (skge->duplex == DUPLEX_FULL)
                  reg |= GM_GPCR_DUP_FULL;
      } else
            reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;

      switch (skge->flow_control) {
      case FLOW_MODE_NONE:
            skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
            reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
            break;
      case FLOW_MODE_LOC_SEND:
            /* disable Rx flow-control */
            reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
      }

      gma_write16(hw, port, GM_GP_CTRL, reg);
      skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));

      yukon_init(hw, port);

      /* MIB clear */
      reg = gma_read16(hw, port, GM_PHY_ADDR);
      gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);

      for (i = 0; i < GM_MIB_CNT_SIZE; i++)
            gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
      gma_write16(hw, port, GM_PHY_ADDR, reg);

      /* transmit control */
      gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));

      /* receive control reg: unicast + multicast + no FCS  */
      gma_write16(hw, port, GM_RX_CTRL,
                   GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);

      /* transmit flow control */
      gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);

      /* transmit parameter */
      gma_write16(hw, port, GM_TX_PARAM,
                   TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
                   TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
                   TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));

      /* serial mode register */
      reg = GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
      if (hw->dev[port]->mtu > 1500)
            reg |= GM_SMOD_JUMBO_ENA;

      gma_write16(hw, port, GM_SERIAL_MODE, reg);

      /* physical address: used for pause frames */
      gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
      /* virtual address for data */
      gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);

      /* enable interrupt mask for counter overflows */
      gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
      gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
      gma_write16(hw, port, GM_TR_IRQ_MSK, 0);

      /* Initialize Mac Fifo */

      /* Configure Rx MAC FIFO */
      skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
      reg = GMF_OPER_ON | GMF_RX_F_FL_ON;

      /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
      if (is_yukon_lite_a0(hw))
            reg &= ~GMF_RX_F_FL_ON;

      skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
      skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
      /*
       * because Pause Packet Truncation in GMAC is not working
       * we have to increase the Flush Threshold to 64 bytes
       * in order to flush pause packets in Rx FIFO on Yukon-1
       */
      skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);

      /* Configure Tx MAC FIFO */
      skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
      skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
}

/* Go into power down mode */
static void yukon_suspend(struct skge_hw *hw, int port)
{
      u16 ctrl;

      ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
      ctrl |= PHY_M_PC_POL_R_DIS;
      gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);

      ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
      ctrl |= PHY_CT_RESET;
      gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);

      /* switch IEEE compatible power down mode on */
      ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
      ctrl |= PHY_CT_PDOWN;
      gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
}

static void yukon_stop(struct skge_port *skge)
{
      struct skge_hw *hw = skge->hw;
      int port = skge->port;

      skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
      yukon_reset(hw, port);

      gma_write16(hw, port, GM_GP_CTRL,
                   gma_read16(hw, port, GM_GP_CTRL)
                   & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
      gma_read16(hw, port, GM_GP_CTRL);

      yukon_suspend(hw, port);

      /* set GPHY Control reset */
      skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
      skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
}

static void yukon_get_stats(struct skge_port *skge, u64 *data)
{
      struct skge_hw *hw = skge->hw;
      int port = skge->port;
      int i;

      data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
            | gma_read32(hw, port, GM_TXO_OK_LO);
      data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
            | gma_read32(hw, port, GM_RXO_OK_LO);

      for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
            data[i] = gma_read32(hw, port,
                                skge_stats[i].gma_offset);
}

static void yukon_mac_intr(struct skge_hw *hw, int port)
{
      struct net_device *dev = hw->dev[port];
      struct skge_port *skge = netdev_priv(dev);
      u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));

      if (netif_msg_intr(skge))
            printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
                   dev->name, status);

      if (status & GM_IS_RX_FF_OR) {
            ++skge->net_stats.rx_fifo_errors;
            skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
      }

      if (status & GM_IS_TX_FF_UR) {
            ++skge->net_stats.tx_fifo_errors;
            skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
      }

}

static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
{
      switch (aux & PHY_M_PS_SPEED_MSK) {
      case PHY_M_PS_SPEED_1000:
            return SPEED_1000;
      case PHY_M_PS_SPEED_100:
            return SPEED_100;
      default:
            return SPEED_10;
      }
}

static void yukon_link_up(struct skge_port *skge)
{
      struct skge_hw *hw = skge->hw;
      int port = skge->port;
      u16 reg;

      /* Enable Transmit FIFO Underrun */
      skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);

      reg = gma_read16(hw, port, GM_GP_CTRL);
      if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
            reg |= GM_GPCR_DUP_FULL;

      /* enable Rx/Tx */
      reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
      gma_write16(hw, port, GM_GP_CTRL, reg);

      gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
      skge_link_up(skge);
}

static void yukon_link_down(struct skge_port *skge)
{
      struct skge_hw *hw = skge->hw;
      int port = skge->port;
      u16 ctrl;

      gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);

      ctrl = gma_read16(hw, port, GM_GP_CTRL);
      ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
      gma_write16(hw, port, GM_GP_CTRL, ctrl);

      if (skge->flow_control == FLOW_MODE_REM_SEND) {
            /* restore Asymmetric Pause bit */
            gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
                          gm_phy_read(hw, port,
                                       PHY_MARV_AUNE_ADV)
                          | PHY_M_AN_ASP);

      }

      yukon_reset(hw, port);
      skge_link_down(skge);

      yukon_init(hw, port);
}

static void yukon_phy_intr(struct skge_port *skge)
{
      struct skge_hw *hw = skge->hw;
      int port = skge->port;
      const char *reason = NULL;
      u16 istatus, phystat;

      istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
      phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);

      if (netif_msg_intr(skge))
            printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x 0x%x\n",
                   skge->netdev->name, istatus, phystat);

      if (istatus & PHY_M_IS_AN_COMPL) {
            if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
                & PHY_M_AN_RF) {
                  reason = "remote fault";
                  goto failed;
            }

            if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
                  reason = "master/slave fault";
                  goto failed;
            }

            if (!(phystat & PHY_M_PS_SPDUP_RES)) {
                  reason = "speed/duplex";
                  goto failed;
            }

            skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
                  ? DUPLEX_FULL : DUPLEX_HALF;
            skge->speed = yukon_speed(hw, phystat);

            /* We are using IEEE 802.3z/D5.0 Table 37-4 */
            switch (phystat & PHY_M_PS_PAUSE_MSK) {
            case PHY_M_PS_PAUSE_MSK:
                  skge->flow_control = FLOW_MODE_SYMMETRIC;
                  break;
            case PHY_M_PS_RX_P_EN:
                  skge->flow_control = FLOW_MODE_REM_SEND;
                  break;
            case PHY_M_PS_TX_P_EN:
                  skge->flow_control = FLOW_MODE_LOC_SEND;
                  break;
            default:
                  skge->flow_control = FLOW_MODE_NONE;
            }

            if (skge->flow_control == FLOW_MODE_NONE ||
                (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
                  skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
            else
                  skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
            yukon_link_up(skge);
            return;
      }

      if (istatus & PHY_M_IS_LSP_CHANGE)
            skge->speed = yukon_speed(hw, phystat);

      if (istatus & PHY_M_IS_DUP_CHANGE)
            skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
      if (istatus & PHY_M_IS_LST_CHANGE) {
            if (phystat & PHY_M_PS_LINK_UP)
                  yukon_link_up(skge);
            else
                  yukon_link_down(skge);
      }
      return;
 failed:
      printk(KERN_ERR PFX "%s: autonegotiation failed (%s)\n",
             skge->netdev->name, reason);

      /* XXX restart autonegotiation? */
}

static void skge_phy_reset(struct skge_port *skge)
{
      struct skge_hw *hw = skge->hw;
      int port = skge->port;

      netif_stop_queue(skge->netdev);
      netif_carrier_off(skge->netdev);

      mutex_lock(&hw->phy_mutex);
      if (hw->chip_id == CHIP_ID_GENESIS) {
            genesis_reset(hw, port);
            genesis_mac_init(hw, port);
      } else {
            yukon_reset(hw, port);
            yukon_init(hw, port);
      }
      mutex_unlock(&hw->phy_mutex);
}

/* Basic MII support */
static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
      struct mii_ioctl_data *data = if_mii(ifr);
      struct skge_port *skge = netdev_priv(dev);
      struct skge_hw *hw = skge->hw;
      int err = -EOPNOTSUPP;

      if (!netif_running(dev))
            return -ENODEV;   /* Phy still in reset */

      switch(cmd) {
      case SIOCGMIIPHY:
            data->phy_id = hw->phy_addr;

            /* fallthru */
      case SIOCGMIIREG: {
            u16 val = 0;
            mutex_lock(&hw->phy_mutex);
            if (hw->chip_id == CHIP_ID_GENESIS)
                  err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
            else
                  err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
            mutex_unlock(&hw->phy_mutex);
            data->val_out = val;
            break;
      }

      case SIOCSMIIREG:
            if (!capable(CAP_NET_ADMIN))
                  return -EPERM;

            mutex_lock(&hw->phy_mutex);
            if (hw->chip_id == CHIP_ID_GENESIS)
                  err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
                           data->val_in);
            else
                  err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
                           data->val_in);
            mutex_unlock(&hw->phy_mutex);
            break;
      }
      return err;
}

static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
{
      u32 end;

      start /= 8;
      len /= 8;
      end = start + len - 1;

      skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
      skge_write32(hw, RB_ADDR(q, RB_START), start);
      skge_write32(hw, RB_ADDR(q, RB_WP), start);
      skge_write32(hw, RB_ADDR(q, RB_RP), start);
      skge_write32(hw, RB_ADDR(q, RB_END), end);

      if (q == Q_R1 || q == Q_R2) {
            /* Set thresholds on receive queue's */
            skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
                       start + (2*len)/3);
            skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
                       start + (len/3));
      } else {
            /* Enable store & forward on Tx queue's because
             * Tx FIFO is only 4K on Genesis and 1K on Yukon
             */
            skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
      }

      skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
}

/* Setup Bus Memory Interface */
static void skge_qset(struct skge_port *skge, u16 q,
                  const struct skge_element *e)
{
      struct skge_hw *hw = skge->hw;
      u32 watermark = 0x600;
      u64 base = skge->dma + (e->desc - skge->mem);

      /* optimization to reduce window on 32bit/33mhz */
      if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
            watermark /= 2;

      skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
      skge_write32(hw, Q_ADDR(q, Q_F), watermark);
      skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
      skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
}

static int skge_up(struct net_device *dev)
{
      struct skge_port *skge = netdev_priv(dev);
      struct skge_hw *hw = skge->hw;
      int port = skge->port;
      u32 chunk, ram_addr;
      size_t rx_size, tx_size;
      int err;

      if (netif_msg_ifup(skge))
            printk(KERN_INFO PFX "%s: enabling interface\n", dev->name);

      if (dev->mtu > RX_BUF_SIZE)
            skge->rx_buf_size = dev->mtu + ETH_HLEN;
      else
            skge->rx_buf_size = RX_BUF_SIZE;


      rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
      tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
      skge->mem_size = tx_size + rx_size;
      skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
      if (!skge->mem)
            return -ENOMEM;

      BUG_ON(skge->dma & 7);

      if ((u64)skge->dma >> 32 != ((u64) skge->dma + skge->mem_size) >> 32) {
            printk(KERN_ERR PFX "pci_alloc_consistent region crosses 4G boundary\n");
            err = -EINVAL;
            goto free_pci_mem;
      }

      memset(skge->mem, 0, skge->mem_size);

      err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma);
      if (err)
            goto free_pci_mem;

      err = skge_rx_fill(skge);
      if (err)
            goto free_rx_ring;

      err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
                        skge->dma + rx_size);
      if (err)
            goto free_rx_ring;

      /* Initialize MAC */
      mutex_lock(&hw->phy_mutex);
      if (hw->chip_id == CHIP_ID_GENESIS)
            genesis_mac_init(hw, port);
      else
            yukon_mac_init(hw, port);
      mutex_unlock(&hw->phy_mutex);

      /* Configure RAMbuffers */
      chunk = hw->ram_size / ((hw->ports + 1)*2);
      ram_addr = hw->ram_offset + 2 * chunk * port;

      skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
      skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);

      BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
      skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
      skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);

      /* Start receiver BMU */
      wmb();
      skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
      skge_led(skge, LED_MODE_ON);

      netif_poll_enable(dev);
      return 0;

 free_rx_ring:
      skge_rx_clean(skge);
      kfree(skge->rx_ring.start);
 free_pci_mem:
      pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
      skge->mem = NULL;

      return err;
}

static int skge_down(struct net_device *dev)
{
      struct skge_port *skge = netdev_priv(dev);
      struct skge_hw *hw = skge->hw;
      int port = skge->port;

      if (skge->mem == NULL)
            return 0;

      if (netif_msg_ifdown(skge))
            printk(KERN_INFO PFX "%s: disabling interface\n", dev->name);

      netif_stop_queue(dev);

      skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
      if (hw->chip_id == CHIP_ID_GENESIS)
            genesis_stop(skge);
      else
            yukon_stop(skge);

      /* Stop transmitter */
      skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
      skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
                 RB_RST_SET|RB_DIS_OP_MD);


      /* Disable Force Sync bit and Enable Alloc bit */
      skge_write8(hw, SK_REG(port, TXA_CTRL),
                TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);

      /* Stop Interval Timer and Limit Counter of Tx Arbiter */
      skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
      skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);

      /* Reset PCI FIFO */
      skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
      skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);

      /* Reset the RAM Buffer async Tx queue */
      skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
      /* stop receiver */
      skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
      skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
                 RB_RST_SET|RB_DIS_OP_MD);
      skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);

      if (hw->chip_id == CHIP_ID_GENESIS) {
            skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
            skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
      } else {
            skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
            skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
      }

      skge_led(skge, LED_MODE_OFF);

      netif_poll_disable(dev);
      skge_tx_clean(skge);
      skge_rx_clean(skge);

      kfree(skge->rx_ring.start);
      kfree(skge->tx_ring.start);
      pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
      skge->mem = NULL;
      return 0;
}

static inline int skge_avail(const struct skge_ring *ring)
{
      return ((ring->to_clean > ring->to_use) ? 0 : ring->count)
            + (ring->to_clean - ring->to_use) - 1;
}

static int skge_xmit_frame(struct sk_buff *skb, struct net_device *dev)
{
      struct skge_port *skge = netdev_priv(dev);
      struct skge_hw *hw = skge->hw;
      struct skge_element *e;
      struct skge_tx_desc *td;
      int i;
      u32 control, len;
      u64 map;
      unsigned long flags;

      if (skb_padto(skb, ETH_ZLEN))
            return NETDEV_TX_OK;

      if (!spin_trylock_irqsave(&skge->tx_lock, flags))
            /* Collision - tell upper layer to requeue */
            return NETDEV_TX_LOCKED;

      if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1)) {
            if (!netif_queue_stopped(dev)) {
                  netif_stop_queue(dev);

                  printk(KERN_WARNING PFX "%s: ring full when queue awake!\n",
                         dev->name);
            }
            spin_unlock_irqrestore(&skge->tx_lock, flags);
            return NETDEV_TX_BUSY;
      }

      e = skge->tx_ring.to_use;
      td = e->desc;
      BUG_ON(td->control & BMU_OWN);
      e->skb = skb;
      len = skb_headlen(skb);
      map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
      pci_unmap_addr_set(e, mapaddr, map);
      pci_unmap_len_set(e, maplen, len);

      td->dma_lo = map;
      td->dma_hi = map >> 32;

      if (skb->ip_summed == CHECKSUM_HW) {
            int offset = skb->h.raw - skb->data;

            /* This seems backwards, but it is what the sk98lin
             * does.  Looks like hardware is wrong?
             */
            if (skb->h.ipiph->protocol == IPPROTO_UDP
                  && hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
                  control = BMU_TCP_CHECK;
            else
                  control = BMU_UDP_CHECK;

            td->csum_offs = 0;
            td->csum_start = offset;
            td->csum_write = offset + skb->csum;
      } else
            control = BMU_CHECK;

      if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
            control |= BMU_EOF| BMU_IRQ_EOF;
      else {
            struct skge_tx_desc *tf = td;

            control |= BMU_STFWD;
            for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
                  skb_frag_t *frag = &skb_shinfo(skb)->frags[i];

                  map = pci_map_page(hw->pdev, frag->page, frag->page_offset,
                                 frag->size, PCI_DMA_TODEVICE);

                  e = e->next;
                  e->skb = skb;
                  tf = e->desc;
                  BUG_ON(tf->control & BMU_OWN);

                  tf->dma_lo = map;
                  tf->dma_hi = (u64) map >> 32;
                  pci_unmap_addr_set(e, mapaddr, map);
                  pci_unmap_len_set(e, maplen, frag->size);

                  tf->control = BMU_OWN | BMU_SW | control | frag->size;
            }
            tf->control |= BMU_EOF | BMU_IRQ_EOF;
      }
      /* Make sure all the descriptors written */
      wmb();
      td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
      wmb();

      skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);

      if (unlikely(netif_msg_tx_queued(skge)))
            printk(KERN_DEBUG "%s: tx queued, slot %td, len %d\n",
                   dev->name, e - skge->tx_ring.start, skb->len);

      skge->tx_ring.to_use = e->next;
      if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) {
            pr_debug("%s: transmit queue full\n", dev->name);
            netif_stop_queue(dev);
      }

      spin_unlock_irqrestore(&skge->tx_lock, flags);

      dev->trans_start = jiffies;

      return NETDEV_TX_OK;
}


/* Free resources associated with this reing element */
static void skge_tx_free(struct skge_port *skge, struct skge_element *e,
                   u32 control)
{
      struct pci_dev *pdev = skge->hw->pdev;

      BUG_ON(!e->skb);

      /* skb header vs. fragment */
      if (control & BMU_STF)
            pci_unmap_single(pdev, pci_unmap_addr(e, mapaddr),
                         pci_unmap_len(e, maplen),
                         PCI_DMA_TODEVICE);
      else
            pci_unmap_page(pdev, pci_unmap_addr(e, mapaddr),
                         pci_unmap_len(e, maplen),
                         PCI_DMA_TODEVICE);

      if (control & BMU_EOF) {
            if (unlikely(netif_msg_tx_done(skge)))
                  printk(KERN_DEBUG PFX "%s: tx done slot %td\n",
                         skge->netdev->name, e - skge->tx_ring.start);

            dev_kfree_skb_any(e->skb);
      }
      e->skb = NULL;
}

/* Free all buffers in transmit ring */
static void skge_tx_clean(struct skge_port *skge)
{
      struct skge_element *e;
      unsigned long flags;

      spin_lock_irqsave(&skge->tx_lock, flags);
      for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
            struct skge_tx_desc *td = e->desc;
            skge_tx_free(skge, e, td->control);
            td->control = 0;
      }

      skge->tx_ring.to_clean = e;
      netif_wake_queue(skge->netdev);
      spin_unlock_irqrestore(&skge->tx_lock, flags);
}

static void skge_tx_timeout(struct net_device *dev)
{
      struct skge_port *skge = netdev_priv(dev);

      if (netif_msg_timer(skge))
            printk(KERN_DEBUG PFX "%s: tx timeout\n", dev->name);

      skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
      skge_tx_clean(skge);
}

static int skge_change_mtu(struct net_device *dev, int new_mtu)
{
      int err;

      if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
            return -EINVAL;

      if (!netif_running(dev)) {
            dev->mtu = new_mtu;
            return 0;
      }

      skge_down(dev);

      dev->mtu = new_mtu;

      err = skge_up(dev);
      if (err)
            dev_close(dev);

      return err;
}

static void genesis_set_multicast(struct net_device *dev)
{
      struct skge_port *skge = netdev_priv(dev);
      struct skge_hw *hw = skge->hw;
      int port = skge->port;
      int i, count = dev->mc_count;
      struct dev_mc_list *list = dev->mc_list;
      u32 mode;
      u8 filter[8];

      mode = xm_read32(hw, port, XM_MODE);
      mode |= XM_MD_ENA_HASH;
      if (dev->flags & IFF_PROMISC)
            mode |= XM_MD_ENA_PROM;
      else
            mode &= ~XM_MD_ENA_PROM;

      if (dev->flags & IFF_ALLMULTI)
            memset(filter, 0xff, sizeof(filter));
      else {
            memset(filter, 0, sizeof(filter));
            for (i = 0; list && i < count; i++, list = list->next) {
                  u32 crc, bit;
                  crc = ether_crc_le(ETH_ALEN, list->dmi_addr);
                  bit = ~crc & 0x3f;
                  filter[bit/8] |= 1 << (bit%8);
            }
      }

      xm_write32(hw, port, XM_MODE, mode);
      xm_outhash(hw, port, XM_HSM, filter);
}

static void yukon_set_multicast(struct net_device *dev)
{
      struct skge_port *skge = netdev_priv(dev);
      struct skge_hw *hw = skge->hw;
      int port = skge->port;
      struct dev_mc_list *list = dev->mc_list;
      u16 reg;
      u8 filter[8];

      memset(filter, 0, sizeof(filter));

      reg = gma_read16(hw, port, GM_RX_CTRL);
      reg |= GM_RXCR_UCF_ENA;

      if (dev->flags & IFF_PROMISC)             /* promiscuous */
            reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
      else if (dev->flags & IFF_ALLMULTI) /* all multicast */
            memset(filter, 0xff, sizeof(filter));
      else if (dev->mc_count == 0)        /* no multicast */
            reg &= ~GM_RXCR_MCF_ENA;
      else {
            int i;
            reg |= GM_RXCR_MCF_ENA;

            for (i = 0; list && i < dev->mc_count; i++, list = list->next) {
                  u32 bit = ether_crc(ETH_ALEN, list->dmi_addr) & 0x3f;
                  filter[bit/8] |= 1 << (bit%8);
            }
      }


      gma_write16(hw, port, GM_MC_ADDR_H1,
                   (u16)filter[0] | ((u16)filter[1] << 8));
      gma_write16(hw, port, GM_MC_ADDR_H2,
                   (u16)filter[2] | ((u16)filter[3] << 8));
      gma_write16(hw, port, GM_MC_ADDR_H3,
                   (u16)filter[4] | ((u16)filter[5] << 8));
      gma_write16(hw, port, GM_MC_ADDR_H4,
                   (u16)filter[6] | ((u16)filter[7] << 8));

      gma_write16(hw, port, GM_RX_CTRL, reg);
}

static inline u16 phy_length(const struct skge_hw *hw, u32 status)
{
      if (hw->chip_id == CHIP_ID_GENESIS)
            return status >> XMR_FS_LEN_SHIFT;
      else
            return status >> GMR_FS_LEN_SHIFT;
}

static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
{
      if (hw->chip_id == CHIP_ID_GENESIS)
            return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
      else
            return (status & GMR_FS_ANY_ERR) ||
                  (status & GMR_FS_RX_OK) == 0;
}


/* Get receive buffer from descriptor.
 * Handles copy of small buffers and reallocation failures
 */
static inline struct sk_buff *skge_rx_get(struct skge_port *skge,
                                struct skge_element *e,
                                u32 control, u32 status, u16 csum)
{
      struct sk_buff *skb;
      u16 len = control & BMU_BBC;

      if (unlikely(netif_msg_rx_status(skge)))
            printk(KERN_DEBUG PFX "%s: rx slot %td status 0x%x len %d\n",
                   skge->netdev->name, e - skge->rx_ring.start,
                   status, len);

      if (len > skge->rx_buf_size)
            goto error;

      if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
            goto error;

      if (bad_phy_status(skge->hw, status))
            goto error;

      if (phy_length(skge->hw, status) != len)
            goto error;

      if (len < RX_COPY_THRESHOLD) {
            skb = alloc_skb(len + 2, GFP_ATOMIC);
            if (!skb)
                  goto resubmit;

            skb_reserve(skb, 2);
            pci_dma_sync_single_for_cpu(skge->hw->pdev,
                                  pci_unmap_addr(e, mapaddr),
                                  len, PCI_DMA_FROMDEVICE);
            memcpy(skb->data, e->skb->data, len);
            pci_dma_sync_single_for_device(skge->hw->pdev,
                                     pci_unmap_addr(e, mapaddr),
                                     len, PCI_DMA_FROMDEVICE);
            skge_rx_reuse(e, skge->rx_buf_size);
      } else {
            struct sk_buff *nskb;
            nskb = alloc_skb(skge->rx_buf_size + NET_IP_ALIGN, GFP_ATOMIC);
            if (!nskb)
                  goto resubmit;

            skb_reserve(nskb, NET_IP_ALIGN);
            pci_unmap_single(skge->hw->pdev,
                         pci_unmap_addr(e, mapaddr),
                         pci_unmap_len(e, maplen),
                         PCI_DMA_FROMDEVICE);
            skb = e->skb;
            prefetch(skb->data);
            skge_rx_setup(skge, e, nskb, skge->rx_buf_size);
      }

      skb_put(skb, len);
      skb->dev = skge->netdev;
      if (skge->rx_csum) {
            skb->csum = csum;
            skb->ip_summed = CHECKSUM_HW;
      }

      skb->protocol = eth_type_trans(skb, skge->netdev);

      return skb;
error:

      if (netif_msg_rx_err(skge))
            printk(KERN_DEBUG PFX "%s: rx err, slot %td control 0x%x status 0x%x\n",
                   skge->netdev->name, e - skge->rx_ring.start,
                   control, status);

      if (skge->hw->chip_id == CHIP_ID_GENESIS) {
            if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
                  skge->net_stats.rx_length_errors++;
            if (status & XMR_FS_FRA_ERR)
                  skge->net_stats.rx_frame_errors++;
            if (status & XMR_FS_FCS_ERR)
                  skge->net_stats.rx_crc_errors++;
      } else {
            if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
                  skge->net_stats.rx_length_errors++;
            if (status & GMR_FS_FRAGMENT)
                  skge->net_stats.rx_frame_errors++;
            if (status & GMR_FS_CRC_ERR)
                  skge->net_stats.rx_crc_errors++;
      }

resubmit:
      skge_rx_reuse(e, skge->rx_buf_size);
      return NULL;
}

/* Free all buffers in Tx ring which are no longer owned by device */
static void skge_txirq(struct net_device *dev)
{
      struct skge_port *skge = netdev_priv(dev);
      struct skge_ring *ring = &skge->tx_ring;
      struct skge_element *e;

      rmb();

      spin_lock(&skge->tx_lock);
      for (e = ring->to_clean; e != ring->to_use; e = e->next) {
            struct skge_tx_desc *td = e->desc;

            if (td->control & BMU_OWN)
                  break;

            skge_tx_free(skge, e, td->control);
      }
      skge->tx_ring.to_clean = e;

      if (netif_queue_stopped(skge->netdev)
          && skge_avail(&skge->tx_ring) > TX_LOW_WATER)
            netif_wake_queue(skge->netdev);

      spin_unlock(&skge->tx_lock);
}

static int skge_poll(struct net_device *dev, int *budget)
{
      struct skge_port *skge = netdev_priv(dev);
      struct skge_hw *hw = skge->hw;
      struct skge_ring *ring = &skge->rx_ring;
      struct skge_element *e;
      int to_do = min(dev->quota, *budget);
      int work_done = 0;

      for (e = ring->to_clean; prefetch(e->next), work_done < to_do; e = e->next) {
            struct skge_rx_desc *rd = e->desc;
            struct sk_buff *skb;
            u32 control;

            rmb();
            control = rd->control;
            if (control & BMU_OWN)
                  break;

            skb = skge_rx_get(skge, e, control, rd->status, rd->csum2);
            if (likely(skb)) {
                  dev->last_rx = jiffies;
                  netif_receive_skb(skb);

                  ++work_done;
            }
      }
      ring->to_clean = e;

      /* restart receiver */
      wmb();
      skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);

      *budget -= work_done;
      dev->quota -= work_done;

      if (work_done >=  to_do)
            return 1; /* not done */

      netif_rx_complete(dev);

      spin_lock_irq(&hw->hw_lock);
      hw->intr_mask |= rxirqmask[skge->port];
      skge_write32(hw, B0_IMSK, hw->intr_mask);
      mmiowb();
      spin_unlock_irq(&hw->hw_lock);

      return 0;
}

/* Parity errors seem to happen when Genesis is connected to a switch
 * with no other ports present. Heartbeat error??
 */
static void skge_mac_parity(struct skge_hw *hw, int port)
{
      struct net_device *dev = hw->dev[port];

      if (dev) {
            struct skge_port *skge = netdev_priv(dev);
            ++skge->net_stats.tx_heartbeat_errors;
      }

      if (hw->chip_id == CHIP_ID_GENESIS)
            skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
                       MFF_CLR_PERR);
      else
            /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
            skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
                      (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
                      ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
}

static void skge_mac_intr(struct skge_hw *hw, int port)
{
      if (hw->chip_id == CHIP_ID_GENESIS)
            genesis_mac_intr(hw, port);
      else
            yukon_mac_intr(hw, port);
}

/* Handle device specific framing and timeout interrupts */
static void skge_error_irq(struct skge_hw *hw)
{
      u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);

      if (hw->chip_id == CHIP_ID_GENESIS) {
            /* clear xmac errors */
            if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
                  skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
            if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
                  skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
      } else {
            /* Timestamp (unused) overflow */
            if (hwstatus & IS_IRQ_TIST_OV)
                  skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
      }

      if (hwstatus & IS_RAM_RD_PAR) {
            printk(KERN_ERR PFX "Ram read data parity error\n");
            skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
      }

      if (hwstatus & IS_RAM_WR_PAR) {
            printk(KERN_ERR PFX "Ram write data parity error\n");
            skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
      }

      if (hwstatus & IS_M1_PAR_ERR)
            skge_mac_parity(hw, 0);

      if (hwstatus & IS_M2_PAR_ERR)
            skge_mac_parity(hw, 1);

      if (hwstatus & IS_R1_PAR_ERR) {
            printk(KERN_ERR PFX "%s: receive queue parity error\n",
                   hw->dev[0]->name);
            skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
      }

      if (hwstatus & IS_R2_PAR_ERR) {
            printk(KERN_ERR PFX "%s: receive queue parity error\n",
                   hw->dev[1]->name);
            skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
      }

      if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
            u16 pci_status, pci_cmd;

            pci_read_config_word(hw->pdev, PCI_COMMAND, &pci_cmd);
            pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);

            printk(KERN_ERR PFX "%s: PCI error cmd=%#x status=%#x\n",
                         pci_name(hw->pdev), pci_cmd, pci_status);

            /* Write the error bits back to clear them. */
            pci_status &= PCI_STATUS_ERROR_BITS;
            skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
            pci_write_config_word(hw->pdev, PCI_COMMAND,
                              pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
            pci_write_config_word(hw->pdev, PCI_STATUS, pci_status);
            skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);

            /* if error still set then just ignore it */
            hwstatus = skge_read32(hw, B0_HWE_ISRC);
            if (hwstatus & IS_IRQ_STAT) {
                  printk(KERN_INFO PFX "unable to clear error (so ignoring them)\n");
                  hw->intr_mask &= ~IS_HW_ERR;
            }
      }
}

/*
 * Interrupt from PHY are handled in work queue
 * because accessing phy registers requires spin wait which might
 * cause excess interrupt latency.
 */
static void skge_extirq(void *arg)
{
      struct skge_hw *hw = arg;
      int port;

      mutex_lock(&hw->phy_mutex);
      for (port = 0; port < hw->ports; port++) {
            struct net_device *dev = hw->dev[port];
            struct skge_port *skge = netdev_priv(dev);

            if (netif_running(dev)) {
                  if (hw->chip_id != CHIP_ID_GENESIS)
                        yukon_phy_intr(skge);
                  else
                        bcom_phy_intr(skge);
            }
      }
      mutex_unlock(&hw->phy_mutex);

      spin_lock_irq(&hw->hw_lock);
      hw->intr_mask |= IS_EXT_REG;
      skge_write32(hw, B0_IMSK, hw->intr_mask);
      spin_unlock_irq(&hw->hw_lock);
}

static irqreturn_t skge_intr(int irq, void *dev_id, struct pt_regs *regs)
{
      struct skge_hw *hw = dev_id;
      u32 status;

      /* Reading this register masks IRQ */
      status = skge_read32(hw, B0_SP_ISRC);
      if (status == 0)
            return IRQ_NONE;

      spin_lock(&hw->hw_lock);
      status &= hw->intr_mask;
      if (status & IS_EXT_REG) {
            hw->intr_mask &= ~IS_EXT_REG;
            schedule_work(&hw->phy_work);
      }

      if (status & IS_XA1_F) {
            skge_write8(hw, Q_ADDR(Q_XA1, Q_CSR), CSR_IRQ_CL_F);
            skge_txirq(hw->dev[0]);
      }

      if (status & IS_R1_F) {
            skge_write8(hw, Q_ADDR(Q_R1, Q_CSR), CSR_IRQ_CL_F);
            hw->intr_mask &= ~IS_R1_F;
            netif_rx_schedule(hw->dev[0]);
      }

      if (status & IS_PA_TO_TX1)
            skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);

      if (status & IS_PA_TO_RX1) {
            struct skge_port *skge = netdev_priv(hw->dev[0]);

            ++skge->net_stats.rx_over_errors;
            skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
      }


      if (status & IS_MAC1)
            skge_mac_intr(hw, 0);

      if (hw->dev[1]) {
            if (status & IS_XA2_F) {
                  skge_write8(hw, Q_ADDR(Q_XA2, Q_CSR), CSR_IRQ_CL_F);
                  skge_txirq(hw->dev[1]);
            }

            if (status & IS_R2_F) {
                  skge_write8(hw, Q_ADDR(Q_R2, Q_CSR), CSR_IRQ_CL_F);
                  hw->intr_mask &= ~IS_R2_F;
                  netif_rx_schedule(hw->dev[1]);
            }

            if (status & IS_PA_TO_RX2) {
                  struct skge_port *skge = netdev_priv(hw->dev[1]);
                  ++skge->net_stats.rx_over_errors;
                  skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
            }

            if (status & IS_PA_TO_TX2)
                  skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);

            if (status & IS_MAC2)
                  skge_mac_intr(hw, 1);
      }

      if (status & IS_HW_ERR)
            skge_error_irq(hw);

      skge_write32(hw, B0_IMSK, hw->intr_mask);
      spin_unlock(&hw->hw_lock);

      return IRQ_HANDLED;
}

#ifdef CONFIG_NET_POLL_CONTROLLER
static void skge_netpoll(struct net_device *dev)
{
      struct skge_port *skge = netdev_priv(dev);

      disable_irq(dev->irq);
      skge_intr(dev->irq, skge->hw, NULL);
      enable_irq(dev->irq);
}
#endif

static int skge_set_mac_address(struct net_device *dev, void *p)
{
      struct skge_port *skge = netdev_priv(dev);
      struct skge_hw *hw = skge->hw;
      unsigned port = skge->port;
      const struct sockaddr *addr = p;

      if (!is_valid_ether_addr(addr->sa_data))
            return -EADDRNOTAVAIL;

      mutex_lock(&hw->phy_mutex);
      memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
      memcpy_toio(hw->regs + B2_MAC_1 + port*8,
                dev->dev_addr, ETH_ALEN);
      memcpy_toio(hw->regs + B2_MAC_2 + port*8,
                dev->dev_addr, ETH_ALEN);

      if (hw->chip_id == CHIP_ID_GENESIS)
            xm_outaddr(hw, port, XM_SA, dev->dev_addr);
      else {
            gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
            gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
      }
      mutex_unlock(&hw->phy_mutex);

      return 0;
}

static const struct {
      u8 id;
      const char *name;
} skge_chips[] = {
      { CHIP_ID_GENESIS,      "Genesis" },
      { CHIP_ID_YUKON,   "Yukon" },
      { CHIP_ID_YUKON_LITE,    "Yukon-Lite"},
      { CHIP_ID_YUKON_LP,      "Yukon-LP"},
};

static const char *skge_board_name(const struct skge_hw *hw)
{
      int i;
      static char buf[16];

      for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
            if (skge_chips[i].id == hw->chip_id)
                  return skge_chips[i].name;

      snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id);
      return buf;
}


/*
 * Setup the board data structure, but don't bring up
 * the port(s)
 */
static int skge_reset(struct skge_hw *hw)
{
      u32 reg;
      u16 ctst, pci_status;
      u8 t8, mac_cfg, pmd_type, phy_type;
      int i;

      ctst = skge_read16(hw, B0_CTST);

      /* do a SW reset */
      skge_write8(hw, B0_CTST, CS_RST_SET);
      skge_write8(hw, B0_CTST, CS_RST_CLR);

      /* clear PCI errors, if any */
      skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
      skge_write8(hw, B2_TST_CTRL2, 0);

      pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
      pci_write_config_word(hw->pdev, PCI_STATUS,
                        pci_status | PCI_STATUS_ERROR_BITS);
      skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
      skge_write8(hw, B0_CTST, CS_MRST_CLR);

      /* restore CLK_RUN bits (for Yukon-Lite) */
      skge_write16(hw, B0_CTST,
                 ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));

      hw->chip_id = skge_read8(hw, B2_CHIP_ID);
      phy_type = skge_read8(hw, B2_E_1) & 0xf;
      pmd_type = skge_read8(hw, B2_PMD_TYP);
      hw->copper = (pmd_type == 'T' || pmd_type == '1');

      switch (hw->chip_id) {
      case CHIP_ID_GENESIS:
            switch (phy_type) {
            case SK_PHY_BCOM:
                  hw->phy_addr = PHY_ADDR_BCOM;
                  break;
            default:
                  printk(KERN_ERR PFX "%s: unsupported phy type 0x%x\n",
                         pci_name(hw->pdev), phy_type);
                  return -EOPNOTSUPP;
            }
            break;

      case CHIP_ID_YUKON:
      case CHIP_ID_YUKON_LITE:
      case CHIP_ID_YUKON_LP:
            if (phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
                  hw->copper = 1;

            hw->phy_addr = PHY_ADDR_MARV;
            break;

      default:
            printk(KERN_ERR PFX "%s: unsupported chip type 0x%x\n",
                   pci_name(hw->pdev), hw->chip_id);
            return -EOPNOTSUPP;
      }

      mac_cfg = skge_read8(hw, B2_MAC_CFG);
      hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
      hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;

      /* read the adapters RAM size */
      t8 = skge_read8(hw, B2_E_0);
      if (hw->chip_id == CHIP_ID_GENESIS) {
            if (t8 == 3) {
                  /* special case: 4 x 64k x 36, offset = 0x80000 */
                  hw->ram_size = 0x100000;
                  hw->ram_offset = 0x80000;
            } else
                  hw->ram_size = t8 * 512;
      }
      else if (t8 == 0)
            hw->ram_size = 0x20000;
      else
            hw->ram_size = t8 * 4096;

      spin_lock_init(&hw->hw_lock);
      hw->intr_mask = IS_HW_ERR | IS_EXT_REG | IS_PORT_1;
      if (hw->ports > 1)
            hw->intr_mask |= IS_PORT_2;

      if (hw->chip_id == CHIP_ID_GENESIS)
            genesis_init(hw);
      else {
            /* switch power to VCC (WA for VAUX problem) */
            skge_write8(hw, B0_POWER_CTRL,
                      PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);

            /* avoid boards with stuck Hardware error bits */
            if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
                (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
                  printk(KERN_WARNING PFX "stuck hardware sensor bit\n");
                  hw->intr_mask &= ~IS_HW_ERR;
            }

            /* Clear PHY COMA */
            skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
            pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg);
            reg &= ~PCI_PHY_COMA;
            pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
            skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);


            for (i = 0; i < hw->ports; i++) {
                  skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
                  skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
            }
      }

      /* turn off hardware timer (unused) */
      skge_write8(hw, B2_TI_CTRL, TIM_STOP);
      skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
      skge_write8(hw, B0_LED, LED_STAT_ON);

      /* enable the Tx Arbiters */
      for (i = 0; i < hw->ports; i++)
            skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);

      /* Initialize ram interface */
      skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);

      skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
      skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
      skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
      skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
      skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
      skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
      skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
      skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
      skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
      skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
      skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
      skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);

      skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);

      /* Set interrupt moderation for Transmit only
       * Receive interrupts avoided by NAPI
       */
      skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
      skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
      skge_write32(hw, B2_IRQM_CTRL, TIM_START);

      skge_write32(hw, B0_IMSK, hw->intr_mask);

      mutex_lock(&hw->phy_mutex);
      for (i = 0; i < hw->ports; i++) {
            if (hw->chip_id == CHIP_ID_GENESIS)
                  genesis_reset(hw, i);
            else
                  yukon_reset(hw, i);
      }
      mutex_unlock(&hw->phy_mutex);

      return 0;
}

/* Initialize network device */
static struct net_device *skge_devinit(struct skge_hw *hw, int port,
                               int highmem)
{
      struct skge_port *skge;
      struct net_device *dev = alloc_etherdev(sizeof(*skge));

      if (!dev) {
            printk(KERN_ERR "skge etherdev alloc failed");
            return NULL;
      }

      SET_MODULE_OWNER(dev);
      SET_NETDEV_DEV(dev, &hw->pdev->dev);
      dev->open = skge_up;
      dev->stop = skge_down;
      dev->do_ioctl = skge_ioctl;
      dev->hard_start_xmit = skge_xmit_frame;
      dev->get_stats = skge_get_stats;
      if (hw->chip_id == CHIP_ID_GENESIS)
            dev->set_multicast_list = genesis_set_multicast;
      else
            dev->set_multicast_list = yukon_set_multicast;

      dev->set_mac_address = skge_set_mac_address;
      dev->change_mtu = skge_change_mtu;
      SET_ETHTOOL_OPS(dev, &skge_ethtool_ops);
      dev->tx_timeout = skge_tx_timeout;
      dev->watchdog_timeo = TX_WATCHDOG;
      dev->poll = skge_poll;
      dev->weight = NAPI_WEIGHT;
#ifdef CONFIG_NET_POLL_CONTROLLER
      dev->poll_controller = skge_netpoll;
#endif
      dev->irq = hw->pdev->irq;
      dev->features = NETIF_F_LLTX;
      if (highmem)
            dev->features |= NETIF_F_HIGHDMA;

      skge = netdev_priv(dev);
      skge->netdev = dev;
      skge->hw = hw;
      skge->msg_enable = netif_msg_init(debug, default_msg);
      skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
      skge->rx_ring.count = DEFAULT_RX_RING_SIZE;

      /* Auto speed and flow control */
      skge->autoneg = AUTONEG_ENABLE;
      skge->flow_control = FLOW_MODE_SYMMETRIC;
      skge->duplex = -1;
      skge->speed = -1;
      skge->advertising = skge_supported_modes(hw);

      hw->dev[port] = dev;

      skge->port = port;

      spin_lock_init(&skge->tx_lock);

      if (hw->chip_id != CHIP_ID_GENESIS) {
            dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
            skge->rx_csum = 1;
      }

      /* read the mac address */
      memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
      memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);

      /* device is off until link detection */
      netif_carrier_off(dev);
      netif_stop_queue(dev);

      return dev;
}

static void __devinit skge_show_addr(struct net_device *dev)
{
      const struct skge_port *skge = netdev_priv(dev);

      if (netif_msg_probe(skge))
            printk(KERN_INFO PFX "%s: addr %02x:%02x:%02x:%02x:%02x:%02x\n",
                   dev->name,
                   dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
                   dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
}

static int __devinit skge_probe(struct pci_dev *pdev,
                        const struct pci_device_id *ent)
{
      struct net_device *dev, *dev1;
      struct skge_hw *hw;
      int err, using_dac = 0;

      err = pci_enable_device(pdev);
      if (err) {
            printk(KERN_ERR PFX "%s cannot enable PCI device\n",
                   pci_name(pdev));
            goto err_out;
      }

      err = pci_request_regions(pdev, DRV_NAME);
      if (err) {
            printk(KERN_ERR PFX "%s cannot obtain PCI resources\n",
                   pci_name(pdev));
            goto err_out_disable_pdev;
      }

      pci_set_master(pdev);

      if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
            using_dac = 1;
            err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
      } else if (!(err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
            using_dac = 0;
            err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
      }

      if (err) {
            printk(KERN_ERR PFX "%s no usable DMA configuration\n",
                   pci_name(pdev));
            goto err_out_free_regions;
      }

#ifdef __BIG_ENDIAN
      /* byte swap descriptors in hardware */
      {
            u32 reg;

            pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
            reg |= PCI_REV_DESC;
            pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
      }
#endif

      err = -ENOMEM;
      hw = kzalloc(sizeof(*hw), GFP_KERNEL);
      if (!hw) {
            printk(KERN_ERR PFX "%s: cannot allocate hardware struct\n",
                   pci_name(pdev));
            goto err_out_free_regions;
      }

      hw->pdev = pdev;
      mutex_init(&hw->phy_mutex);
      INIT_WORK(&hw->phy_work, skge_extirq, hw);

      hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
      if (!hw->regs) {
            printk(KERN_ERR PFX "%s: cannot map device registers\n",
                   pci_name(pdev));
            goto err_out_free_hw;
      }

      err = request_irq(pdev->irq, skge_intr, IRQF_SHARED, DRV_NAME, hw);
      if (err) {
            printk(KERN_ERR PFX "%s: cannot assign irq %d\n",
                   pci_name(pdev), pdev->irq);
            goto err_out_iounmap;
      }
      pci_set_drvdata(pdev, hw);

      err = skge_reset(hw);
      if (err)
            goto err_out_free_irq;

      printk(KERN_INFO PFX DRV_VERSION " addr 0x%llx irq %d chip %s rev %d\n",
             (unsigned long long)pci_resource_start(pdev, 0), pdev->irq,
             skge_board_name(hw), hw->chip_rev);

      if ((dev = skge_devinit(hw, 0, using_dac)) == NULL)
            goto err_out_led_off;

      if (!is_valid_ether_addr(dev->dev_addr)) {
            printk(KERN_ERR PFX "%s: bad (zero?) ethernet address in rom\n",
                   pci_name(pdev));
            err = -EIO;
            goto err_out_free_netdev;
      }


      err = register_netdev(dev);
      if (err) {
            printk(KERN_ERR PFX "%s: cannot register net device\n",
                   pci_name(pdev));
            goto err_out_free_netdev;
      }

      skge_show_addr(dev);

      if (hw->ports > 1 && (dev1 = skge_devinit(hw, 1, using_dac))) {
            if (register_netdev(dev1) == 0)
                  skge_show_addr(dev1);
            else {
                  /* Failure to register second port need not be fatal */
                  printk(KERN_WARNING PFX "register of second port failed\n");
                  hw->dev[1] = NULL;
                  free_netdev(dev1);
            }
      }

      return 0;

err_out_free_netdev:
      free_netdev(dev);
err_out_led_off:
      skge_write16(hw, B0_LED, LED_STAT_OFF);
err_out_free_irq:
      free_irq(pdev->irq, hw);
err_out_iounmap:
      iounmap(hw->regs);
err_out_free_hw:
      kfree(hw);
err_out_free_regions:
      pci_release_regions(pdev);
err_out_disable_pdev:
      pci_disable_device(pdev);
      pci_set_drvdata(pdev, NULL);
err_out:
      return err;
}

static void __devexit skge_remove(struct pci_dev *pdev)
{
      struct skge_hw *hw  = pci_get_drvdata(pdev);
      struct net_device *dev0, *dev1;

      if (!hw)
            return;

      if ((dev1 = hw->dev[1]))
            unregister_netdev(dev1);
      dev0 = hw->dev[0];
      unregister_netdev(dev0);

      spin_lock_irq(&hw->hw_lock);
      hw->intr_mask = 0;
      skge_write32(hw, B0_IMSK, 0);
      spin_unlock_irq(&hw->hw_lock);

      skge_write16(hw, B0_LED, LED_STAT_OFF);
      skge_write8(hw, B0_CTST, CS_RST_SET);

      flush_scheduled_work();

      free_irq(pdev->irq, hw);
      pci_release_regions(pdev);
      pci_disable_device(pdev);
      if (dev1)
            free_netdev(dev1);
      free_netdev(dev0);

      iounmap(hw->regs);
      kfree(hw);
      pci_set_drvdata(pdev, NULL);
}

#ifdef CONFIG_PM
static int skge_suspend(struct pci_dev *pdev, pm_message_t state)
{
      struct skge_hw *hw  = pci_get_drvdata(pdev);
      int i, wol = 0;

      for (i = 0; i < 2; i++) {
            struct net_device *dev = hw->dev[i];

            if (dev) {
                  struct skge_port *skge = netdev_priv(dev);
                  if (netif_running(dev)) {
                        netif_carrier_off(dev);
                        if (skge->wol)
                              netif_stop_queue(dev);
                        else
                              skge_down(dev);
                  }
                  netif_device_detach(dev);
                  wol |= skge->wol;
            }
      }

      pci_save_state(pdev);
      pci_enable_wake(pdev, pci_choose_state(pdev, state), wol);
      pci_disable_device(pdev);
      pci_set_power_state(pdev, pci_choose_state(pdev, state));

      return 0;
}

static int skge_resume(struct pci_dev *pdev)
{
      struct skge_hw *hw  = pci_get_drvdata(pdev);
      int i;

      pci_set_power_state(pdev, PCI_D0);
      pci_restore_state(pdev);
      pci_enable_wake(pdev, PCI_D0, 0);

      skge_reset(hw);

      for (i = 0; i < 2; i++) {
            struct net_device *dev = hw->dev[i];
            if (dev) {
                  netif_device_attach(dev);
                  if (netif_running(dev) && skge_up(dev))
                        dev_close(dev);
            }
      }
      return 0;
}
#endif

static struct pci_driver skge_driver = {
      .name =         DRV_NAME,
      .id_table =     skge_id_table,
      .probe =        skge_probe,
      .remove =       __devexit_p(skge_remove),
#ifdef CONFIG_PM
      .suspend =  skge_suspend,
      .resume =   skge_resume,
#endif
};

static int __init skge_init_module(void)
{
      return pci_module_init(&skge_driver);
}

static void __exit skge_cleanup_module(void)
{
      pci_unregister_driver(&skge_driver);
}

module_init(skge_init_module);
module_exit(skge_cleanup_module);

Generated by  Doxygen 1.6.0   Back to index