Logo Search packages:      
Sourcecode: linux-2.6 version File versions  Download package

sym_glue.c

/*
 * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family 
 * of PCI-SCSI IO processors.
 *
 * Copyright (C) 1999-2001  Gerard Roudier <groudier@free.fr>
 * Copyright (c) 2003-2005  Matthew Wilcox <matthew@wil.cx>
 *
 * This driver is derived from the Linux sym53c8xx driver.
 * Copyright (C) 1998-2000  Gerard Roudier
 *
 * The sym53c8xx driver is derived from the ncr53c8xx driver that had been 
 * a port of the FreeBSD ncr driver to Linux-1.2.13.
 *
 * The original ncr driver has been written for 386bsd and FreeBSD by
 *         Wolfgang Stanglmeier        <wolf@cologne.de>
 *         Stefan Esser                <se@mi.Uni-Koeln.de>
 * Copyright (C) 1994  Wolfgang Stanglmeier
 *
 * Other major contributions:
 *
 * NVRAM detection and reading.
 * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
 *
 *-----------------------------------------------------------------------------
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */
#include <linux/ctype.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/spinlock.h>
#include <scsi/scsi.h>
#include <scsi/scsi_tcq.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_transport.h>

#include "sym_glue.h"
#include "sym_nvram.h"

#define NAME53C         "sym53c"
#define NAME53C8XX      "sym53c8xx"

#define IRQ_FMT "%d"
#define IRQ_PRM(x) (x)

struct sym_driver_setup sym_driver_setup = SYM_LINUX_DRIVER_SETUP;
unsigned int sym_debug_flags = 0;

static char *excl_string;
static char *safe_string;
module_param_named(cmd_per_lun, sym_driver_setup.max_tag, ushort, 0);
module_param_string(tag_ctrl, sym_driver_setup.tag_ctrl, 100, 0);
module_param_named(burst, sym_driver_setup.burst_order, byte, 0);
module_param_named(led, sym_driver_setup.scsi_led, byte, 0);
module_param_named(diff, sym_driver_setup.scsi_diff, byte, 0);
module_param_named(irqm, sym_driver_setup.irq_mode, byte, 0);
module_param_named(buschk, sym_driver_setup.scsi_bus_check, byte, 0);
module_param_named(hostid, sym_driver_setup.host_id, byte, 0);
module_param_named(verb, sym_driver_setup.verbose, byte, 0);
module_param_named(debug, sym_debug_flags, uint, 0);
module_param_named(settle, sym_driver_setup.settle_delay, byte, 0);
module_param_named(nvram, sym_driver_setup.use_nvram, byte, 0);
module_param_named(excl, excl_string, charp, 0);
module_param_named(safe, safe_string, charp, 0);

MODULE_PARM_DESC(cmd_per_lun, "The maximum number of tags to use by default");
MODULE_PARM_DESC(tag_ctrl, "More detailed control over tags per LUN");
MODULE_PARM_DESC(burst, "Maximum burst.  0 to disable, 255 to read from registers");
MODULE_PARM_DESC(led, "Set to 1 to enable LED support");
MODULE_PARM_DESC(diff, "0 for no differential mode, 1 for BIOS, 2 for always, 3 for not GPIO3");
MODULE_PARM_DESC(irqm, "0 for open drain, 1 to leave alone, 2 for totem pole");
MODULE_PARM_DESC(buschk, "0 to not check, 1 for detach on error, 2 for warn on error");
MODULE_PARM_DESC(hostid, "The SCSI ID to use for the host adapters");
MODULE_PARM_DESC(verb, "0 for minimal verbosity, 1 for normal, 2 for excessive");
MODULE_PARM_DESC(debug, "Set bits to enable debugging");
MODULE_PARM_DESC(settle, "Settle delay in seconds.  Default 3");
MODULE_PARM_DESC(nvram, "Option currently not used");
MODULE_PARM_DESC(excl, "List ioport addresses here to prevent controllers from being attached");
MODULE_PARM_DESC(safe, "Set other settings to a \"safe mode\"");

MODULE_LICENSE("GPL");
MODULE_VERSION(SYM_VERSION);
MODULE_AUTHOR("Matthew Wilcox <matthew@wil.cx>");
MODULE_DESCRIPTION("NCR, Symbios and LSI 8xx and 1010 PCI SCSI adapters");

static void sym2_setup_params(void)
{
      char *p = excl_string;
      int xi = 0;

      while (p && (xi < 8)) {
            char *next_p;
            int val = (int) simple_strtoul(p, &next_p, 0);
            sym_driver_setup.excludes[xi++] = val;
            p = next_p;
      }

      if (safe_string) {
            if (*safe_string == 'y') {
                  sym_driver_setup.max_tag = 0;
                  sym_driver_setup.burst_order = 0;
                  sym_driver_setup.scsi_led = 0;
                  sym_driver_setup.scsi_diff = 1;
                  sym_driver_setup.irq_mode = 0;
                  sym_driver_setup.scsi_bus_check = 2;
                  sym_driver_setup.host_id = 7;
                  sym_driver_setup.verbose = 2;
                  sym_driver_setup.settle_delay = 10;
                  sym_driver_setup.use_nvram = 1;
            } else if (*safe_string != 'n') {
                  printk(KERN_WARNING NAME53C8XX "Ignoring parameter %s"
                              " passed to safe option", safe_string);
            }
      }
}

static struct scsi_transport_template *sym2_transport_template = NULL;

/*
 *  Driver private area in the SCSI command structure.
 */
struct sym_ucmd {       /* Override the SCSI pointer structure */
      dma_addr_t  data_mapping;
      unsigned char     data_mapped;
      unsigned char     to_do;                  /* For error handling */
      void (*old_done)(struct scsi_cmnd *);     /* For error handling */
      struct completion *eh_done;         /* For error handling */
};

#define SYM_UCMD_PTR(cmd)  ((struct sym_ucmd *)(&(cmd)->SCp))
#define SYM_SOFTC_PTR(cmd) sym_get_hcb(cmd->device->host)

static void __unmap_scsi_data(struct pci_dev *pdev, struct scsi_cmnd *cmd)
{
      int dma_dir = cmd->sc_data_direction;

      switch(SYM_UCMD_PTR(cmd)->data_mapped) {
      case 2:
            pci_unmap_sg(pdev, cmd->request_buffer, cmd->use_sg, dma_dir);
            break;
      case 1:
            pci_unmap_single(pdev, SYM_UCMD_PTR(cmd)->data_mapping,
                         cmd->request_bufflen, dma_dir);
            break;
      }
      SYM_UCMD_PTR(cmd)->data_mapped = 0;
}

static dma_addr_t __map_scsi_single_data(struct pci_dev *pdev, struct scsi_cmnd *cmd)
{
      dma_addr_t mapping;
      int dma_dir = cmd->sc_data_direction;

      mapping = pci_map_single(pdev, cmd->request_buffer,
                         cmd->request_bufflen, dma_dir);
      if (mapping) {
            SYM_UCMD_PTR(cmd)->data_mapped  = 1;
            SYM_UCMD_PTR(cmd)->data_mapping = mapping;
      }

      return mapping;
}

static int __map_scsi_sg_data(struct pci_dev *pdev, struct scsi_cmnd *cmd)
{
      int use_sg;
      int dma_dir = cmd->sc_data_direction;

      use_sg = pci_map_sg(pdev, cmd->request_buffer, cmd->use_sg, dma_dir);
      if (use_sg > 0) {
            SYM_UCMD_PTR(cmd)->data_mapped  = 2;
            SYM_UCMD_PTR(cmd)->data_mapping = use_sg;
      }

      return use_sg;
}

#define unmap_scsi_data(np, cmd)    \
            __unmap_scsi_data(np->s.device, cmd)
#define map_scsi_single_data(np, cmd)     \
            __map_scsi_single_data(np->s.device, cmd)
#define map_scsi_sg_data(np, cmd)   \
            __map_scsi_sg_data(np->s.device, cmd)
/*
 *  Complete a pending CAM CCB.
 */
void sym_xpt_done(struct sym_hcb *np, struct scsi_cmnd *cmd)
{
      unmap_scsi_data(np, cmd);
      cmd->scsi_done(cmd);
}

static void sym_xpt_done2(struct sym_hcb *np, struct scsi_cmnd *cmd, int cam_status)
{
      sym_set_cam_status(cmd, cam_status);
      sym_xpt_done(np, cmd);
}


/*
 *  Tell the SCSI layer about a BUS RESET.
 */
void sym_xpt_async_bus_reset(struct sym_hcb *np)
{
      printf_notice("%s: SCSI BUS has been reset.\n", sym_name(np));
      np->s.settle_time = jiffies + sym_driver_setup.settle_delay * HZ;
      np->s.settle_time_valid = 1;
      if (sym_verbose >= 2)
            printf_info("%s: command processing suspended for %d seconds\n",
                      sym_name(np), sym_driver_setup.settle_delay);
}

/*
 *  Tell the SCSI layer about a BUS DEVICE RESET message sent.
 */
void sym_xpt_async_sent_bdr(struct sym_hcb *np, int target)
{
      printf_notice("%s: TARGET %d has been reset.\n", sym_name(np), target);
}

/*
 *  Choose the more appropriate CAM status if 
 *  the IO encountered an extended error.
 */
static int sym_xerr_cam_status(int cam_status, int x_status)
{
      if (x_status) {
            if    (x_status & XE_PARITY_ERR)
                  cam_status = DID_PARITY;
            else if     (x_status &(XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN))
                  cam_status = DID_ERROR;
            else if     (x_status & XE_BAD_PHASE)
                  cam_status = DID_ERROR;
            else
                  cam_status = DID_ERROR;
      }
      return cam_status;
}

/*
 *  Build CAM result for a failed or auto-sensed IO.
 */
void sym_set_cam_result_error(struct sym_hcb *np, struct sym_ccb *cp, int resid)
{
      struct scsi_cmnd *cmd = cp->cmd;
      u_int cam_status, scsi_status, drv_status;

      drv_status  = 0;
      cam_status  = DID_OK;
      scsi_status = cp->ssss_status;

      if (cp->host_flags & HF_SENSE) {
            scsi_status = cp->sv_scsi_status;
            resid = cp->sv_resid;
            if (sym_verbose && cp->sv_xerr_status)
                  sym_print_xerr(cmd, cp->sv_xerr_status);
            if (cp->host_status == HS_COMPLETE &&
                cp->ssss_status == S_GOOD &&
                cp->xerr_status == 0) {
                  cam_status = sym_xerr_cam_status(DID_OK,
                                           cp->sv_xerr_status);
                  drv_status = DRIVER_SENSE;
                  /*
                   *  Bounce back the sense data to user.
                   */
                  memset(&cmd->sense_buffer, 0, sizeof(cmd->sense_buffer));
                  memcpy(cmd->sense_buffer, cp->sns_bbuf,
                        min(sizeof(cmd->sense_buffer),
                          (size_t)SYM_SNS_BBUF_LEN));
#if 0
                  /*
                   *  If the device reports a UNIT ATTENTION condition 
                   *  due to a RESET condition, we should consider all 
                   *  disconnect CCBs for this unit as aborted.
                   */
                  if (1) {
                        u_char *p;
                        p  = (u_char *) cmd->sense_data;
                        if (p[0]==0x70 && p[2]==0x6 && p[12]==0x29)
                              sym_clear_tasks(np, DID_ABORT,
                                          cp->target,cp->lun, -1);
                  }
#endif
            } else {
                  /*
                   * Error return from our internal request sense.  This
                   * is bad: we must clear the contingent allegiance
                   * condition otherwise the device will always return
                   * BUSY.  Use a big stick.
                   */
                  sym_reset_scsi_target(np, cmd->device->id);
                  cam_status = DID_ERROR;
            }
      } else if (cp->host_status == HS_COMPLETE)      /* Bad SCSI status */
            cam_status = DID_OK;
      else if (cp->host_status == HS_SEL_TIMEOUT)     /* Selection timeout */
            cam_status = DID_NO_CONNECT;
      else if (cp->host_status == HS_UNEXPECTED)      /* Unexpected BUS FREE*/
            cam_status = DID_ERROR;
      else {                                    /* Extended error */
            if (sym_verbose) {
                  sym_print_addr(cmd, "COMMAND FAILED (%x %x %x).\n",
                        cp->host_status, cp->ssss_status,
                        cp->xerr_status);
            }
            /*
             *  Set the most appropriate value for CAM status.
             */
            cam_status = sym_xerr_cam_status(DID_ERROR, cp->xerr_status);
      }
      cmd->resid = resid;
      cmd->result = (drv_status << 24) + (cam_status << 16) + scsi_status;
}


/*
 *  Build the scatter/gather array for an I/O.
 */

static int sym_scatter_no_sglist(struct sym_hcb *np, struct sym_ccb *cp, struct scsi_cmnd *cmd)
{
      struct sym_tblmove *data = &cp->phys.data[SYM_CONF_MAX_SG-1];
      int segment;
      unsigned int len = cmd->request_bufflen;

      if (len) {
            dma_addr_t baddr = map_scsi_single_data(np, cmd);
            if (baddr) {
                  if (len & 1) {
                        struct sym_tcb *tp = &np->target[cp->target];
                        if (tp->head.wval & EWS) {
                              len++;
                              cp->odd_byte_adjustment++;
                        }
                  }
                  cp->data_len = len;
                  sym_build_sge(np, data, baddr, len);
                  segment = 1;
            } else {
                  segment = -2;
            }
      } else {
            segment = 0;
      }

      return segment;
}

static int sym_scatter(struct sym_hcb *np, struct sym_ccb *cp, struct scsi_cmnd *cmd)
{
      int segment;
      int use_sg = (int) cmd->use_sg;

      cp->data_len = 0;

      if (!use_sg)
            segment = sym_scatter_no_sglist(np, cp, cmd);
      else if ((use_sg = map_scsi_sg_data(np, cmd)) > 0) {
            struct scatterlist *scatter = (struct scatterlist *)cmd->request_buffer;
            struct sym_tcb *tp = &np->target[cp->target];
            struct sym_tblmove *data;

            if (use_sg > SYM_CONF_MAX_SG) {
                  unmap_scsi_data(np, cmd);
                  return -1;
            }

            data = &cp->phys.data[SYM_CONF_MAX_SG - use_sg];

            for (segment = 0; segment < use_sg; segment++) {
                  dma_addr_t baddr = sg_dma_address(&scatter[segment]);
                  unsigned int len = sg_dma_len(&scatter[segment]);

                  if ((len & 1) && (tp->head.wval & EWS)) {
                        len++;
                        cp->odd_byte_adjustment++;
                  }

                  sym_build_sge(np, &data[segment], baddr, len);
                  cp->data_len += len;
            }
      } else {
            segment = -2;
      }

      return segment;
}

/*
 *  Queue a SCSI command.
 */
static int sym_queue_command(struct sym_hcb *np, struct scsi_cmnd *cmd)
{
      struct scsi_device *sdev = cmd->device;
      struct sym_tcb *tp;
      struct sym_lcb *lp;
      struct sym_ccb *cp;
      int   order;

      /*
       *  Minimal checkings, so that we will not 
       *  go outside our tables.
       */
      if (sdev->id == np->myaddr) {
            sym_xpt_done2(np, cmd, DID_NO_CONNECT);
            return 0;
      }

      /*
       *  Retrieve the target descriptor.
       */
      tp = &np->target[sdev->id];

      /*
       *  Select tagged/untagged.
       */
      lp = sym_lp(tp, sdev->lun);
      order = (lp && lp->s.reqtags) ? M_SIMPLE_TAG : 0;

      /*
       *  Queue the SCSI IO.
       */
      cp = sym_get_ccb(np, cmd, order);
      if (!cp)
            return 1;   /* Means resource shortage */
      sym_queue_scsiio(np, cmd, cp);
      return 0;
}

/*
 *  Setup buffers and pointers that address the CDB.
 */
static inline int sym_setup_cdb(struct sym_hcb *np, struct scsi_cmnd *cmd, struct sym_ccb *cp)
{
      memcpy(cp->cdb_buf, cmd->cmnd, cmd->cmd_len);

      cp->phys.cmd.addr = CCB_BA(cp, cdb_buf[0]);
      cp->phys.cmd.size = cpu_to_scr(cmd->cmd_len);

      return 0;
}

/*
 *  Setup pointers that address the data and start the I/O.
 */
int sym_setup_data_and_start(struct sym_hcb *np, struct scsi_cmnd *cmd, struct sym_ccb *cp)
{
      u32 lastp, goalp;
      int dir;

      /*
       *  Build the CDB.
       */
      if (sym_setup_cdb(np, cmd, cp))
            goto out_abort;

      /*
       *  No direction means no data.
       */
      dir = cmd->sc_data_direction;
      if (dir != DMA_NONE) {
            cp->segments = sym_scatter(np, cp, cmd);
            if (cp->segments < 0) {
                  sym_set_cam_status(cmd, DID_ERROR);
                  goto out_abort;
            }

            /*
             *  No segments means no data.
             */
            if (!cp->segments)
                  dir = DMA_NONE;
      } else {
            cp->data_len = 0;
            cp->segments = 0;
      }

      /*
       *  Set the data pointer.
       */
      switch (dir) {
      case DMA_BIDIRECTIONAL:
            printk("%s: got DMA_BIDIRECTIONAL command", sym_name(np));
            sym_set_cam_status(cmd, DID_ERROR);
            goto out_abort;
      case DMA_TO_DEVICE:
            goalp = SCRIPTA_BA(np, data_out2) + 8;
            lastp = goalp - 8 - (cp->segments * (2*4));
            break;
      case DMA_FROM_DEVICE:
            cp->host_flags |= HF_DATA_IN;
            goalp = SCRIPTA_BA(np, data_in2) + 8;
            lastp = goalp - 8 - (cp->segments * (2*4));
            break;
      case DMA_NONE:
      default:
            lastp = goalp = SCRIPTB_BA(np, no_data);
            break;
      }

      /*
       *  Set all pointers values needed by SCRIPTS.
       */
      cp->phys.head.lastp = cpu_to_scr(lastp);
      cp->phys.head.savep = cpu_to_scr(lastp);
      cp->startp      = cp->phys.head.savep;
      cp->goalp       = cpu_to_scr(goalp);

      /*
       *  When `#ifed 1', the code below makes the driver 
       *  panic on the first attempt to write to a SCSI device.
       *  It is the first test we want to do after a driver 
       *  change that does not seem obviously safe. :)
       */
#if 0
      switch (cp->cdb_buf[0]) {
      case 0x0A: case 0x2A: case 0xAA:
            panic("XXXXXXXXXXXXX WRITE NOT YET ALLOWED XXXXXXXXXXXXXX\n");
            break;
      default:
            break;
      }
#endif

      /*
       *    activate this job.
       */
      sym_put_start_queue(np, cp);
      return 0;

out_abort:
      sym_free_ccb(np, cp);
      sym_xpt_done(np, cmd);
      return 0;
}


/*
 *  timer daemon.
 *
 *  Misused to keep the driver running when
 *  interrupts are not configured correctly.
 */
static void sym_timer(struct sym_hcb *np)
{
      unsigned long thistime = jiffies;

      /*
       *  Restart the timer.
       */
      np->s.timer.expires = thistime + SYM_CONF_TIMER_INTERVAL;
      add_timer(&np->s.timer);

      /*
       *  If we are resetting the ncr, wait for settle_time before 
       *  clearing it. Then command processing will be resumed.
       */
      if (np->s.settle_time_valid) {
            if (time_before_eq(np->s.settle_time, thistime)) {
                  if (sym_verbose >= 2 )
                        printk("%s: command processing resumed\n",
                               sym_name(np));
                  np->s.settle_time_valid = 0;
            }
            return;
      }

      /*
       *    Nothing to do for now, but that may come.
       */
      if (np->s.lasttime + 4*HZ < thistime) {
            np->s.lasttime = thistime;
      }

#ifdef SYM_CONF_PCIQ_MAY_MISS_COMPLETIONS
      /*
       *  Some way-broken PCI bridges may lead to 
       *  completions being lost when the clearing 
       *  of the INTFLY flag by the CPU occurs 
       *  concurrently with the chip raising this flag.
       *  If this ever happen, lost completions will 
       * be reaped here.
       */
      sym_wakeup_done(np);
#endif
}


/*
 *  PCI BUS error handler.
 */
void sym_log_bus_error(struct sym_hcb *np)
{
      u_short pci_sts;
      pci_read_config_word(np->s.device, PCI_STATUS, &pci_sts);
      if (pci_sts & 0xf900) {
            pci_write_config_word(np->s.device, PCI_STATUS, pci_sts);
            printf("%s: PCI STATUS = 0x%04x\n",
                  sym_name(np), pci_sts & 0xf900);
      }
}

/*
 * queuecommand method.  Entered with the host adapter lock held and
 * interrupts disabled.
 */
static int sym53c8xx_queue_command(struct scsi_cmnd *cmd,
                              void (*done)(struct scsi_cmnd *))
{
      struct sym_hcb *np = SYM_SOFTC_PTR(cmd);
      struct sym_ucmd *ucp = SYM_UCMD_PTR(cmd);
      int sts = 0;

      cmd->scsi_done     = done;
      memset(ucp, 0, sizeof(*ucp));

      /*
       *  Shorten our settle_time if needed for 
       *  this command not to time out.
       */
      if (np->s.settle_time_valid && cmd->timeout_per_command) {
            unsigned long tlimit = jiffies + cmd->timeout_per_command;
            tlimit -= SYM_CONF_TIMER_INTERVAL*2;
            if (time_after(np->s.settle_time, tlimit)) {
                  np->s.settle_time = tlimit;
            }
      }

      if (np->s.settle_time_valid)
            return SCSI_MLQUEUE_HOST_BUSY;

      sts = sym_queue_command(np, cmd);
      if (sts)
            return SCSI_MLQUEUE_HOST_BUSY;
      return 0;
}

/*
 *  Linux entry point of the interrupt handler.
 */
static irqreturn_t sym53c8xx_intr(int irq, void *dev_id, struct pt_regs * regs)
{
      unsigned long flags;
      struct sym_hcb *np = (struct sym_hcb *)dev_id;

      if (DEBUG_FLAGS & DEBUG_TINY) printf_debug ("[");

      spin_lock_irqsave(np->s.host->host_lock, flags);
      sym_interrupt(np);
      spin_unlock_irqrestore(np->s.host->host_lock, flags);

      if (DEBUG_FLAGS & DEBUG_TINY) printf_debug ("]\n");

      return IRQ_HANDLED;
}

/*
 *  Linux entry point of the timer handler
 */
static void sym53c8xx_timer(unsigned long npref)
{
      struct sym_hcb *np = (struct sym_hcb *)npref;
      unsigned long flags;

      spin_lock_irqsave(np->s.host->host_lock, flags);
      sym_timer(np);
      spin_unlock_irqrestore(np->s.host->host_lock, flags);
}


/*
 *  What the eh thread wants us to perform.
 */
#define SYM_EH_ABORT          0
#define SYM_EH_DEVICE_RESET   1
#define SYM_EH_BUS_RESET      2
#define SYM_EH_HOST_RESET     3

/*
 *  What we will do regarding the involved SCSI command.
 */
#define SYM_EH_DO_IGNORE      0
#define SYM_EH_DO_WAIT        2

/*
 *  scsi_done() alias when error recovery is in progress.
 */
static void sym_eh_done(struct scsi_cmnd *cmd)
{
      struct sym_ucmd *ucmd = SYM_UCMD_PTR(cmd);
      BUILD_BUG_ON(sizeof(struct scsi_pointer) < sizeof(struct sym_ucmd));

      cmd->scsi_done = ucmd->old_done;

      if (ucmd->to_do == SYM_EH_DO_WAIT)
            complete(ucmd->eh_done);
}

/*
 *  Generic method for our eh processing.
 *  The 'op' argument tells what we have to do.
 */
static int sym_eh_handler(int op, char *opname, struct scsi_cmnd *cmd)
{
      struct sym_hcb *np = SYM_SOFTC_PTR(cmd);
      struct sym_ucmd *ucmd = SYM_UCMD_PTR(cmd);
      struct Scsi_Host *host = cmd->device->host;
      SYM_QUEHEAD *qp;
      int to_do = SYM_EH_DO_IGNORE;
      int sts = -1;
      struct completion eh_done;

      dev_warn(&cmd->device->sdev_gendev, "%s operation started.\n", opname);

      spin_lock_irq(host->host_lock);
      /* This one is queued in some place -> to wait for completion */
      FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
            struct sym_ccb *cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
            if (cp->cmd == cmd) {
                  to_do = SYM_EH_DO_WAIT;
                  break;
            }
      }

      if (to_do == SYM_EH_DO_WAIT) {
            init_completion(&eh_done);
            ucmd->old_done = cmd->scsi_done;
            ucmd->eh_done = &eh_done;
            wmb();
            cmd->scsi_done = sym_eh_done;
      }

      /* Try to proceed the operation we have been asked for */
      sts = -1;
      switch(op) {
      case SYM_EH_ABORT:
            sts = sym_abort_scsiio(np, cmd, 1);
            break;
      case SYM_EH_DEVICE_RESET:
            sts = sym_reset_scsi_target(np, cmd->device->id);
            break;
      case SYM_EH_BUS_RESET:
            sym_reset_scsi_bus(np, 1);
            sts = 0;
            break;
      case SYM_EH_HOST_RESET:
            sym_reset_scsi_bus(np, 0);
            sym_start_up (np, 1);
            sts = 0;
            break;
      default:
            break;
      }

      /* On error, restore everything and cross fingers :) */
      if (sts) {
            cmd->scsi_done = ucmd->old_done;
            to_do = SYM_EH_DO_IGNORE;
      }

      ucmd->to_do = to_do;
      spin_unlock_irq(host->host_lock);

      if (to_do == SYM_EH_DO_WAIT) {
            if (!wait_for_completion_timeout(&eh_done, 5*HZ)) {
                  ucmd->to_do = SYM_EH_DO_IGNORE;
                  wmb();
                  sts = -2;
            }
      }
      dev_warn(&cmd->device->sdev_gendev, "%s operation %s.\n", opname,
                  sts==0 ? "complete" :sts==-2 ? "timed-out" : "failed");
      return sts ? SCSI_FAILED : SCSI_SUCCESS;
}


/*
 * Error handlers called from the eh thread (one thread per HBA).
 */
static int sym53c8xx_eh_abort_handler(struct scsi_cmnd *cmd)
{
      return sym_eh_handler(SYM_EH_ABORT, "ABORT", cmd);
}

static int sym53c8xx_eh_device_reset_handler(struct scsi_cmnd *cmd)
{
      return sym_eh_handler(SYM_EH_DEVICE_RESET, "DEVICE RESET", cmd);
}

static int sym53c8xx_eh_bus_reset_handler(struct scsi_cmnd *cmd)
{
      return sym_eh_handler(SYM_EH_BUS_RESET, "BUS RESET", cmd);
}

static int sym53c8xx_eh_host_reset_handler(struct scsi_cmnd *cmd)
{
      return sym_eh_handler(SYM_EH_HOST_RESET, "HOST RESET", cmd);
}

/*
 *  Tune device queuing depth, according to various limits.
 */
static void sym_tune_dev_queuing(struct sym_tcb *tp, int lun, u_short reqtags)
{
      struct sym_lcb *lp = sym_lp(tp, lun);
      u_short     oldtags;

      if (!lp)
            return;

      oldtags = lp->s.reqtags;

      if (reqtags > lp->s.scdev_depth)
            reqtags = lp->s.scdev_depth;

      lp->s.reqtags     = reqtags;

      if (reqtags != oldtags) {
            dev_info(&tp->starget->dev,
                     "tagged command queuing %s, command queue depth %d.\n",
                      lp->s.reqtags ? "enabled" : "disabled", reqtags);
      }
}

/*
 *  Linux select queue depths function
 */
#define DEF_DEPTH (sym_driver_setup.max_tag)
#define ALL_TARGETS     -2
#define NO_TARGET -1
#define ALL_LUNS  -2
#define NO_LUN          -1

static int device_queue_depth(struct sym_hcb *np, int target, int lun)
{
      int c, h, t, u, v;
      char *p = sym_driver_setup.tag_ctrl;
      char *ep;

      h = -1;
      t = NO_TARGET;
      u = NO_LUN;
      while ((c = *p++) != 0) {
            v = simple_strtoul(p, &ep, 0);
            switch(c) {
            case '/':
                  ++h;
                  t = ALL_TARGETS;
                  u = ALL_LUNS;
                  break;
            case 't':
                  if (t != target)
                        t = (target == v) ? v : NO_TARGET;
                  u = ALL_LUNS;
                  break;
            case 'u':
                  if (u != lun)
                        u = (lun == v) ? v : NO_LUN;
                  break;
            case 'q':
                  if (h == np->s.unit &&
                        (t == ALL_TARGETS || t == target) &&
                        (u == ALL_LUNS    || u == lun))
                        return v;
                  break;
            case '-':
                  t = ALL_TARGETS;
                  u = ALL_LUNS;
                  break;
            default:
                  break;
            }
            p = ep;
      }
      return DEF_DEPTH;
}

static int sym53c8xx_slave_alloc(struct scsi_device *sdev)
{
      struct sym_hcb *np = sym_get_hcb(sdev->host);
      struct sym_tcb *tp = &np->target[sdev->id];
      struct sym_lcb *lp;

      if (sdev->id >= SYM_CONF_MAX_TARGET || sdev->lun >= SYM_CONF_MAX_LUN)
            return -ENXIO;

      tp->starget = sdev->sdev_target;
      /*
       * Fail the device init if the device is flagged NOSCAN at BOOT in
       * the NVRAM.  This may speed up boot and maintain coherency with
       * BIOS device numbering.  Clearing the flag allows the user to
       * rescan skipped devices later.  We also return an error for
       * devices not flagged for SCAN LUNS in the NVRAM since some single
       * lun devices behave badly when asked for a non zero LUN.
       */

      if (tp->usrflags & SYM_SCAN_BOOT_DISABLED) {
            tp->usrflags &= ~SYM_SCAN_BOOT_DISABLED;
            starget_printk(KERN_INFO, tp->starget,
                        "Scan at boot disabled in NVRAM\n");
            return -ENXIO;
      }

      if (tp->usrflags & SYM_SCAN_LUNS_DISABLED) {
            if (sdev->lun != 0)
                  return -ENXIO;
            starget_printk(KERN_INFO, tp->starget,
                        "Multiple LUNs disabled in NVRAM\n");
      }

      lp = sym_alloc_lcb(np, sdev->id, sdev->lun);
      if (!lp)
            return -ENOMEM;

      spi_min_period(tp->starget) = tp->usr_period;
      spi_max_width(tp->starget) = tp->usr_width;

      return 0;
}

/*
 * Linux entry point for device queue sizing.
 */
static int sym53c8xx_slave_configure(struct scsi_device *sdev)
{
      struct sym_hcb *np = sym_get_hcb(sdev->host);
      struct sym_tcb *tp = &np->target[sdev->id];
      struct sym_lcb *lp = sym_lp(tp, sdev->lun);
      int reqtags, depth_to_use;

      /*
       *  Get user flags.
       */
      lp->curr_flags = lp->user_flags;

      /*
       *  Select queue depth from driver setup.
       *  Donnot use more than configured by user.
       *  Use at least 2.
       *  Donnot use more than our maximum.
       */
      reqtags = device_queue_depth(np, sdev->id, sdev->lun);
      if (reqtags > tp->usrtags)
            reqtags = tp->usrtags;
      if (!sdev->tagged_supported)
            reqtags = 0;
#if 1 /* Avoid to locally queue commands for no good reasons */
      if (reqtags > SYM_CONF_MAX_TAG)
            reqtags = SYM_CONF_MAX_TAG;
      depth_to_use = (reqtags ? reqtags : 2);
#else
      depth_to_use = (reqtags ? SYM_CONF_MAX_TAG : 2);
#endif
      scsi_adjust_queue_depth(sdev,
                        (sdev->tagged_supported ?
                         MSG_SIMPLE_TAG : 0),
                        depth_to_use);
      lp->s.scdev_depth = depth_to_use;
      sym_tune_dev_queuing(tp, sdev->lun, reqtags);

      if (!spi_initial_dv(sdev->sdev_target))
            spi_dv_device(sdev);

      return 0;
}

static void sym53c8xx_slave_destroy(struct scsi_device *sdev)
{
      struct sym_hcb *np = sym_get_hcb(sdev->host);
      struct sym_lcb *lp = sym_lp(&np->target[sdev->id], sdev->lun);

      if (lp->itlq_tbl)
            sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK * 4, "ITLQ_TBL");
      kfree(lp->cb_tags);
      sym_mfree_dma(lp, sizeof(*lp), "LCB");
}

/*
 *  Linux entry point for info() function
 */
static const char *sym53c8xx_info (struct Scsi_Host *host)
{
      return SYM_DRIVER_NAME;
}


#ifdef SYM_LINUX_PROC_INFO_SUPPORT
/*
 *  Proc file system stuff
 *
 *  A read operation returns adapter information.
 *  A write operation is a control command.
 *  The string is parsed in the driver code and the command is passed 
 *  to the sym_usercmd() function.
 */

#ifdef SYM_LINUX_USER_COMMAND_SUPPORT

struct      sym_usrcmd {
      u_long      target;
      u_long      lun;
      u_long      data;
      u_long      cmd;
};

#define UC_SETSYNC      10
#define UC_SETTAGS      11
#define UC_SETDEBUG     12
#define UC_SETWIDE      14
#define UC_SETFLAG      15
#define UC_SETVERBOSE   17
#define UC_RESETDEV     18
#define UC_CLEARDEV     19

static void sym_exec_user_command (struct sym_hcb *np, struct sym_usrcmd *uc)
{
      struct sym_tcb *tp;
      int t, l;

      switch (uc->cmd) {
      case 0: return;

#ifdef SYM_LINUX_DEBUG_CONTROL_SUPPORT
      case UC_SETDEBUG:
            sym_debug_flags = uc->data;
            break;
#endif
      case UC_SETVERBOSE:
            np->verbose = uc->data;
            break;
      default:
            /*
             * We assume that other commands apply to targets.
             * This should always be the case and avoid the below 
             * 4 lines to be repeated 6 times.
             */
            for (t = 0; t < SYM_CONF_MAX_TARGET; t++) {
                  if (!((uc->target >> t) & 1))
                        continue;
                  tp = &np->target[t];

                  switch (uc->cmd) {

                  case UC_SETSYNC:
                        if (!uc->data || uc->data >= 255) {
                              tp->tgoal.iu = tp->tgoal.dt =
                                    tp->tgoal.qas = 0;
                              tp->tgoal.offset = 0;
                        } else if (uc->data <= 9 && np->minsync_dt) {
                              if (uc->data < np->minsync_dt)
                                    uc->data = np->minsync_dt;
                              tp->tgoal.iu = tp->tgoal.dt =
                                    tp->tgoal.qas = 1;
                              tp->tgoal.width = 1;
                              tp->tgoal.period = uc->data;
                              tp->tgoal.offset = np->maxoffs_dt;
                        } else {
                              if (uc->data < np->minsync)
                                    uc->data = np->minsync;
                              tp->tgoal.iu = tp->tgoal.dt =
                                    tp->tgoal.qas = 0;
                              tp->tgoal.period = uc->data;
                              tp->tgoal.offset = np->maxoffs;
                        }
                        tp->tgoal.check_nego = 1;
                        break;
                  case UC_SETWIDE:
                        tp->tgoal.width = uc->data ? 1 : 0;
                        tp->tgoal.check_nego = 1;
                        break;
                  case UC_SETTAGS:
                        for (l = 0; l < SYM_CONF_MAX_LUN; l++)
                              sym_tune_dev_queuing(tp, l, uc->data);
                        break;
                  case UC_RESETDEV:
                        tp->to_reset = 1;
                        np->istat_sem = SEM;
                        OUTB(np, nc_istat, SIGP|SEM);
                        break;
                  case UC_CLEARDEV:
                        for (l = 0; l < SYM_CONF_MAX_LUN; l++) {
                              struct sym_lcb *lp = sym_lp(tp, l);
                              if (lp) lp->to_clear = 1;
                        }
                        np->istat_sem = SEM;
                        OUTB(np, nc_istat, SIGP|SEM);
                        break;
                  case UC_SETFLAG:
                        tp->usrflags = uc->data;
                        break;
                  }
            }
            break;
      }
}

static int skip_spaces(char *ptr, int len)
{
      int cnt, c;

      for (cnt = len; cnt > 0 && (c = *ptr++) && isspace(c); cnt--);

      return (len - cnt);
}

static int get_int_arg(char *ptr, int len, u_long *pv)
{
      char *end;

      *pv = simple_strtoul(ptr, &end, 10);
      return (end - ptr);
}

static int is_keyword(char *ptr, int len, char *verb)
{
      int verb_len = strlen(verb);

      if (len >= verb_len && !memcmp(verb, ptr, verb_len))
            return verb_len;
      else
            return 0;
}

#define SKIP_SPACES(ptr, len)                               \
      if ((arg_len = skip_spaces(ptr, len)) < 1)                  \
            return -EINVAL;                                 \
      ptr += arg_len; len -= arg_len;

#define GET_INT_ARG(ptr, len, v)                            \
      if (!(arg_len = get_int_arg(ptr, len, &(v))))               \
            return -EINVAL;                                 \
      ptr += arg_len; len -= arg_len;


/*
 * Parse a control command
 */

static int sym_user_command(struct sym_hcb *np, char *buffer, int length)
{
      char *ptr   = buffer;
      int len           = length;
      struct sym_usrcmd cmd, *uc = &cmd;
      int         arg_len;
      u_long            target;

      memset(uc, 0, sizeof(*uc));

      if (len > 0 && ptr[len-1] == '\n')
            --len;

      if    ((arg_len = is_keyword(ptr, len, "setsync")) != 0)
            uc->cmd = UC_SETSYNC;
      else if     ((arg_len = is_keyword(ptr, len, "settags")) != 0)
            uc->cmd = UC_SETTAGS;
      else if     ((arg_len = is_keyword(ptr, len, "setverbose")) != 0)
            uc->cmd = UC_SETVERBOSE;
      else if     ((arg_len = is_keyword(ptr, len, "setwide")) != 0)
            uc->cmd = UC_SETWIDE;
#ifdef SYM_LINUX_DEBUG_CONTROL_SUPPORT
      else if     ((arg_len = is_keyword(ptr, len, "setdebug")) != 0)
            uc->cmd = UC_SETDEBUG;
#endif
      else if     ((arg_len = is_keyword(ptr, len, "setflag")) != 0)
            uc->cmd = UC_SETFLAG;
      else if     ((arg_len = is_keyword(ptr, len, "resetdev")) != 0)
            uc->cmd = UC_RESETDEV;
      else if     ((arg_len = is_keyword(ptr, len, "cleardev")) != 0)
            uc->cmd = UC_CLEARDEV;
      else
            arg_len = 0;

#ifdef DEBUG_PROC_INFO
printk("sym_user_command: arg_len=%d, cmd=%ld\n", arg_len, uc->cmd);
#endif

      if (!arg_len)
            return -EINVAL;
      ptr += arg_len; len -= arg_len;

      switch(uc->cmd) {
      case UC_SETSYNC:
      case UC_SETTAGS:
      case UC_SETWIDE:
      case UC_SETFLAG:
      case UC_RESETDEV:
      case UC_CLEARDEV:
            SKIP_SPACES(ptr, len);
            if ((arg_len = is_keyword(ptr, len, "all")) != 0) {
                  ptr += arg_len; len -= arg_len;
                  uc->target = ~0;
            } else {
                  GET_INT_ARG(ptr, len, target);
                  uc->target = (1<<target);
#ifdef DEBUG_PROC_INFO
printk("sym_user_command: target=%ld\n", target);
#endif
            }
            break;
      }

      switch(uc->cmd) {
      case UC_SETVERBOSE:
      case UC_SETSYNC:
      case UC_SETTAGS:
      case UC_SETWIDE:
            SKIP_SPACES(ptr, len);
            GET_INT_ARG(ptr, len, uc->data);
#ifdef DEBUG_PROC_INFO
printk("sym_user_command: data=%ld\n", uc->data);
#endif
            break;
#ifdef SYM_LINUX_DEBUG_CONTROL_SUPPORT
      case UC_SETDEBUG:
            while (len > 0) {
                  SKIP_SPACES(ptr, len);
                  if    ((arg_len = is_keyword(ptr, len, "alloc")))
                        uc->data |= DEBUG_ALLOC;
                  else if     ((arg_len = is_keyword(ptr, len, "phase")))
                        uc->data |= DEBUG_PHASE;
                  else if     ((arg_len = is_keyword(ptr, len, "queue")))
                        uc->data |= DEBUG_QUEUE;
                  else if     ((arg_len = is_keyword(ptr, len, "result")))
                        uc->data |= DEBUG_RESULT;
                  else if     ((arg_len = is_keyword(ptr, len, "scatter")))
                        uc->data |= DEBUG_SCATTER;
                  else if     ((arg_len = is_keyword(ptr, len, "script")))
                        uc->data |= DEBUG_SCRIPT;
                  else if     ((arg_len = is_keyword(ptr, len, "tiny")))
                        uc->data |= DEBUG_TINY;
                  else if     ((arg_len = is_keyword(ptr, len, "timing")))
                        uc->data |= DEBUG_TIMING;
                  else if     ((arg_len = is_keyword(ptr, len, "nego")))
                        uc->data |= DEBUG_NEGO;
                  else if     ((arg_len = is_keyword(ptr, len, "tags")))
                        uc->data |= DEBUG_TAGS;
                  else if     ((arg_len = is_keyword(ptr, len, "pointer")))
                        uc->data |= DEBUG_POINTER;
                  else
                        return -EINVAL;
                  ptr += arg_len; len -= arg_len;
            }
#ifdef DEBUG_PROC_INFO
printk("sym_user_command: data=%ld\n", uc->data);
#endif
            break;
#endif /* SYM_LINUX_DEBUG_CONTROL_SUPPORT */
      case UC_SETFLAG:
            while (len > 0) {
                  SKIP_SPACES(ptr, len);
                  if    ((arg_len = is_keyword(ptr, len, "no_disc")))
                        uc->data &= ~SYM_DISC_ENABLED;
                  else
                        return -EINVAL;
                  ptr += arg_len; len -= arg_len;
            }
            break;
      default:
            break;
      }

      if (len)
            return -EINVAL;
      else {
            unsigned long flags;

            spin_lock_irqsave(np->s.host->host_lock, flags);
            sym_exec_user_command (np, uc);
            spin_unlock_irqrestore(np->s.host->host_lock, flags);
      }
      return length;
}

#endif      /* SYM_LINUX_USER_COMMAND_SUPPORT */


#ifdef SYM_LINUX_USER_INFO_SUPPORT
/*
 *  Informations through the proc file system.
 */
struct info_str {
      char *buffer;
      int length;
      int offset;
      int pos;
};

static void copy_mem_info(struct info_str *info, char *data, int len)
{
      if (info->pos + len > info->length)
            len = info->length - info->pos;

      if (info->pos + len < info->offset) {
            info->pos += len;
            return;
      }
      if (info->pos < info->offset) {
            data += (info->offset - info->pos);
            len  -= (info->offset - info->pos);
      }

      if (len > 0) {
            memcpy(info->buffer + info->pos, data, len);
            info->pos += len;
      }
}

static int copy_info(struct info_str *info, char *fmt, ...)
{
      va_list args;
      char buf[81];
      int len;

      va_start(args, fmt);
      len = vsprintf(buf, fmt, args);
      va_end(args);

      copy_mem_info(info, buf, len);
      return len;
}

/*
 *  Copy formatted information into the input buffer.
 */
static int sym_host_info(struct sym_hcb *np, char *ptr, off_t offset, int len)
{
      struct info_str info;

      info.buffer = ptr;
      info.length = len;
      info.offset = offset;
      info.pos    = 0;

      copy_info(&info, "Chip " NAME53C "%s, device id 0x%x, "
                   "revision id 0x%x\n",
                   np->s.chip_name, np->device_id, np->revision_id);
      copy_info(&info, "At PCI address %s, IRQ " IRQ_FMT "\n",
            pci_name(np->s.device), IRQ_PRM(np->s.irq));
      copy_info(&info, "Min. period factor %d, %s SCSI BUS%s\n",
                   (int) (np->minsync_dt ? np->minsync_dt : np->minsync),
                   np->maxwide ? "Wide" : "Narrow",
                   np->minsync_dt ? ", DT capable" : "");

      copy_info(&info, "Max. started commands %d, "
                   "max. commands per LUN %d\n",
                   SYM_CONF_MAX_START, SYM_CONF_MAX_TAG);

      return info.pos > info.offset? info.pos - info.offset : 0;
}
#endif /* SYM_LINUX_USER_INFO_SUPPORT */

/*
 *  Entry point of the scsi proc fs of the driver.
 *  - func = 0 means read  (returns adapter infos)
 *  - func = 1 means write (not yet merget from sym53c8xx)
 */
static int sym53c8xx_proc_info(struct Scsi_Host *host, char *buffer,
                  char **start, off_t offset, int length, int func)
{
      struct sym_hcb *np = sym_get_hcb(host);
      int retv;

      if (func) {
#ifdef      SYM_LINUX_USER_COMMAND_SUPPORT
            retv = sym_user_command(np, buffer, length);
#else
            retv = -EINVAL;
#endif
      } else {
            if (start)
                  *start = buffer;
#ifdef SYM_LINUX_USER_INFO_SUPPORT
            retv = sym_host_info(np, buffer, offset, length);
#else
            retv = -EINVAL;
#endif
      }

      return retv;
}
#endif /* SYM_LINUX_PROC_INFO_SUPPORT */

/*
 *    Free controller resources.
 */
static void sym_free_resources(struct sym_hcb *np, struct pci_dev *pdev)
{
      /*
       *  Free O/S specific resources.
       */
      if (np->s.irq)
            free_irq(np->s.irq, np);
      if (np->s.ioaddr)
            pci_iounmap(pdev, np->s.ioaddr);
      if (np->s.ramaddr)
            pci_iounmap(pdev, np->s.ramaddr);
      /*
       *  Free O/S independent resources.
       */
      sym_hcb_free(np);

      sym_mfree_dma(np, sizeof(*np), "HCB");
}

/*
 *  Ask/tell the system about DMA addressing.
 */
static int sym_setup_bus_dma_mask(struct sym_hcb *np)
{
#if SYM_CONF_DMA_ADDRESSING_MODE > 0
#if   SYM_CONF_DMA_ADDRESSING_MODE == 1
#define     DMA_DAC_MASK      DMA_40BIT_MASK
#elif SYM_CONF_DMA_ADDRESSING_MODE == 2
#define     DMA_DAC_MASK      DMA_64BIT_MASK
#endif
      if ((np->features & FE_DAC) &&
                  !pci_set_dma_mask(np->s.device, DMA_DAC_MASK)) {
            np->use_dac = 1;
            return 0;
      }
#endif

      if (!pci_set_dma_mask(np->s.device, DMA_32BIT_MASK))
            return 0;

      printf_warning("%s: No suitable DMA available\n", sym_name(np));
      return -1;
}

/*
 *  Host attach and initialisations.
 *
 *  Allocate host data and ncb structure.
 *  Remap MMIO region.
 *  Do chip initialization.
 *  If all is OK, install interrupt handling and
 *  start the timer daemon.
 */
static struct Scsi_Host * __devinit sym_attach(struct scsi_host_template *tpnt,
            int unit, struct sym_device *dev)
{
      struct host_data *host_data;
      struct sym_hcb *np = NULL;
      struct Scsi_Host *instance = NULL;
      struct pci_dev *pdev = dev->pdev;
      unsigned long flags;
      struct sym_fw *fw;

      printk(KERN_INFO
            "sym%d: <%s> rev 0x%x at pci %s irq " IRQ_FMT "\n",
            unit, dev->chip.name, dev->chip.revision_id,
            pci_name(pdev), IRQ_PRM(pdev->irq));

      /*
       *  Get the firmware for this chip.
       */
      fw = sym_find_firmware(&dev->chip);
      if (!fw)
            goto attach_failed;

      /*
       *    Allocate host_data structure
       */
      instance = scsi_host_alloc(tpnt, sizeof(*host_data));
      if (!instance)
            goto attach_failed;
      host_data = (struct host_data *) instance->hostdata;

      /*
       *  Allocate immediately the host control block, 
       *  since we are only expecting to succeed. :)
       *  We keep track in the HCB of all the resources that 
       *  are to be released on error.
       */
      np = __sym_calloc_dma(&pdev->dev, sizeof(*np), "HCB");
      if (!np)
            goto attach_failed;
      np->s.device = pdev;
      np->bus_dmat = &pdev->dev; /* Result in 1 DMA pool per HBA */
      host_data->ncb = np;
      np->s.host = instance;

      pci_set_drvdata(pdev, np);

      /*
       *  Copy some useful infos to the HCB.
       */
      np->hcb_ba  = vtobus(np);
      np->verbose = sym_driver_setup.verbose;
      np->s.device      = pdev;
      np->s.unit  = unit;
      np->device_id     = dev->chip.device_id;
      np->revision_id   = dev->chip.revision_id;
      np->features      = dev->chip.features;
      np->clock_divn    = dev->chip.nr_divisor;
      np->maxoffs = dev->chip.offset_max;
      np->maxburst      = dev->chip.burst_max;
      np->myaddr  = dev->host_id;

      /*
       *  Edit its name.
       */
      strlcpy(np->s.chip_name, dev->chip.name, sizeof(np->s.chip_name));
      sprintf(np->s.inst_name, "sym%d", np->s.unit);

      if (sym_setup_bus_dma_mask(np))
            goto attach_failed;

      /*
       *  Try to map the controller chip to
       *  virtual and physical memory.
       */
      np->mmio_ba = (u32)dev->mmio_base;
      np->s.ioaddr      = dev->s.ioaddr;
      np->s.ramaddr     = dev->s.ramaddr;
      np->s.io_ws = (np->features & FE_IO256) ? 256 : 128;

      /*
       *  Map on-chip RAM if present and supported.
       */
      if (!(np->features & FE_RAM))
            dev->ram_base = 0;
      if (dev->ram_base) {
            np->ram_ba = (u32)dev->ram_base;
            np->ram_ws = (np->features & FE_RAM8K) ? 8192 : 4096;
      }

      if (sym_hcb_attach(instance, fw, dev->nvram))
            goto attach_failed;

      /*
       *  Install the interrupt handler.
       *  If we synchonize the C code with SCRIPTS on interrupt, 
       *  we do not want to share the INTR line at all.
       */
      if (request_irq(pdev->irq, sym53c8xx_intr, IRQF_SHARED, NAME53C8XX, np)) {
            printf_err("%s: request irq %d failure\n",
                  sym_name(np), pdev->irq);
            goto attach_failed;
      }
      np->s.irq = pdev->irq;

      /*
       *  After SCSI devices have been opened, we cannot
       *  reset the bus safely, so we do it here.
       */
      spin_lock_irqsave(instance->host_lock, flags);
      if (sym_reset_scsi_bus(np, 0))
            goto reset_failed;

      /*
       *  Start the SCRIPTS.
       */
      sym_start_up (np, 1);

      /*
       *  Start the timer daemon
       */
      init_timer(&np->s.timer);
      np->s.timer.data     = (unsigned long) np;
      np->s.timer.function = sym53c8xx_timer;
      np->s.lasttime=0;
      sym_timer (np);

      /*
       *  Fill Linux host instance structure
       *  and return success.
       */
      instance->max_channel   = 0;
      instance->this_id = np->myaddr;
      instance->max_id  = np->maxwide ? 16 : 8;
      instance->max_lun = SYM_CONF_MAX_LUN;
      instance->unique_id     = pci_resource_start(pdev, 0);
      instance->cmd_per_lun   = SYM_CONF_MAX_TAG;
      instance->can_queue     = (SYM_CONF_MAX_START-2);
      instance->sg_tablesize  = SYM_CONF_MAX_SG;
      instance->max_cmd_len   = 16;
      BUG_ON(sym2_transport_template == NULL);
      instance->transportt    = sym2_transport_template;

      spin_unlock_irqrestore(instance->host_lock, flags);

      return instance;

 reset_failed:
      printf_err("%s: FATAL ERROR: CHECK SCSI BUS - CABLES, "
               "TERMINATION, DEVICE POWER etc.!\n", sym_name(np));
      spin_unlock_irqrestore(instance->host_lock, flags);
 attach_failed:
      if (!instance)
            return NULL;
      printf_info("%s: giving up ...\n", sym_name(np));
      if (np)
            sym_free_resources(np, pdev);
      scsi_host_put(instance);

      return NULL;
 }


/*
 *    Detect and try to read SYMBIOS and TEKRAM NVRAM.
 */
#if SYM_CONF_NVRAM_SUPPORT
static void __devinit sym_get_nvram(struct sym_device *devp, struct sym_nvram *nvp)
{
      devp->nvram = nvp;
      devp->device_id = devp->chip.device_id;
      nvp->type = 0;

      sym_read_nvram(devp, nvp);
}
#else
static inline void sym_get_nvram(struct sym_device *devp, struct sym_nvram *nvp)
{
}
#endif      /* SYM_CONF_NVRAM_SUPPORT */

static int __devinit sym_check_supported(struct sym_device *device)
{
      struct sym_chip *chip;
      struct pci_dev *pdev = device->pdev;
      u_char revision;
      unsigned long io_port = pci_resource_start(pdev, 0);
      int i;

      /*
       *  If user excluded this chip, do not initialize it.
       *  I hate this code so much.  Must kill it.
       */
      if (io_port) {
            for (i = 0 ; i < 8 ; i++) {
                  if (sym_driver_setup.excludes[i] == io_port)
                        return -ENODEV;
            }
      }

      /*
       * Check if the chip is supported.  Then copy the chip description
       * to our device structure so we can make it match the actual device
       * and options.
       */
      pci_read_config_byte(pdev, PCI_CLASS_REVISION, &revision);
      chip = sym_lookup_chip_table(pdev->device, revision);
      if (!chip) {
            dev_info(&pdev->dev, "device not supported\n");
            return -ENODEV;
      }
      memcpy(&device->chip, chip, sizeof(device->chip));
      device->chip.revision_id = revision;

      return 0;
}

/*
 * Ignore Symbios chips controlled by various RAID controllers.
 * These controllers set value 0x52414944 at RAM end - 16.
 */
static int __devinit sym_check_raid(struct sym_device *device)
{
      unsigned int ram_size, ram_val;

      if (!device->s.ramaddr)
            return 0;

      if (device->chip.features & FE_RAM8K)
            ram_size = 8192;
      else
            ram_size = 4096;

      ram_val = readl(device->s.ramaddr + ram_size - 16);
      if (ram_val != 0x52414944)
            return 0;

      dev_info(&device->pdev->dev,
                  "not initializing, driven by RAID controller.\n");
      return -ENODEV;
}

static int __devinit sym_set_workarounds(struct sym_device *device)
{
      struct sym_chip *chip = &device->chip;
      struct pci_dev *pdev = device->pdev;
      u_short status_reg;

      /*
       *  (ITEM 12 of a DEL about the 896 I haven't yet).
       *  We must ensure the chip will use WRITE AND INVALIDATE.
       *  The revision number limit is for now arbitrary.
       */
      if (pdev->device == PCI_DEVICE_ID_NCR_53C896 && chip->revision_id < 0x4) {
            chip->features    |= (FE_WRIE | FE_CLSE);
      }

      /* If the chip can do Memory Write Invalidate, enable it */
      if (chip->features & FE_WRIE) {
            if (pci_set_mwi(pdev))
                  return -ENODEV;
      }

      /*
       *  Work around for errant bit in 895A. The 66Mhz
       *  capable bit is set erroneously. Clear this bit.
       *  (Item 1 DEL 533)
       *
       *  Make sure Config space and Features agree.
       *
       *  Recall: writes are not normal to status register -
       *  write a 1 to clear and a 0 to leave unchanged.
       *  Can only reset bits.
       */
      pci_read_config_word(pdev, PCI_STATUS, &status_reg);
      if (chip->features & FE_66MHZ) {
            if (!(status_reg & PCI_STATUS_66MHZ))
                  chip->features &= ~FE_66MHZ;
      } else {
            if (status_reg & PCI_STATUS_66MHZ) {
                  status_reg = PCI_STATUS_66MHZ;
                  pci_write_config_word(pdev, PCI_STATUS, status_reg);
                  pci_read_config_word(pdev, PCI_STATUS, &status_reg);
            }
      }

      return 0;
}

/*
 *  Read and check the PCI configuration for any detected NCR 
 *  boards and save data for attaching after all boards have 
 *  been detected.
 */
static void __devinit
sym_init_device(struct pci_dev *pdev, struct sym_device *device)
{
      int i = 2;
      struct pci_bus_region bus_addr;

      device->host_id = SYM_SETUP_HOST_ID;
      device->pdev = pdev;

      pcibios_resource_to_bus(pdev, &bus_addr, &pdev->resource[1]);
      device->mmio_base = bus_addr.start;

      /*
       * If the BAR is 64-bit, resource 2 will be occupied by the
       * upper 32 bits
       */
      if (!pdev->resource[i].flags)
            i++;
      pcibios_resource_to_bus(pdev, &bus_addr, &pdev->resource[i]);
      device->ram_base = bus_addr.start;

#ifdef CONFIG_SCSI_SYM53C8XX_MMIO
      if (device->mmio_base)
            device->s.ioaddr = pci_iomap(pdev, 1,
                                    pci_resource_len(pdev, 1));
#endif
      if (!device->s.ioaddr)
            device->s.ioaddr = pci_iomap(pdev, 0,
                                    pci_resource_len(pdev, 0));
      if (device->ram_base)
            device->s.ramaddr = pci_iomap(pdev, i,
                                    pci_resource_len(pdev, i));
}

/*
 * The NCR PQS and PDS cards are constructed as a DEC bridge
 * behind which sits a proprietary NCR memory controller and
 * either four or two 53c875s as separate devices.  We can tell
 * if an 875 is part of a PQS/PDS or not since if it is, it will
 * be on the same bus as the memory controller.  In its usual
 * mode of operation, the 875s are slaved to the memory
 * controller for all transfers.  To operate with the Linux
 * driver, the memory controller is disabled and the 875s
 * freed to function independently.  The only wrinkle is that
 * the preset SCSI ID (which may be zero) must be read in from
 * a special configuration space register of the 875.
 */
static void sym_config_pqs(struct pci_dev *pdev, struct sym_device *sym_dev)
{
      int slot;
      u8 tmp;

      for (slot = 0; slot < 256; slot++) {
            struct pci_dev *memc = pci_get_slot(pdev->bus, slot);

            if (!memc || memc->vendor != 0x101a || memc->device == 0x0009) {
                  pci_dev_put(memc);
                  continue;
            }

            /* bit 1: allow individual 875 configuration */
            pci_read_config_byte(memc, 0x44, &tmp);
            if ((tmp & 0x2) == 0) {
                  tmp |= 0x2;
                  pci_write_config_byte(memc, 0x44, tmp);
            }

            /* bit 2: drive individual 875 interrupts to the bus */
            pci_read_config_byte(memc, 0x45, &tmp);
            if ((tmp & 0x4) == 0) {
                  tmp |= 0x4;
                  pci_write_config_byte(memc, 0x45, tmp);
            }

            pci_dev_put(memc);
            break;
      }

      pci_read_config_byte(pdev, 0x84, &tmp);
      sym_dev->host_id = tmp;
}

/*
 *  Called before unloading the module.
 *  Detach the host.
 *  We have to free resources and halt the NCR chip.
 */
static int sym_detach(struct sym_hcb *np, struct pci_dev *pdev)
{
      printk("%s: detaching ...\n", sym_name(np));

      del_timer_sync(&np->s.timer);

      /*
       * Reset NCR chip.
       * We should use sym_soft_reset(), but we don't want to do 
       * so, since we may not be safe if interrupts occur.
       */
      printk("%s: resetting chip\n", sym_name(np));
      OUTB(np, nc_istat, SRST);
      INB(np, nc_mbox1);
      udelay(10);
      OUTB(np, nc_istat, 0);

      sym_free_resources(np, pdev);

      return 1;
}

/*
 * Driver host template.
 */
static struct scsi_host_template sym2_template = {
      .module                 = THIS_MODULE,
      .name             = "sym53c8xx",
      .info             = sym53c8xx_info, 
      .queuecommand           = sym53c8xx_queue_command,
      .slave_alloc            = sym53c8xx_slave_alloc,
      .slave_configure  = sym53c8xx_slave_configure,
      .slave_destroy          = sym53c8xx_slave_destroy,
      .eh_abort_handler = sym53c8xx_eh_abort_handler,
      .eh_device_reset_handler = sym53c8xx_eh_device_reset_handler,
      .eh_bus_reset_handler   = sym53c8xx_eh_bus_reset_handler,
      .eh_host_reset_handler  = sym53c8xx_eh_host_reset_handler,
      .this_id          = 7,
      .use_clustering         = ENABLE_CLUSTERING,
      .max_sectors            = 0xFFFF,
#ifdef SYM_LINUX_PROC_INFO_SUPPORT
      .proc_info        = sym53c8xx_proc_info,
      .proc_name        = NAME53C8XX,
#endif
};

static int attach_count;

static int __devinit sym2_probe(struct pci_dev *pdev,
                        const struct pci_device_id *ent)
{
      struct sym_device sym_dev;
      struct sym_nvram nvram;
      struct Scsi_Host *instance;

      memset(&sym_dev, 0, sizeof(sym_dev));
      memset(&nvram, 0, sizeof(nvram));

      if (pci_enable_device(pdev))
            goto leave;

      pci_set_master(pdev);

      if (pci_request_regions(pdev, NAME53C8XX))
            goto disable;

      sym_init_device(pdev, &sym_dev);
      if (sym_check_supported(&sym_dev))
            goto free;

      if (sym_check_raid(&sym_dev))
            goto leave; /* Don't disable the device */

      if (sym_set_workarounds(&sym_dev))
            goto free;

      sym_config_pqs(pdev, &sym_dev);

      sym_get_nvram(&sym_dev, &nvram);

      instance = sym_attach(&sym2_template, attach_count, &sym_dev);
      if (!instance)
            goto free;

      if (scsi_add_host(instance, &pdev->dev))
            goto detach;
      scsi_scan_host(instance);

      attach_count++;

      return 0;

 detach:
      sym_detach(pci_get_drvdata(pdev), pdev);
 free:
      pci_release_regions(pdev);
 disable:
      pci_disable_device(pdev);
 leave:
      return -ENODEV;
}

static void __devexit sym2_remove(struct pci_dev *pdev)
{
      struct sym_hcb *np = pci_get_drvdata(pdev);
      struct Scsi_Host *host = np->s.host;

      scsi_remove_host(host);
      scsi_host_put(host);

      sym_detach(np, pdev);

      pci_release_regions(pdev);
      pci_disable_device(pdev);

      attach_count--;
}

static void sym2_get_signalling(struct Scsi_Host *shost)
{
      struct sym_hcb *np = sym_get_hcb(shost);
      enum spi_signal_type type;

      switch (np->scsi_mode) {
      case SMODE_SE:
            type = SPI_SIGNAL_SE;
            break;
      case SMODE_LVD:
            type = SPI_SIGNAL_LVD;
            break;
      case SMODE_HVD:
            type = SPI_SIGNAL_HVD;
            break;
      default:
            type = SPI_SIGNAL_UNKNOWN;
            break;
      }
      spi_signalling(shost) = type;
}

static void sym2_set_offset(struct scsi_target *starget, int offset)
{
      struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
      struct sym_hcb *np = sym_get_hcb(shost);
      struct sym_tcb *tp = &np->target[starget->id];

      tp->tgoal.offset = offset;
      tp->tgoal.check_nego = 1;
}

static void sym2_set_period(struct scsi_target *starget, int period)
{
      struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
      struct sym_hcb *np = sym_get_hcb(shost);
      struct sym_tcb *tp = &np->target[starget->id];

      /* have to have DT for these transfers, but DT will also
       * set width, so check that this is allowed */
      if (period <= np->minsync && spi_width(starget))
            tp->tgoal.dt = 1;

      tp->tgoal.period = period;
      tp->tgoal.check_nego = 1;
}

static void sym2_set_width(struct scsi_target *starget, int width)
{
      struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
      struct sym_hcb *np = sym_get_hcb(shost);
      struct sym_tcb *tp = &np->target[starget->id];

      /* It is illegal to have DT set on narrow transfers.  If DT is
       * clear, we must also clear IU and QAS.  */
      if (width == 0)
            tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0;

      tp->tgoal.width = width;
      tp->tgoal.check_nego = 1;
}

static void sym2_set_dt(struct scsi_target *starget, int dt)
{
      struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
      struct sym_hcb *np = sym_get_hcb(shost);
      struct sym_tcb *tp = &np->target[starget->id];

      /* We must clear QAS and IU if DT is clear */
      if (dt)
            tp->tgoal.dt = 1;
      else
            tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0;
      tp->tgoal.check_nego = 1;
}

#if 0
static void sym2_set_iu(struct scsi_target *starget, int iu)
{
      struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
      struct sym_hcb *np = sym_get_hcb(shost);
      struct sym_tcb *tp = &np->target[starget->id];

      if (iu)
            tp->tgoal.iu = tp->tgoal.dt = 1;
      else
            tp->tgoal.iu = 0;
      tp->tgoal.check_nego = 1;
}

static void sym2_set_qas(struct scsi_target *starget, int qas)
{
      struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
      struct sym_hcb *np = sym_get_hcb(shost);
      struct sym_tcb *tp = &np->target[starget->id];

      if (qas)
            tp->tgoal.dt = tp->tgoal.qas = 1;
      else
            tp->tgoal.qas = 0;
      tp->tgoal.check_nego = 1;
}
#endif

static struct spi_function_template sym2_transport_functions = {
      .set_offset = sym2_set_offset,
      .show_offset      = 1,
      .set_period = sym2_set_period,
      .show_period      = 1,
      .set_width  = sym2_set_width,
      .show_width = 1,
      .set_dt           = sym2_set_dt,
      .show_dt    = 1,
#if 0
      .set_iu           = sym2_set_iu,
      .show_iu    = 1,
      .set_qas    = sym2_set_qas,
      .show_qas   = 1,
#endif
      .get_signalling   = sym2_get_signalling,
};

static struct pci_device_id sym2_id_table[] __devinitdata = {
      { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C810,
        PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
      { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C820,
        PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, /* new */
      { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C825,
        PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
      { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C815,
        PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
      { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C810AP,
        PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, /* new */
      { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C860,
        PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
      { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C1510,
        PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_STORAGE_SCSI<<8,  0xffff00, 0UL },
      { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C896,
        PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
      { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C895,
        PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
      { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C885,
        PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
      { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C875,
        PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
      { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C1510,
        PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, /* new */
      { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C895A,
        PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
      { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C875A,
        PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
      { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C1010_33,
        PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
      { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C1010_66,
        PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
      { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C875J,
        PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
      { 0, }
};

MODULE_DEVICE_TABLE(pci, sym2_id_table);

static struct pci_driver sym2_driver = {
      .name       = NAME53C8XX,
      .id_table   = sym2_id_table,
      .probe            = sym2_probe,
      .remove           = __devexit_p(sym2_remove),
};

static int __init sym2_init(void)
{
      int error;

      sym2_setup_params();
      sym2_transport_template = spi_attach_transport(&sym2_transport_functions);
      if (!sym2_transport_template)
            return -ENODEV;

      error = pci_register_driver(&sym2_driver);
      if (error)
            spi_release_transport(sym2_transport_template);
      return error;
}

static void __exit sym2_exit(void)
{
      pci_unregister_driver(&sym2_driver);
      spi_release_transport(sym2_transport_template);
}

module_init(sym2_init);
module_exit(sym2_exit);

Generated by  Doxygen 1.6.0   Back to index