Logo Search packages:      
Sourcecode: linux-2.6 version File versions  Download package

usbtest.c

#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/scatterlist.h>

#include <linux/usb.h>


/*-------------------------------------------------------------------------*/

// FIXME make these public somewhere; usbdevfs.h?
//
struct usbtest_param {
      // inputs
      unsigned          test_num;   /* 0..(TEST_CASES-1) */
      unsigned          iterations;
      unsigned          length;
      unsigned          vary;
      unsigned          sglen;

      // outputs
      struct timeval          duration;
};
#define USBTEST_REQUEST _IOWR('U', 100, struct usbtest_param)

/*-------------------------------------------------------------------------*/

#define     GENERIC           /* let probe() bind using module params */

/* Some devices that can be used for testing will have "real" drivers.
 * Entries for those need to be enabled here by hand, after disabling
 * that "real" driver.
 */
//#define   IBOT2       /* grab iBOT2 webcams */
//#define   KEYSPAN_19Qi      /* grab un-renumerated serial adapter */

/*-------------------------------------------------------------------------*/

struct usbtest_info {
      const char        *name;
      u8                ep_in;            /* bulk/intr source */
      u8                ep_out;           /* bulk/intr sink */
      unsigned          autoconf : 1;
      unsigned          ctrl_out : 1;
      unsigned          iso : 1;    /* try iso in/out */
      int               alt;
};

/* this is accessed only through usbfs ioctl calls.
 * one ioctl to issue a test ... one lock per device.
 * tests create other threads if they need them.
 * urbs and buffers are allocated dynamically,
 * and data generated deterministically.
 */
struct usbtest_dev {
      struct usb_interface    *intf;
      struct usbtest_info     *info;
      int               in_pipe;
      int               out_pipe;
      int               in_iso_pipe;
      int               out_iso_pipe;
      struct usb_endpoint_descriptor      *iso_in, *iso_out;
      struct semaphore  sem;

#define TBUF_SIZE 256
      u8                *buf;
};

static struct usb_device *testdev_to_usbdev (struct usbtest_dev *test)
{
      return interface_to_usbdev (test->intf);
}

/* set up all urbs so they can be used with either bulk or interrupt */
#define     INTERRUPT_RATE          1     /* msec/transfer */

#define xprintk(tdev,level,fmt,args...) \
      dev_printk(level ,  &(tdev)->intf->dev ,  fmt ,  ## args)

#ifdef DEBUG
#define DBG(dev,fmt,args...) \
      xprintk(dev , KERN_DEBUG , fmt , ## args)
#else
#define DBG(dev,fmt,args...) \
      do { } while (0)
#endif /* DEBUG */

#ifdef VERBOSE
#define VDBG DBG
#else
#define VDBG(dev,fmt,args...) \
      do { } while (0)
#endif      /* VERBOSE */

#define ERROR(dev,fmt,args...) \
      xprintk(dev , KERN_ERR , fmt , ## args)
#define WARN(dev,fmt,args...) \
      xprintk(dev , KERN_WARNING , fmt , ## args)
#define INFO(dev,fmt,args...) \
      xprintk(dev , KERN_INFO , fmt , ## args)

/*-------------------------------------------------------------------------*/

static int
get_endpoints (struct usbtest_dev *dev, struct usb_interface *intf)
{
      int                     tmp;
      struct usb_host_interface     *alt;
      struct usb_host_endpoint      *in, *out;
      struct usb_host_endpoint      *iso_in, *iso_out;
      struct usb_device       *udev;

      for (tmp = 0; tmp < intf->num_altsetting; tmp++) {
            unsigned    ep;

            in = out = NULL;
            iso_in = iso_out = NULL;
            alt = intf->altsetting + tmp;

            /* take the first altsetting with in-bulk + out-bulk;
             * ignore other endpoints and altsetttings.
             */
            for (ep = 0; ep < alt->desc.bNumEndpoints; ep++) {
                  struct usb_host_endpoint      *e;

                  e = alt->endpoint + ep;
                  switch (e->desc.bmAttributes) {
                  case USB_ENDPOINT_XFER_BULK:
                        break;
                  case USB_ENDPOINT_XFER_ISOC:
                        if (dev->info->iso)
                              goto try_iso;
                        // FALLTHROUGH
                  default:
                        continue;
                  }
                  if (e->desc.bEndpointAddress & USB_DIR_IN) {
                        if (!in)
                              in = e;
                  } else {
                        if (!out)
                              out = e;
                  }
                  continue;
try_iso:
                  if (e->desc.bEndpointAddress & USB_DIR_IN) {
                        if (!iso_in)
                              iso_in = e;
                  } else {
                        if (!iso_out)
                              iso_out = e;
                  }
            }
            if ((in && out)  ||  (iso_in && iso_out))
                  goto found;
      }
      return -EINVAL;

found:
      udev = testdev_to_usbdev (dev);
      if (alt->desc.bAlternateSetting != 0) {
            tmp = usb_set_interface (udev,
                        alt->desc.bInterfaceNumber,
                        alt->desc.bAlternateSetting);
            if (tmp < 0)
                  return tmp;
      }

      if (in) {
            dev->in_pipe = usb_rcvbulkpipe (udev,
                  in->desc.bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
            dev->out_pipe = usb_sndbulkpipe (udev,
                  out->desc.bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
      }
      if (iso_in) {
            dev->iso_in = &iso_in->desc;
            dev->in_iso_pipe = usb_rcvisocpipe (udev,
                        iso_in->desc.bEndpointAddress
                              & USB_ENDPOINT_NUMBER_MASK);
            dev->iso_out = &iso_out->desc;
            dev->out_iso_pipe = usb_sndisocpipe (udev,
                        iso_out->desc.bEndpointAddress
                              & USB_ENDPOINT_NUMBER_MASK);
      }
      return 0;
}

/*-------------------------------------------------------------------------*/

/* Support for testing basic non-queued I/O streams.
 *
 * These just package urbs as requests that can be easily canceled.
 * Each urb's data buffer is dynamically allocated; callers can fill
 * them with non-zero test data (or test for it) when appropriate.
 */

static void simple_callback (struct urb *urb, struct pt_regs *regs)
{
      complete ((struct completion *) urb->context);
}

static struct urb *simple_alloc_urb (
      struct usb_device *udev,
      int               pipe,
      unsigned long           bytes
)
{
      struct urb        *urb;

      if (bytes < 0)
            return NULL;
      urb = usb_alloc_urb (0, SLAB_KERNEL);
      if (!urb)
            return urb;
      usb_fill_bulk_urb (urb, udev, pipe, NULL, bytes, simple_callback, NULL);
      urb->interval = (udev->speed == USB_SPEED_HIGH)
                  ? (INTERRUPT_RATE << 3)
                  : INTERRUPT_RATE;
      urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP;
      if (usb_pipein (pipe))
            urb->transfer_flags |= URB_SHORT_NOT_OK;
      urb->transfer_buffer = usb_buffer_alloc (udev, bytes, SLAB_KERNEL,
                  &urb->transfer_dma);
      if (!urb->transfer_buffer) {
            usb_free_urb (urb);
            urb = NULL;
      } else
            memset (urb->transfer_buffer, 0, bytes);
      return urb;
}

static unsigned pattern = 0;
module_param (pattern, uint, S_IRUGO);
// MODULE_PARM_DESC (pattern, "i/o pattern (0 == zeroes)");

static inline void simple_fill_buf (struct urb *urb)
{
      unsigned    i;
      u8          *buf = urb->transfer_buffer;
      unsigned    len = urb->transfer_buffer_length;

      switch (pattern) {
      default:
            // FALLTHROUGH
      case 0:
            memset (buf, 0, len);
            break;
      case 1:                 /* mod63 */
            for (i = 0; i < len; i++)
                  *buf++ = (u8) (i % 63);
            break;
      }
}

static inline int simple_check_buf (struct urb *urb)
{
      unsigned    i;
      u8          expected;
      u8          *buf = urb->transfer_buffer;
      unsigned    len = urb->actual_length;

      for (i = 0; i < len; i++, buf++) {
            switch (pattern) {
            /* all-zeroes has no synchronization issues */
            case 0:
                  expected = 0;
                  break;
            /* mod63 stays in sync with short-terminated transfers,
             * or otherwise when host and gadget agree on how large
             * each usb transfer request should be.  resync is done
             * with set_interface or set_config.
             */
            case 1:                 /* mod63 */
                  expected = i % 63;
                  break;
            /* always fail unsupported patterns */
            default:
                  expected = !*buf;
                  break;
            }
            if (*buf == expected)
                  continue;
            dbg ("buf[%d] = %d (not %d)", i, *buf, expected);
            return -EINVAL;
      }
      return 0;
}

static void simple_free_urb (struct urb *urb)
{
      usb_buffer_free (urb->dev, urb->transfer_buffer_length,
                  urb->transfer_buffer, urb->transfer_dma);
      usb_free_urb (urb);
}

static int simple_io (
      struct urb        *urb,
      int               iterations,
      int               vary,
      int               expected,
      const char        *label
)
{
      struct usb_device *udev = urb->dev;
      int               max = urb->transfer_buffer_length;
      struct completion completion;
      int               retval = 0;

      urb->context = &completion;
      while (retval == 0 && iterations-- > 0) {
            init_completion (&completion);
            if (usb_pipeout (urb->pipe))
                  simple_fill_buf (urb);
            if ((retval = usb_submit_urb (urb, SLAB_KERNEL)) != 0)
                  break;

            /* NOTE:  no timeouts; can't be broken out of by interrupt */
            wait_for_completion (&completion);
            retval = urb->status;
            urb->dev = udev;
            if (retval == 0 && usb_pipein (urb->pipe))
                  retval = simple_check_buf (urb);

            if (vary) {
                  int   len = urb->transfer_buffer_length;

                  len += vary;
                  len %= max;
                  if (len == 0)
                        len = (vary < max) ? vary : max;
                  urb->transfer_buffer_length = len;
            }

            /* FIXME if endpoint halted, clear halt (and log) */
      }
      urb->transfer_buffer_length = max;

      if (expected != retval)
            dev_dbg (&udev->dev,
                  "%s failed, iterations left %d, status %d (not %d)\n",
                        label, iterations, retval, expected);
      return retval;
}


/*-------------------------------------------------------------------------*/

/* We use scatterlist primitives to test queued I/O.
 * Yes, this also tests the scatterlist primitives.
 */

static void free_sglist (struct scatterlist *sg, int nents)
{
      unsigned          i;
      
      if (!sg)
            return;
      for (i = 0; i < nents; i++) {
            if (!sg [i].page)
                  continue;
            kfree (page_address (sg [i].page) + sg [i].offset);
      }
      kfree (sg);
}

static struct scatterlist *
alloc_sglist (int nents, int max, int vary)
{
      struct scatterlist      *sg;
      unsigned          i;
      unsigned          size = max;

      sg = kmalloc (nents * sizeof *sg, SLAB_KERNEL);
      if (!sg)
            return NULL;

      for (i = 0; i < nents; i++) {
            char        *buf;
            unsigned    j;

            buf = kzalloc (size, SLAB_KERNEL);
            if (!buf) {
                  free_sglist (sg, i);
                  return NULL;
            }

            /* kmalloc pages are always physically contiguous! */
            sg_init_one(&sg[i], buf, size);

            switch (pattern) {
            case 0:
                  /* already zeroed */
                  break;
            case 1:
                  for (j = 0; j < size; j++)
                        *buf++ = (u8) (j % 63);
                  break;
            }

            if (vary) {
                  size += vary;
                  size %= max;
                  if (size == 0)
                        size = (vary < max) ? vary : max;
            }
      }

      return sg;
}

static int perform_sglist (
      struct usb_device *udev,
      unsigned          iterations,
      int               pipe,
      struct usb_sg_request   *req,
      struct scatterlist      *sg,
      int               nents
)
{
      int               retval = 0;

      while (retval == 0 && iterations-- > 0) {
            retval = usb_sg_init (req, udev, pipe,
                        (udev->speed == USB_SPEED_HIGH)
                              ? (INTERRUPT_RATE << 3)
                              : INTERRUPT_RATE,
                        sg, nents, 0, SLAB_KERNEL);
            
            if (retval)
                  break;
            usb_sg_wait (req);
            retval = req->status;

            /* FIXME check resulting data pattern */

            /* FIXME if endpoint halted, clear halt (and log) */
      }

      // FIXME for unlink or fault handling tests, don't report
      // failure if retval is as we expected ...

      if (retval)
            dbg ("perform_sglist failed, iterations left %d, status %d",
                        iterations, retval);
      return retval;
}


/*-------------------------------------------------------------------------*/

/* unqueued control message testing
 *
 * there's a nice set of device functional requirements in chapter 9 of the
 * usb 2.0 spec, which we can apply to ANY device, even ones that don't use
 * special test firmware.
 *
 * we know the device is configured (or suspended) by the time it's visible
 * through usbfs.  we can't change that, so we won't test enumeration (which
 * worked 'well enough' to get here, this time), power management (ditto),
 * or remote wakeup (which needs human interaction).
 */

static unsigned realworld = 1;
module_param (realworld, uint, 0);
MODULE_PARM_DESC (realworld, "clear to demand stricter spec compliance");

static int get_altsetting (struct usbtest_dev *dev)
{
      struct usb_interface    *iface = dev->intf;
      struct usb_device *udev = interface_to_usbdev (iface);
      int               retval;

      retval = usb_control_msg (udev, usb_rcvctrlpipe (udev, 0),
                  USB_REQ_GET_INTERFACE, USB_DIR_IN|USB_RECIP_INTERFACE,
                  0, iface->altsetting [0].desc.bInterfaceNumber,
                  dev->buf, 1, USB_CTRL_GET_TIMEOUT);
      switch (retval) {
      case 1:
            return dev->buf [0];
      case 0:
            retval = -ERANGE;
            // FALLTHROUGH
      default:
            return retval;
      }
}

static int set_altsetting (struct usbtest_dev *dev, int alternate)
{
      struct usb_interface          *iface = dev->intf;
      struct usb_device       *udev;

      if (alternate < 0 || alternate >= 256)
            return -EINVAL;

      udev = interface_to_usbdev (iface);
      return usb_set_interface (udev,
                  iface->altsetting [0].desc.bInterfaceNumber,
                  alternate);
}

static int is_good_config (char *buf, int len)
{
      struct usb_config_descriptor  *config;
      
      if (len < sizeof *config)
            return 0;
      config = (struct usb_config_descriptor *) buf;

      switch (config->bDescriptorType) {
      case USB_DT_CONFIG:
      case USB_DT_OTHER_SPEED_CONFIG:
            if (config->bLength != 9) {
                  dbg ("bogus config descriptor length");
                  return 0;
            }
            /* this bit 'must be 1' but often isn't */
            if (!realworld && !(config->bmAttributes & 0x80)) {
                  dbg ("high bit of config attributes not set");
                  return 0;
            }
            if (config->bmAttributes & 0x1f) {  /* reserved == 0 */
                  dbg ("reserved config bits set");
                  return 0;
            }
            break;
      default:
            return 0;
      }

      if (le16_to_cpu(config->wTotalLength) == len)         /* read it all */
            return 1;
      if (le16_to_cpu(config->wTotalLength) >= TBUF_SIZE)         /* max partial read */
            return 1;
      dbg ("bogus config descriptor read size");
      return 0;
}

/* sanity test for standard requests working with usb_control_mesg() and some
 * of the utility functions which use it.
 *
 * this doesn't test how endpoint halts behave or data toggles get set, since
 * we won't do I/O to bulk/interrupt endpoints here (which is how to change
 * halt or toggle).  toggle testing is impractical without support from hcds.
 *
 * this avoids failing devices linux would normally work with, by not testing
 * config/altsetting operations for devices that only support their defaults.
 * such devices rarely support those needless operations.
 *
 * NOTE that since this is a sanity test, it's not examining boundary cases
 * to see if usbcore, hcd, and device all behave right.  such testing would
 * involve varied read sizes and other operation sequences.
 */
static int ch9_postconfig (struct usbtest_dev *dev)
{
      struct usb_interface    *iface = dev->intf;
      struct usb_device *udev = interface_to_usbdev (iface);
      int               i, alt, retval;

      /* [9.2.3] if there's more than one altsetting, we need to be able to
       * set and get each one.  mostly trusts the descriptors from usbcore.
       */
      for (i = 0; i < iface->num_altsetting; i++) {

            /* 9.2.3 constrains the range here */
            alt = iface->altsetting [i].desc.bAlternateSetting;
            if (alt < 0 || alt >= iface->num_altsetting) {
                  dev_dbg (&iface->dev,
                              "invalid alt [%d].bAltSetting = %d\n",
                              i, alt);
            }

            /* [real world] get/set unimplemented if there's only one */
            if (realworld && iface->num_altsetting == 1)
                  continue;

            /* [9.4.10] set_interface */
            retval = set_altsetting (dev, alt);
            if (retval) {
                  dev_dbg (&iface->dev, "can't set_interface = %d, %d\n",
                              alt, retval);
                  return retval;
            }

            /* [9.4.4] get_interface always works */
            retval = get_altsetting (dev);
            if (retval != alt) {
                  dev_dbg (&iface->dev, "get alt should be %d, was %d\n",
                              alt, retval);
                  return (retval < 0) ? retval : -EDOM;
            }

      }

      /* [real world] get_config unimplemented if there's only one */
      if (!realworld || udev->descriptor.bNumConfigurations != 1) {
            int   expected = udev->actconfig->desc.bConfigurationValue;

            /* [9.4.2] get_configuration always works
             * ... although some cheap devices (like one TI Hub I've got)
             * won't return config descriptors except before set_config.
             */
            retval = usb_control_msg (udev, usb_rcvctrlpipe (udev, 0),
                        USB_REQ_GET_CONFIGURATION,
                        USB_DIR_IN | USB_RECIP_DEVICE,
                        0, 0, dev->buf, 1, USB_CTRL_GET_TIMEOUT);
            if (retval != 1 || dev->buf [0] != expected) {
                  dev_dbg (&iface->dev, "get config --> %d %d (1 %d)\n",
                        retval, dev->buf[0], expected);
                  return (retval < 0) ? retval : -EDOM;
            }
      }

      /* there's always [9.4.3] a device descriptor [9.6.1] */
      retval = usb_get_descriptor (udev, USB_DT_DEVICE, 0,
                  dev->buf, sizeof udev->descriptor);
      if (retval != sizeof udev->descriptor) {
            dev_dbg (&iface->dev, "dev descriptor --> %d\n", retval);
            return (retval < 0) ? retval : -EDOM;
      }

      /* there's always [9.4.3] at least one config descriptor [9.6.3] */
      for (i = 0; i < udev->descriptor.bNumConfigurations; i++) {
            retval = usb_get_descriptor (udev, USB_DT_CONFIG, i,
                        dev->buf, TBUF_SIZE);
            if (!is_good_config (dev->buf, retval)) {
                  dev_dbg (&iface->dev,
                              "config [%d] descriptor --> %d\n",
                              i, retval);
                  return (retval < 0) ? retval : -EDOM;
            }

            // FIXME cross-checking udev->config[i] to make sure usbcore
            // parsed it right (etc) would be good testing paranoia
      }

      /* and sometimes [9.2.6.6] speed dependent descriptors */
      if (le16_to_cpu(udev->descriptor.bcdUSB) == 0x0200) {
            struct usb_qualifier_descriptor           *d = NULL;

            /* device qualifier [9.6.2] */
            retval = usb_get_descriptor (udev,
                        USB_DT_DEVICE_QUALIFIER, 0, dev->buf,
                        sizeof (struct usb_qualifier_descriptor));
            if (retval == -EPIPE) {
                  if (udev->speed == USB_SPEED_HIGH) {
                        dev_dbg (&iface->dev,
                                    "hs dev qualifier --> %d\n",
                                    retval);
                        return (retval < 0) ? retval : -EDOM;
                  }
                  /* usb2.0 but not high-speed capable; fine */
            } else if (retval != sizeof (struct usb_qualifier_descriptor)) {
                  dev_dbg (&iface->dev, "dev qualifier --> %d\n", retval);
                  return (retval < 0) ? retval : -EDOM;
            } else
                  d = (struct usb_qualifier_descriptor *) dev->buf;

            /* might not have [9.6.2] any other-speed configs [9.6.4] */
            if (d) {
                  unsigned max = d->bNumConfigurations;
                  for (i = 0; i < max; i++) {
                        retval = usb_get_descriptor (udev,
                              USB_DT_OTHER_SPEED_CONFIG, i,
                              dev->buf, TBUF_SIZE);
                        if (!is_good_config (dev->buf, retval)) {
                              dev_dbg (&iface->dev,
                                    "other speed config --> %d\n",
                                    retval);
                              return (retval < 0) ? retval : -EDOM;
                        }
                  }
            }
      }
      // FIXME fetch strings from at least the device descriptor

      /* [9.4.5] get_status always works */
      retval = usb_get_status (udev, USB_RECIP_DEVICE, 0, dev->buf);
      if (retval != 2) {
            dev_dbg (&iface->dev, "get dev status --> %d\n", retval);
            return (retval < 0) ? retval : -EDOM;
      }

      // FIXME configuration.bmAttributes says if we could try to set/clear
      // the device's remote wakeup feature ... if we can, test that here

      retval = usb_get_status (udev, USB_RECIP_INTERFACE,
                  iface->altsetting [0].desc.bInterfaceNumber, dev->buf);
      if (retval != 2) {
            dev_dbg (&iface->dev, "get interface status --> %d\n", retval);
            return (retval < 0) ? retval : -EDOM;
      }
      // FIXME get status for each endpoint in the interface
      
      return 0;
}

/*-------------------------------------------------------------------------*/

/* use ch9 requests to test whether:
 *   (a) queues work for control, keeping N subtests queued and
 *       active (auto-resubmit) for M loops through the queue.
 *   (b) protocol stalls (control-only) will autorecover.
 *       it's not like bulk/intr; no halt clearing.
 *   (c) short control reads are reported and handled.
 *   (d) queues are always processed in-order
 */

struct ctrl_ctx {
      spinlock_t        lock;
      struct usbtest_dev      *dev;
      struct completion complete;
      unsigned          count;
      unsigned          pending;
      int               status;
      struct urb        **urb;
      struct usbtest_param    *param;
      int               last;
};

#define NUM_SUBCASES    15          /* how many test subcases here? */

struct subcase {
      struct usb_ctrlrequest  setup;
      int               number;
      int               expected;
};

static void ctrl_complete (struct urb *urb, struct pt_regs *regs)
{
      struct ctrl_ctx         *ctx = urb->context;
      struct usb_ctrlrequest  *reqp;
      struct subcase          *subcase;
      int               status = urb->status;

      reqp = (struct usb_ctrlrequest *)urb->setup_packet;
      subcase = container_of (reqp, struct subcase, setup);

      spin_lock (&ctx->lock);
      ctx->count--;
      ctx->pending--;

      /* queue must transfer and complete in fifo order, unless
       * usb_unlink_urb() is used to unlink something not at the
       * physical queue head (not tested).
       */
      if (subcase->number > 0) {
            if ((subcase->number - ctx->last) != 1) {
                  dbg ("subcase %d completed out of order, last %d",
                              subcase->number, ctx->last);
                  status = -EDOM;
                  ctx->last = subcase->number;
                  goto error;
            }
      }
      ctx->last = subcase->number;

      /* succeed or fault in only one way? */
      if (status == subcase->expected)
            status = 0;

      /* async unlink for cleanup? */
      else if (status != -ECONNRESET) {

            /* some faults are allowed, not required */
            if (subcase->expected > 0 && (
                    ((urb->status == -subcase->expected     /* happened */
                     || urb->status == 0))))          /* didn't */
                  status = 0;
            /* sometimes more than one fault is allowed */
            else if (subcase->number == 12 && status == -EPIPE)
                  status = 0;
            else
                  dbg ("subtest %d error, status %d",
                              subcase->number, status);
      }

      /* unexpected status codes mean errors; ideally, in hardware */
      if (status) {
error:
            if (ctx->status == 0) {
                  int         i;

                  ctx->status = status;
                  info ("control queue %02x.%02x, err %d, %d left",
                              reqp->bRequestType, reqp->bRequest,
                              status, ctx->count);

                  /* FIXME this "unlink everything" exit route should
                   * be a separate test case.
                   */

                  /* unlink whatever's still pending */
                  for (i = 1; i < ctx->param->sglen; i++) {
                        struct urb  *u = ctx->urb [
      (i + subcase->number) % ctx->param->sglen];

                        if (u == urb || !u->dev)
                              continue;
                        spin_unlock(&ctx->lock);
                        status = usb_unlink_urb (u);
                        spin_lock(&ctx->lock);
                        switch (status) {
                        case -EINPROGRESS:
                        case -EBUSY:
                        case -EIDRM:
                              continue;
                        default:
                              dbg ("urb unlink --> %d", status);
                        }
                  }
                  status = ctx->status;
            }
      }

      /* resubmit if we need to, else mark this as done */
      if ((status == 0) && (ctx->pending < ctx->count)) {
            if ((status = usb_submit_urb (urb, SLAB_ATOMIC)) != 0) {
                  dbg ("can't resubmit ctrl %02x.%02x, err %d",
                        reqp->bRequestType, reqp->bRequest, status);
                  urb->dev = NULL;
            } else
                  ctx->pending++;
      } else
            urb->dev = NULL;
      
      /* signal completion when nothing's queued */
      if (ctx->pending == 0)
            complete (&ctx->complete);
      spin_unlock (&ctx->lock);
}

static int
test_ctrl_queue (struct usbtest_dev *dev, struct usbtest_param *param)
{
      struct usb_device *udev = testdev_to_usbdev (dev);
      struct urb        **urb;
      struct ctrl_ctx         context;
      int               i;

      spin_lock_init (&context.lock);
      context.dev = dev;
      init_completion (&context.complete);
      context.count = param->sglen * param->iterations;
      context.pending = 0;
      context.status = -ENOMEM;
      context.param = param;
      context.last = -1;

      /* allocate and init the urbs we'll queue.
       * as with bulk/intr sglists, sglen is the queue depth; it also
       * controls which subtests run (more tests than sglen) or rerun.
       */
      urb = kcalloc(param->sglen, sizeof(struct urb *), SLAB_KERNEL);
      if (!urb)
            return -ENOMEM;
      for (i = 0; i < param->sglen; i++) {
            int               pipe = usb_rcvctrlpipe (udev, 0);
            unsigned          len;
            struct urb        *u;
            struct usb_ctrlrequest  req;
            struct subcase          *reqp;
            int               expected = 0;

            /* requests here are mostly expected to succeed on any
             * device, but some are chosen to trigger protocol stalls
             * or short reads.
             */
            memset (&req, 0, sizeof req);
            req.bRequest = USB_REQ_GET_DESCRIPTOR;
            req.bRequestType = USB_DIR_IN|USB_RECIP_DEVICE;

            switch (i % NUM_SUBCASES) {
            case 0:           // get device descriptor
                  req.wValue = cpu_to_le16 (USB_DT_DEVICE << 8);
                  len = sizeof (struct usb_device_descriptor);
                  break;
            case 1:           // get first config descriptor (only)
                  req.wValue = cpu_to_le16 ((USB_DT_CONFIG << 8) | 0);
                  len = sizeof (struct usb_config_descriptor);
                  break;
            case 2:           // get altsetting (OFTEN STALLS)
                  req.bRequest = USB_REQ_GET_INTERFACE;
                  req.bRequestType = USB_DIR_IN|USB_RECIP_INTERFACE;
                  // index = 0 means first interface
                  len = 1;
                  expected = EPIPE;
                  break;
            case 3:           // get interface status
                  req.bRequest = USB_REQ_GET_STATUS;
                  req.bRequestType = USB_DIR_IN|USB_RECIP_INTERFACE;
                  // interface 0
                  len = 2;
                  break;
            case 4:           // get device status
                  req.bRequest = USB_REQ_GET_STATUS;
                  req.bRequestType = USB_DIR_IN|USB_RECIP_DEVICE;
                  len = 2;
                  break;
            case 5:           // get device qualifier (MAY STALL)
                  req.wValue = cpu_to_le16 (USB_DT_DEVICE_QUALIFIER << 8);
                  len = sizeof (struct usb_qualifier_descriptor);
                  if (udev->speed != USB_SPEED_HIGH)
                        expected = EPIPE;
                  break;
            case 6:           // get first config descriptor, plus interface
                  req.wValue = cpu_to_le16 ((USB_DT_CONFIG << 8) | 0);
                  len = sizeof (struct usb_config_descriptor);
                  len += sizeof (struct usb_interface_descriptor);
                  break;
            case 7:           // get interface descriptor (ALWAYS STALLS)
                  req.wValue = cpu_to_le16 (USB_DT_INTERFACE << 8);
                  // interface == 0
                  len = sizeof (struct usb_interface_descriptor);
                  expected = EPIPE;
                  break;
            // NOTE: two consecutive stalls in the queue here.
            // that tests fault recovery a bit more aggressively.
            case 8:           // clear endpoint halt (USUALLY STALLS)
                  req.bRequest = USB_REQ_CLEAR_FEATURE;
                  req.bRequestType = USB_RECIP_ENDPOINT;
                  // wValue 0 == ep halt
                  // wIndex 0 == ep0 (shouldn't halt!)
                  len = 0;
                  pipe = usb_sndctrlpipe (udev, 0);
                  expected = EPIPE;
                  break;
            case 9:           // get endpoint status
                  req.bRequest = USB_REQ_GET_STATUS;
                  req.bRequestType = USB_DIR_IN|USB_RECIP_ENDPOINT;
                  // endpoint 0
                  len = 2;
                  break;
            case 10:    // trigger short read (EREMOTEIO)
                  req.wValue = cpu_to_le16 ((USB_DT_CONFIG << 8) | 0);
                  len = 1024;
                  expected = -EREMOTEIO;
                  break;
            // NOTE: two consecutive _different_ faults in the queue.
            case 11:    // get endpoint descriptor (ALWAYS STALLS)
                  req.wValue = cpu_to_le16 (USB_DT_ENDPOINT << 8);
                  // endpoint == 0
                  len = sizeof (struct usb_interface_descriptor);
                  expected = EPIPE;
                  break;
            // NOTE: sometimes even a third fault in the queue!
            case 12:    // get string 0 descriptor (MAY STALL)
                  req.wValue = cpu_to_le16 (USB_DT_STRING << 8);
                  // string == 0, for language IDs
                  len = sizeof (struct usb_interface_descriptor);
                  // may succeed when > 4 languages
                  expected = EREMOTEIO;   // or EPIPE, if no strings
                  break;
            case 13:    // short read, resembling case 10
                  req.wValue = cpu_to_le16 ((USB_DT_CONFIG << 8) | 0);
                  // last data packet "should" be DATA1, not DATA0
                  len = 1024 - udev->descriptor.bMaxPacketSize0;
                  expected = -EREMOTEIO;
                  break;
            case 14:    // short read; try to fill the last packet
                  req.wValue = cpu_to_le16 ((USB_DT_DEVICE << 8) | 0);
                  // device descriptor size == 18 bytes 
                  len = udev->descriptor.bMaxPacketSize0;
                  switch (len) {
                  case 8:           len = 24; break;
                  case 16:    len = 32; break;
                  }
                  expected = -EREMOTEIO;
                  break;
            default:
                  err ("bogus number of ctrl queue testcases!");
                  context.status = -EINVAL;
                  goto cleanup;
            }
            req.wLength = cpu_to_le16 (len);
            urb [i] = u = simple_alloc_urb (udev, pipe, len);
            if (!u)
                  goto cleanup;

            reqp = usb_buffer_alloc (udev, sizeof *reqp, SLAB_KERNEL,
                        &u->setup_dma);
            if (!reqp)
                  goto cleanup;
            reqp->setup = req;
            reqp->number = i % NUM_SUBCASES;
            reqp->expected = expected;
            u->setup_packet = (char *) &reqp->setup;
            u->transfer_flags |= URB_NO_SETUP_DMA_MAP;

            u->context = &context;
            u->complete = ctrl_complete;
      }

      /* queue the urbs */
      context.urb = urb;
      spin_lock_irq (&context.lock);
      for (i = 0; i < param->sglen; i++) {
            context.status = usb_submit_urb (urb [i], SLAB_ATOMIC);
            if (context.status != 0) {
                  dbg ("can't submit urb[%d], status %d",
                              i, context.status);
                  context.count = context.pending;
                  break;
            }
            context.pending++;
      }
      spin_unlock_irq (&context.lock);

      /* FIXME  set timer and time out; provide a disconnect hook */

      /* wait for the last one to complete */
      if (context.pending > 0)
            wait_for_completion (&context.complete);

cleanup:
      for (i = 0; i < param->sglen; i++) {
            if (!urb [i])
                  continue;
            urb [i]->dev = udev;
            if (urb [i]->setup_packet)
                  usb_buffer_free (udev, sizeof (struct usb_ctrlrequest),
                              urb [i]->setup_packet,
                              urb [i]->setup_dma);
            simple_free_urb (urb [i]);
      }
      kfree (urb);
      return context.status;
}
#undef NUM_SUBCASES


/*-------------------------------------------------------------------------*/

static void unlink1_callback (struct urb *urb, struct pt_regs *regs)
{
      int   status = urb->status;

      // we "know" -EPIPE (stall) never happens
      if (!status)
            status = usb_submit_urb (urb, SLAB_ATOMIC);
      if (status) {
            urb->status = status;
            complete ((struct completion *) urb->context);
      }
}

static int unlink1 (struct usbtest_dev *dev, int pipe, int size, int async)
{
      struct urb        *urb;
      struct completion completion;
      int               retval = 0;

      init_completion (&completion);
      urb = simple_alloc_urb (testdev_to_usbdev (dev), pipe, size);
      if (!urb)
            return -ENOMEM;
      urb->context = &completion;
      urb->complete = unlink1_callback;

      /* keep the endpoint busy.  there are lots of hc/hcd-internal
       * states, and testing should get to all of them over time.
       *
       * FIXME want additional tests for when endpoint is STALLing
       * due to errors, or is just NAKing requests.
       */
      if ((retval = usb_submit_urb (urb, SLAB_KERNEL)) != 0) {
            dev_dbg (&dev->intf->dev, "submit fail %d\n", retval);
            return retval;
      }

      /* unlinking that should always work.  variable delay tests more
       * hcd states and code paths, even with little other system load.
       */
      msleep (jiffies % (2 * INTERRUPT_RATE));
      if (async) {
retry:
            retval = usb_unlink_urb (urb);
            if (retval == -EBUSY || retval == -EIDRM) {
                  /* we can't unlink urbs while they're completing.
                   * or if they've completed, and we haven't resubmitted.
                   * "normal" drivers would prevent resubmission, but
                   * since we're testing unlink paths, we can't.
                   */
                  dev_dbg (&dev->intf->dev, "unlink retry\n");
                  goto retry;
            }
      } else
            usb_kill_urb (urb);
      if (!(retval == 0 || retval == -EINPROGRESS)) {
            dev_dbg (&dev->intf->dev, "unlink fail %d\n", retval);
            return retval;
      }

      wait_for_completion (&completion);
      retval = urb->status;
      simple_free_urb (urb);

      if (async)
            return (retval == -ECONNRESET) ? 0 : retval - 1000;
      else
            return (retval == -ENOENT || retval == -EPERM) ?
                        0 : retval - 2000;
}

static int unlink_simple (struct usbtest_dev *dev, int pipe, int len)
{
      int               retval = 0;

      /* test sync and async paths */
      retval = unlink1 (dev, pipe, len, 1);
      if (!retval)
            retval = unlink1 (dev, pipe, len, 0);
      return retval;
}

/*-------------------------------------------------------------------------*/

static int verify_not_halted (int ep, struct urb *urb)
{
      int   retval;
      u16   status;

      /* shouldn't look or act halted */
      retval = usb_get_status (urb->dev, USB_RECIP_ENDPOINT, ep, &status);
      if (retval < 0) {
            dbg ("ep %02x couldn't get no-halt status, %d", ep, retval);
            return retval;
      }
      if (status != 0) {
            dbg ("ep %02x bogus status: %04x != 0", ep, status);
            return -EINVAL;
      }
      retval = simple_io (urb, 1, 0, 0, __FUNCTION__);
      if (retval != 0)
            return -EINVAL;
      return 0;
}

static int verify_halted (int ep, struct urb *urb)
{
      int   retval;
      u16   status;

      /* should look and act halted */
      retval = usb_get_status (urb->dev, USB_RECIP_ENDPOINT, ep, &status);
      if (retval < 0) {
            dbg ("ep %02x couldn't get halt status, %d", ep, retval);
            return retval;
      }
      if (status != 1) {
            dbg ("ep %02x bogus status: %04x != 1", ep, status);
            return -EINVAL;
      }
      retval = simple_io (urb, 1, 0, -EPIPE, __FUNCTION__);
      if (retval != -EPIPE)
            return -EINVAL;
      retval = simple_io (urb, 1, 0, -EPIPE, "verify_still_halted");
      if (retval != -EPIPE)
            return -EINVAL;
      return 0;
}

static int test_halt (int ep, struct urb *urb)
{
      int   retval;

      /* shouldn't look or act halted now */
      retval = verify_not_halted (ep, urb);
      if (retval < 0)
            return retval;

      /* set halt (protocol test only), verify it worked */
      retval = usb_control_msg (urb->dev, usb_sndctrlpipe (urb->dev, 0),
                  USB_REQ_SET_FEATURE, USB_RECIP_ENDPOINT,
                  USB_ENDPOINT_HALT, ep,
                  NULL, 0, USB_CTRL_SET_TIMEOUT);
      if (retval < 0) {
            dbg ("ep %02x couldn't set halt, %d", ep, retval);
            return retval;
      }
      retval = verify_halted (ep, urb);
      if (retval < 0)
            return retval;

      /* clear halt (tests API + protocol), verify it worked */
      retval = usb_clear_halt (urb->dev, urb->pipe);
      if (retval < 0) {
            dbg ("ep %02x couldn't clear halt, %d", ep, retval);
            return retval;
      }
      retval = verify_not_halted (ep, urb);
      if (retval < 0)
            return retval;

      /* NOTE:  could also verify SET_INTERFACE clear halts ... */

      return 0;
}

static int halt_simple (struct usbtest_dev *dev)
{
      int         ep;
      int         retval = 0;
      struct urb  *urb;

      urb = simple_alloc_urb (testdev_to_usbdev (dev), 0, 512);
      if (urb == NULL)
            return -ENOMEM;

      if (dev->in_pipe) {
            ep = usb_pipeendpoint (dev->in_pipe) | USB_DIR_IN;
            urb->pipe = dev->in_pipe;
            retval = test_halt (ep, urb);
            if (retval < 0)
                  goto done;
      }

      if (dev->out_pipe) {
            ep = usb_pipeendpoint (dev->out_pipe);
            urb->pipe = dev->out_pipe;
            retval = test_halt (ep, urb);
      }
done:
      simple_free_urb (urb);
      return retval;
}

/*-------------------------------------------------------------------------*/

/* Control OUT tests use the vendor control requests from Intel's
 * USB 2.0 compliance test device:  write a buffer, read it back.
 *
 * Intel's spec only _requires_ that it work for one packet, which
 * is pretty weak.   Some HCDs place limits here; most devices will
 * need to be able to handle more than one OUT data packet.  We'll
 * try whatever we're told to try.
 */
static int ctrl_out (struct usbtest_dev *dev,
            unsigned count, unsigned length, unsigned vary)
{
      unsigned          i, j, len;
      int               retval;
      u8                *buf;
      char              *what = "?";
      struct usb_device *udev;

      if (length < 1 || length > 0xffff || vary >= length)
            return -EINVAL;

      buf = kmalloc(length, SLAB_KERNEL);
      if (!buf)
            return -ENOMEM;

      udev = testdev_to_usbdev (dev);
      len = length;
      retval = 0;

      /* NOTE:  hardware might well act differently if we pushed it
       * with lots back-to-back queued requests.
       */
      for (i = 0; i < count; i++) {
            /* write patterned data */
            for (j = 0; j < len; j++)
                  buf [j] = i + j;
            retval = usb_control_msg (udev, usb_sndctrlpipe (udev,0),
                        0x5b, USB_DIR_OUT|USB_TYPE_VENDOR,
                        0, 0, buf, len, USB_CTRL_SET_TIMEOUT);
            if (retval != len) {
                  what = "write";
                  if (retval >= 0) {
                        INFO(dev, "ctrl_out, wlen %d (expected %d)\n",
                                    retval, len);
                        retval = -EBADMSG;
                  }
                  break;
            }

            /* read it back -- assuming nothing intervened!!  */
            retval = usb_control_msg (udev, usb_rcvctrlpipe (udev,0),
                        0x5c, USB_DIR_IN|USB_TYPE_VENDOR,
                        0, 0, buf, len, USB_CTRL_GET_TIMEOUT);
            if (retval != len) {
                  what = "read";
                  if (retval >= 0) {
                        INFO(dev, "ctrl_out, rlen %d (expected %d)\n",
                                    retval, len);
                        retval = -EBADMSG;
                  }
                  break;
            }

            /* fail if we can't verify */
            for (j = 0; j < len; j++) {
                  if (buf [j] != (u8) (i + j)) {
                        INFO (dev, "ctrl_out, byte %d is %d not %d\n",
                              j, buf [j], (u8) i + j);
                        retval = -EBADMSG;
                        break;
                  }
            }
            if (retval < 0) {
                  what = "verify";
                  break;
            }

            len += vary;

            /* [real world] the "zero bytes IN" case isn't really used.
             * hardware can easily trip up in this wierd case, since its
             * status stage is IN, not OUT like other ep0in transfers.
             */
            if (len > length)
                  len = realworld ? 1 : 0;
      }

      if (retval < 0)
            INFO (dev, "ctrl_out %s failed, code %d, count %d\n",
                  what, retval, i);

      kfree (buf);
      return retval;
}

/*-------------------------------------------------------------------------*/

/* ISO tests ... mimics common usage
 *  - buffer length is split into N packets (mostly maxpacket sized)
 *  - multi-buffers according to sglen
 */

struct iso_context {
      unsigned          count;
      unsigned          pending;
      spinlock_t        lock;
      struct completion done;
      int               submit_error;
      unsigned long           errors;
      unsigned long           packet_count;
      struct usbtest_dev      *dev;
};

static void iso_callback (struct urb *urb, struct pt_regs *regs)
{
      struct iso_context      *ctx = urb->context;

      spin_lock(&ctx->lock);
      ctx->count--;

      ctx->packet_count += urb->number_of_packets;
      if (urb->error_count > 0)
            ctx->errors += urb->error_count;
      else if (urb->status != 0)
            ctx->errors += urb->number_of_packets;

      if (urb->status == 0 && ctx->count > (ctx->pending - 1)
                  && !ctx->submit_error) {
            int status = usb_submit_urb (urb, GFP_ATOMIC);
            switch (status) {
            case 0:
                  goto done;
            default:
                  dev_dbg (&ctx->dev->intf->dev,
                              "iso resubmit err %d\n",
                              status);
                  /* FALLTHROUGH */
            case -ENODEV:                 /* disconnected */
            case -ESHUTDOWN:        /* endpoint disabled */
                  ctx->submit_error = 1;
                  break;
            }
      }
      simple_free_urb (urb);

      ctx->pending--;
      if (ctx->pending == 0) {
            if (ctx->errors)
                  dev_dbg (&ctx->dev->intf->dev,
                        "iso test, %lu errors out of %lu\n",
                        ctx->errors, ctx->packet_count);
            complete (&ctx->done);
      }
done:
      spin_unlock(&ctx->lock);
}

static struct urb *iso_alloc_urb (
      struct usb_device *udev,
      int               pipe,
      struct usb_endpoint_descriptor      *desc,
      long              bytes
)
{
      struct urb        *urb;
      unsigned          i, maxp, packets;

      if (bytes < 0 || !desc)
            return NULL;
      maxp = 0x7ff & le16_to_cpu(desc->wMaxPacketSize);
      maxp *= 1 + (0x3 & (le16_to_cpu(desc->wMaxPacketSize) >> 11));
      packets = (bytes + maxp - 1) / maxp;

      urb = usb_alloc_urb (packets, SLAB_KERNEL);
      if (!urb)
            return urb;
      urb->dev = udev;
      urb->pipe = pipe;

      urb->number_of_packets = packets;
      urb->transfer_buffer_length = bytes;
      urb->transfer_buffer = usb_buffer_alloc (udev, bytes, SLAB_KERNEL,
                  &urb->transfer_dma);
      if (!urb->transfer_buffer) {
            usb_free_urb (urb);
            return NULL;
      }
      memset (urb->transfer_buffer, 0, bytes);
      for (i = 0; i < packets; i++) {
            /* here, only the last packet will be short */
            urb->iso_frame_desc[i].length = min ((unsigned) bytes, maxp);
            bytes -= urb->iso_frame_desc[i].length;

            urb->iso_frame_desc[i].offset = maxp * i;
      }

      urb->complete = iso_callback;
      // urb->context = SET BY CALLER
      urb->interval = 1 << (desc->bInterval - 1);
      urb->transfer_flags = URB_ISO_ASAP | URB_NO_TRANSFER_DMA_MAP;
      return urb;
}

static int
test_iso_queue (struct usbtest_dev *dev, struct usbtest_param *param,
            int pipe, struct usb_endpoint_descriptor *desc)
{
      struct iso_context      context;
      struct usb_device *udev;
      unsigned          i;
      unsigned long           packets = 0;
      int               status = 0;
      struct urb        *urbs[10];  /* FIXME no limit */

      if (param->sglen > 10)
            return -EDOM;

      memset(&context, 0, sizeof context);
      context.count = param->iterations * param->sglen;
      context.dev = dev;
      init_completion (&context.done);
      spin_lock_init (&context.lock);

      memset (urbs, 0, sizeof urbs);
      udev = testdev_to_usbdev (dev);
      dev_dbg (&dev->intf->dev,
            "... iso period %d %sframes, wMaxPacket %04x\n",
            1 << (desc->bInterval - 1),
            (udev->speed == USB_SPEED_HIGH) ? "micro" : "",
            le16_to_cpu(desc->wMaxPacketSize));

      for (i = 0; i < param->sglen; i++) {
            urbs [i] = iso_alloc_urb (udev, pipe, desc,
                        param->length);
            if (!urbs [i]) {
                  status = -ENOMEM;
                  goto fail;
            }
            packets += urbs[i]->number_of_packets;
            urbs [i]->context = &context;
      }
      packets *= param->iterations;
      dev_dbg (&dev->intf->dev,
            "... total %lu msec (%lu packets)\n",
            (packets * (1 << (desc->bInterval - 1)))
                  / ((udev->speed == USB_SPEED_HIGH) ? 8 : 1),
            packets);

      spin_lock_irq (&context.lock);
      for (i = 0; i < param->sglen; i++) {
            ++context.pending;
            status = usb_submit_urb (urbs [i], SLAB_ATOMIC);
            if (status < 0) {
                  ERROR (dev, "submit iso[%d], error %d\n", i, status);
                  if (i == 0) {
                        spin_unlock_irq (&context.lock);
                        goto fail;
                  }

                  simple_free_urb (urbs [i]);
                  context.pending--;
                  context.submit_error = 1;
                  break;
            }
      }
      spin_unlock_irq (&context.lock);

      wait_for_completion (&context.done);

      /*
       * Isochronous transfers are expected to fail sometimes.  As an
       * arbitrary limit, we will report an error if any submissions
       * fail or if the transfer failure rate is > 10%.
       */
      if (status != 0)
            ;
      else if (context.submit_error)
            status = -EACCES;
      else if (context.errors > context.packet_count / 10)
            status = -EIO;
      return status;

fail:
      for (i = 0; i < param->sglen; i++) {
            if (urbs [i])
                  simple_free_urb (urbs [i]);
      }
      return status;
}

/*-------------------------------------------------------------------------*/

/* We only have this one interface to user space, through usbfs.
 * User mode code can scan usbfs to find N different devices (maybe on
 * different busses) to use when testing, and allocate one thread per
 * test.  So discovery is simplified, and we have no device naming issues.
 *
 * Don't use these only as stress/load tests.  Use them along with with
 * other USB bus activity:  plugging, unplugging, mousing, mp3 playback,
 * video capture, and so on.  Run different tests at different times, in
 * different sequences.  Nothing here should interact with other devices,
 * except indirectly by consuming USB bandwidth and CPU resources for test
 * threads and request completion.  But the only way to know that for sure
 * is to test when HC queues are in use by many devices.
 */

static int
usbtest_ioctl (struct usb_interface *intf, unsigned int code, void *buf)
{
      struct usbtest_dev      *dev = usb_get_intfdata (intf);
      struct usb_device *udev = testdev_to_usbdev (dev);
      struct usbtest_param    *param = buf;
      int               retval = -EOPNOTSUPP;
      struct urb        *urb;
      struct scatterlist      *sg;
      struct usb_sg_request   req;
      struct timeval          start;
      unsigned          i;

      // FIXME USBDEVFS_CONNECTINFO doesn't say how fast the device is.

      if (code != USBTEST_REQUEST)
            return -EOPNOTSUPP;

      if (param->iterations <= 0 || param->length < 0
                  || param->sglen < 0 || param->vary < 0)
            return -EINVAL;

      if (down_interruptible (&dev->sem))
            return -ERESTARTSYS;

      if (intf->dev.power.power_state.event != PM_EVENT_ON) {
            up (&dev->sem);
            return -EHOSTUNREACH;
      }

      /* some devices, like ez-usb default devices, need a non-default
       * altsetting to have any active endpoints.  some tests change
       * altsettings; force a default so most tests don't need to check.
       */
      if (dev->info->alt >= 0) {
            int   res;

            if (intf->altsetting->desc.bInterfaceNumber) {
                  up (&dev->sem);
                  return -ENODEV;
            }
            res = set_altsetting (dev, dev->info->alt);
            if (res) {
                  dev_err (&intf->dev,
                              "set altsetting to %d failed, %d\n",
                              dev->info->alt, res);
                  up (&dev->sem);
                  return res;
            }
      }

      /*
       * Just a bunch of test cases that every HCD is expected to handle.
       *
       * Some may need specific firmware, though it'd be good to have
       * one firmware image to handle all the test cases.
       *
       * FIXME add more tests!  cancel requests, verify the data, control
       * queueing, concurrent read+write threads, and so on.
       */
      do_gettimeofday (&start);
      switch (param->test_num) {

      case 0:
            dev_dbg (&intf->dev, "TEST 0:  NOP\n");
            retval = 0;
            break;

      /* Simple non-queued bulk I/O tests */
      case 1:
            if (dev->out_pipe == 0)
                  break;
            dev_dbg (&intf->dev,
                        "TEST 1:  write %d bytes %u times\n",
                        param->length, param->iterations);
            urb = simple_alloc_urb (udev, dev->out_pipe, param->length);
            if (!urb) {
                  retval = -ENOMEM;
                  break;
            }
            // FIRMWARE:  bulk sink (maybe accepts short writes)
            retval = simple_io (urb, param->iterations, 0, 0, "test1");
            simple_free_urb (urb);
            break;
      case 2:
            if (dev->in_pipe == 0)
                  break;
            dev_dbg (&intf->dev,
                        "TEST 2:  read %d bytes %u times\n",
                        param->length, param->iterations);
            urb = simple_alloc_urb (udev, dev->in_pipe, param->length);
            if (!urb) {
                  retval = -ENOMEM;
                  break;
            }
            // FIRMWARE:  bulk source (maybe generates short writes)
            retval = simple_io (urb, param->iterations, 0, 0, "test2");
            simple_free_urb (urb);
            break;
      case 3:
            if (dev->out_pipe == 0 || param->vary == 0)
                  break;
            dev_dbg (&intf->dev,
                        "TEST 3:  write/%d 0..%d bytes %u times\n",
                        param->vary, param->length, param->iterations);
            urb = simple_alloc_urb (udev, dev->out_pipe, param->length);
            if (!urb) {
                  retval = -ENOMEM;
                  break;
            }
            // FIRMWARE:  bulk sink (maybe accepts short writes)
            retval = simple_io (urb, param->iterations, param->vary,
                              0, "test3");
            simple_free_urb (urb);
            break;
      case 4:
            if (dev->in_pipe == 0 || param->vary == 0)
                  break;
            dev_dbg (&intf->dev,
                        "TEST 4:  read/%d 0..%d bytes %u times\n",
                        param->vary, param->length, param->iterations);
            urb = simple_alloc_urb (udev, dev->in_pipe, param->length);
            if (!urb) {
                  retval = -ENOMEM;
                  break;
            }
            // FIRMWARE:  bulk source (maybe generates short writes)
            retval = simple_io (urb, param->iterations, param->vary,
                              0, "test4");
            simple_free_urb (urb);
            break;

      /* Queued bulk I/O tests */
      case 5:
            if (dev->out_pipe == 0 || param->sglen == 0)
                  break;
            dev_dbg (&intf->dev,
                  "TEST 5:  write %d sglists %d entries of %d bytes\n",
                        param->iterations,
                        param->sglen, param->length);
            sg = alloc_sglist (param->sglen, param->length, 0);
            if (!sg) {
                  retval = -ENOMEM;
                  break;
            }
            // FIRMWARE:  bulk sink (maybe accepts short writes)
            retval = perform_sglist (udev, param->iterations, dev->out_pipe,
                        &req, sg, param->sglen);
            free_sglist (sg, param->sglen);
            break;

      case 6:
            if (dev->in_pipe == 0 || param->sglen == 0)
                  break;
            dev_dbg (&intf->dev,
                  "TEST 6:  read %d sglists %d entries of %d bytes\n",
                        param->iterations,
                        param->sglen, param->length);
            sg = alloc_sglist (param->sglen, param->length, 0);
            if (!sg) {
                  retval = -ENOMEM;
                  break;
            }
            // FIRMWARE:  bulk source (maybe generates short writes)
            retval = perform_sglist (udev, param->iterations, dev->in_pipe,
                        &req, sg, param->sglen);
            free_sglist (sg, param->sglen);
            break;
      case 7:
            if (dev->out_pipe == 0 || param->sglen == 0 || param->vary == 0)
                  break;
            dev_dbg (&intf->dev,
                  "TEST 7:  write/%d %d sglists %d entries 0..%d bytes\n",
                        param->vary, param->iterations,
                        param->sglen, param->length);
            sg = alloc_sglist (param->sglen, param->length, param->vary);
            if (!sg) {
                  retval = -ENOMEM;
                  break;
            }
            // FIRMWARE:  bulk sink (maybe accepts short writes)
            retval = perform_sglist (udev, param->iterations, dev->out_pipe,
                        &req, sg, param->sglen);
            free_sglist (sg, param->sglen);
            break;
      case 8:
            if (dev->in_pipe == 0 || param->sglen == 0 || param->vary == 0)
                  break;
            dev_dbg (&intf->dev,
                  "TEST 8:  read/%d %d sglists %d entries 0..%d bytes\n",
                        param->vary, param->iterations,
                        param->sglen, param->length);
            sg = alloc_sglist (param->sglen, param->length, param->vary);
            if (!sg) {
                  retval = -ENOMEM;
                  break;
            }
            // FIRMWARE:  bulk source (maybe generates short writes)
            retval = perform_sglist (udev, param->iterations, dev->in_pipe,
                        &req, sg, param->sglen);
            free_sglist (sg, param->sglen);
            break;

      /* non-queued sanity tests for control (chapter 9 subset) */
      case 9:
            retval = 0;
            dev_dbg (&intf->dev,
                  "TEST 9:  ch9 (subset) control tests, %d times\n",
                        param->iterations);
            for (i = param->iterations; retval == 0 && i--; /* NOP */)
                  retval = ch9_postconfig (dev);
            if (retval)
                  dbg ("ch9 subset failed, iterations left %d", i);
            break;

      /* queued control messaging */
      case 10:
            if (param->sglen == 0)
                  break;
            retval = 0;
            dev_dbg (&intf->dev,
                        "TEST 10:  queue %d control calls, %d times\n",
                        param->sglen,
                        param->iterations);
            retval = test_ctrl_queue (dev, param);
            break;

      /* simple non-queued unlinks (ring with one urb) */
      case 11:
            if (dev->in_pipe == 0 || !param->length)
                  break;
            retval = 0;
            dev_dbg (&intf->dev, "TEST 11:  unlink %d reads of %d\n",
                        param->iterations, param->length);
            for (i = param->iterations; retval == 0 && i--; /* NOP */)
                  retval = unlink_simple (dev, dev->in_pipe,
                                    param->length);
            if (retval)
                  dev_dbg (&intf->dev, "unlink reads failed %d, "
                        "iterations left %d\n", retval, i);
            break;
      case 12:
            if (dev->out_pipe == 0 || !param->length)
                  break;
            retval = 0;
            dev_dbg (&intf->dev, "TEST 12:  unlink %d writes of %d\n",
                        param->iterations, param->length);
            for (i = param->iterations; retval == 0 && i--; /* NOP */)
                  retval = unlink_simple (dev, dev->out_pipe,
                                    param->length);
            if (retval)
                  dev_dbg (&intf->dev, "unlink writes failed %d, "
                        "iterations left %d\n", retval, i);
            break;

      /* ep halt tests */
      case 13:
            if (dev->out_pipe == 0 && dev->in_pipe == 0)
                  break;
            retval = 0;
            dev_dbg (&intf->dev, "TEST 13:  set/clear %d halts\n",
                        param->iterations);
            for (i = param->iterations; retval == 0 && i--; /* NOP */)
                  retval = halt_simple (dev);
            
            if (retval)
                  DBG (dev, "halts failed, iterations left %d\n", i);
            break;

      /* control write tests */
      case 14:
            if (!dev->info->ctrl_out)
                  break;
            dev_dbg (&intf->dev, "TEST 14:  %d ep0out, %d..%d vary %d\n",
                        param->iterations,
                        realworld ? 1 : 0, param->length,
                        param->vary);
            retval = ctrl_out (dev, param->iterations, 
                        param->length, param->vary);
            break;

      /* iso write tests */
      case 15:
            if (dev->out_iso_pipe == 0 || param->sglen == 0)
                  break;
            dev_dbg (&intf->dev, 
                  "TEST 15:  write %d iso, %d entries of %d bytes\n",
                        param->iterations,
                        param->sglen, param->length);
            // FIRMWARE:  iso sink
            retval = test_iso_queue (dev, param,
                        dev->out_iso_pipe, dev->iso_out);
            break;

      /* iso read tests */
      case 16:
            if (dev->in_iso_pipe == 0 || param->sglen == 0)
                  break;
            dev_dbg (&intf->dev,
                  "TEST 16:  read %d iso, %d entries of %d bytes\n",
                        param->iterations,
                        param->sglen, param->length);
            // FIRMWARE:  iso source
            retval = test_iso_queue (dev, param,
                        dev->in_iso_pipe, dev->iso_in);
            break;

      // FIXME unlink from queue (ring with N urbs)

      // FIXME scatterlist cancel (needs helper thread)

      }
      do_gettimeofday (&param->duration);
      param->duration.tv_sec -= start.tv_sec;
      param->duration.tv_usec -= start.tv_usec;
      if (param->duration.tv_usec < 0) {
            param->duration.tv_usec += 1000 * 1000;
            param->duration.tv_sec -= 1;
      }
      up (&dev->sem);
      return retval;
}

/*-------------------------------------------------------------------------*/

static unsigned force_interrupt = 0;
module_param (force_interrupt, uint, 0);
MODULE_PARM_DESC (force_interrupt, "0 = test default; else interrupt");

#ifdef      GENERIC
static unsigned short vendor;
module_param(vendor, ushort, 0);
MODULE_PARM_DESC (vendor, "vendor code (from usb-if)");

static unsigned short product;
module_param(product, ushort, 0);
MODULE_PARM_DESC (product, "product code (from vendor)");
#endif

static int
usbtest_probe (struct usb_interface *intf, const struct usb_device_id *id)
{
      struct usb_device *udev;
      struct usbtest_dev      *dev;
      struct usbtest_info     *info;
      char              *rtest, *wtest;
      char              *irtest, *iwtest;

      udev = interface_to_usbdev (intf);

#ifdef      GENERIC
      /* specify devices by module parameters? */
      if (id->match_flags == 0) {
            /* vendor match required, product match optional */
            if (!vendor || le16_to_cpu(udev->descriptor.idVendor) != (u16)vendor)
                  return -ENODEV;
            if (product && le16_to_cpu(udev->descriptor.idProduct) != (u16)product)
                  return -ENODEV;
            dbg ("matched module params, vend=0x%04x prod=0x%04x",
                        le16_to_cpu(udev->descriptor.idVendor),
                        le16_to_cpu(udev->descriptor.idProduct));
      }
#endif

      dev = kzalloc(sizeof(*dev), SLAB_KERNEL);
      if (!dev)
            return -ENOMEM;
      info = (struct usbtest_info *) id->driver_info;
      dev->info = info;
      init_MUTEX (&dev->sem);

      dev->intf = intf;

      /* cacheline-aligned scratch for i/o */
      if ((dev->buf = kmalloc (TBUF_SIZE, SLAB_KERNEL)) == NULL) {
            kfree (dev);
            return -ENOMEM;
      }

      /* NOTE this doesn't yet test the handful of difference that are
       * visible with high speed interrupts:  bigger maxpacket (1K) and
       * "high bandwidth" modes (up to 3 packets/uframe).
       */
      rtest = wtest = "";
      irtest = iwtest = "";
      if (force_interrupt || udev->speed == USB_SPEED_LOW) {
            if (info->ep_in) {
                  dev->in_pipe = usb_rcvintpipe (udev, info->ep_in);
                  rtest = " intr-in";
            }
            if (info->ep_out) {
                  dev->out_pipe = usb_sndintpipe (udev, info->ep_out);
                  wtest = " intr-out";
            }
      } else {
            if (info->autoconf) {
                  int status;

                  status = get_endpoints (dev, intf);
                  if (status < 0) {
                        dbg ("couldn't get endpoints, %d\n", status);
                        return status;
                  }
                  /* may find bulk or ISO pipes */
            } else {
                  if (info->ep_in)
                        dev->in_pipe = usb_rcvbulkpipe (udev,
                                          info->ep_in);
                  if (info->ep_out)
                        dev->out_pipe = usb_sndbulkpipe (udev,
                                          info->ep_out);
            }
            if (dev->in_pipe)
                  rtest = " bulk-in";
            if (dev->out_pipe)
                  wtest = " bulk-out";
            if (dev->in_iso_pipe)
                  irtest = " iso-in";
            if (dev->out_iso_pipe)
                  iwtest = " iso-out";
      }

      usb_set_intfdata (intf, dev);
      dev_info (&intf->dev, "%s\n", info->name);
      dev_info (&intf->dev, "%s speed {control%s%s%s%s%s} tests%s\n",
                  ({ char *tmp;
                  switch (udev->speed) {
                  case USB_SPEED_LOW: tmp = "low"; break;
                  case USB_SPEED_FULL: tmp = "full"; break;
                  case USB_SPEED_HIGH: tmp = "high"; break;
                  default: tmp = "unknown"; break;
                  }; tmp; }),
                  info->ctrl_out ? " in/out" : "",
                  rtest, wtest,
                  irtest, iwtest,
                  info->alt >= 0 ? " (+alt)" : "");
      return 0;
}

static int usbtest_suspend (struct usb_interface *intf, pm_message_t message)
{
      return 0;
}

static int usbtest_resume (struct usb_interface *intf)
{
      return 0;
}


static void usbtest_disconnect (struct usb_interface *intf)
{
      struct usbtest_dev      *dev = usb_get_intfdata (intf);

      down (&dev->sem);

      usb_set_intfdata (intf, NULL);
      dev_dbg (&intf->dev, "disconnect\n");
      kfree (dev);
}

/* Basic testing only needs a device that can source or sink bulk traffic.
 * Any device can test control transfers (default with GENERIC binding).
 *
 * Several entries work with the default EP0 implementation that's built
 * into EZ-USB chips.  There's a default vendor ID which can be overridden
 * by (very) small config EEPROMS, but otherwise all these devices act
 * identically until firmware is loaded:  only EP0 works.  It turns out
 * to be easy to make other endpoints work, without modifying that EP0
 * behavior.  For now, we expect that kind of firmware.
 */

/* an21xx or fx versions of ez-usb */
static struct usbtest_info ez1_info = {
      .name       = "EZ-USB device",
      .ep_in            = 2,
      .ep_out           = 2,
      .alt        = 1,
};

/* fx2 version of ez-usb */
static struct usbtest_info ez2_info = {
      .name       = "FX2 device",
      .ep_in            = 6,
      .ep_out           = 2,
      .alt        = 1,
};

/* ezusb family device with dedicated usb test firmware,
 */
static struct usbtest_info fw_info = {
      .name       = "usb test device",
      .ep_in            = 2,
      .ep_out           = 2,
      .alt        = 1,
      .autoconf   = 1,        // iso and ctrl_out need autoconf
      .ctrl_out   = 1,
      .iso        = 1,        // iso_ep's are #8 in/out
};

/* peripheral running Linux and 'zero.c' test firmware, or
 * its user-mode cousin. different versions of this use
 * different hardware with the same vendor/product codes.
 * host side MUST rely on the endpoint descriptors.
 */
static struct usbtest_info gz_info = {
      .name       = "Linux gadget zero",
      .autoconf   = 1,
      .ctrl_out   = 1,
      .alt        = 0,
};

static struct usbtest_info um_info = {
      .name       = "Linux user mode test driver",
      .autoconf   = 1,
      .alt        = -1,
};

static struct usbtest_info um2_info = {
      .name       = "Linux user mode ISO test driver",
      .autoconf   = 1,
      .iso        = 1,
      .alt        = -1,
};

#ifdef IBOT2
/* this is a nice source of high speed bulk data;
 * uses an FX2, with firmware provided in the device
 */
static struct usbtest_info ibot2_info = {
      .name       = "iBOT2 webcam",
      .ep_in            = 2,
      .alt        = -1,
};
#endif

#ifdef GENERIC
/* we can use any device to test control traffic */
static struct usbtest_info generic_info = {
      .name       = "Generic USB device",
      .alt        = -1,
};
#endif

// FIXME remove this 
static struct usbtest_info hact_info = {
      .name       = "FX2/hact",
      //.ep_in          = 6,
      .ep_out           = 2,
      .alt        = -1,
};


static struct usb_device_id id_table [] = {

      { USB_DEVICE (0x0547, 0x1002),
            .driver_info = (unsigned long) &hact_info,
            },

      /*-------------------------------------------------------------*/

      /* EZ-USB devices which download firmware to replace (or in our
       * case augment) the default device implementation.
       */

      /* generic EZ-USB FX controller */
      { USB_DEVICE (0x0547, 0x2235),
            .driver_info = (unsigned long) &ez1_info,
            },

      /* CY3671 development board with EZ-USB FX */
      { USB_DEVICE (0x0547, 0x0080),
            .driver_info = (unsigned long) &ez1_info,
            },

      /* generic EZ-USB FX2 controller (or development board) */
      { USB_DEVICE (0x04b4, 0x8613),
            .driver_info = (unsigned long) &ez2_info,
            },

      /* re-enumerated usb test device firmware */
      { USB_DEVICE (0xfff0, 0xfff0),
            .driver_info = (unsigned long) &fw_info,
            },

      /* "Gadget Zero" firmware runs under Linux */
      { USB_DEVICE (0x0525, 0xa4a0),
            .driver_info = (unsigned long) &gz_info,
            },

      /* so does a user-mode variant */
      { USB_DEVICE (0x0525, 0xa4a4),
            .driver_info = (unsigned long) &um_info,
            },

      /* ... and a user-mode variant that talks iso */
      { USB_DEVICE (0x0525, 0xa4a3),
            .driver_info = (unsigned long) &um2_info,
            },

#ifdef KEYSPAN_19Qi
      /* Keyspan 19qi uses an21xx (original EZ-USB) */
      // this does not coexist with the real Keyspan 19qi driver!
      { USB_DEVICE (0x06cd, 0x010b),
            .driver_info = (unsigned long) &ez1_info,
            },
#endif

      /*-------------------------------------------------------------*/

#ifdef IBOT2
      /* iBOT2 makes a nice source of high speed bulk-in data */
      // this does not coexist with a real iBOT2 driver!
      { USB_DEVICE (0x0b62, 0x0059),
            .driver_info = (unsigned long) &ibot2_info,
            },
#endif

      /*-------------------------------------------------------------*/

#ifdef GENERIC
      /* module params can specify devices to use for control tests */
      { .driver_info = (unsigned long) &generic_info, },
#endif

      /*-------------------------------------------------------------*/

      { }
};
MODULE_DEVICE_TABLE (usb, id_table);

static struct usb_driver usbtest_driver = {
      .name =           "usbtest",
      .id_table = id_table,
      .probe =    usbtest_probe,
      .ioctl =    usbtest_ioctl,
      .disconnect =     usbtest_disconnect,
      .suspend =  usbtest_suspend,
      .resume =   usbtest_resume,
};

/*-------------------------------------------------------------------------*/

static int __init usbtest_init (void)
{
#ifdef GENERIC
      if (vendor)
            dbg ("params: vend=0x%04x prod=0x%04x", vendor, product);
#endif
      return usb_register (&usbtest_driver);
}
module_init (usbtest_init);

static void __exit usbtest_exit (void)
{
      usb_deregister (&usbtest_driver);
}
module_exit (usbtest_exit);

MODULE_DESCRIPTION ("USB Core/HCD Testing Driver");
MODULE_LICENSE ("GPL");


Generated by  Doxygen 1.6.0   Back to index