Logo Search packages:      
Sourcecode: linux-2.6 version File versions  Download package

via-pmu.c

/*
 * Device driver for the via-pmu on Apple Powermacs.
 *
 * The VIA (versatile interface adapter) interfaces to the PMU,
 * a 6805 microprocessor core whose primary function is to control
 * battery charging and system power on the PowerBook 3400 and 2400.
 * The PMU also controls the ADB (Apple Desktop Bus) which connects
 * to the keyboard and mouse, as well as the non-volatile RAM
 * and the RTC (real time clock) chip.
 *
 * Copyright (C) 1998 Paul Mackerras and Fabio Riccardi.
 * Copyright (C) 2001-2002 Benjamin Herrenschmidt
 *
 * THIS DRIVER IS BECOMING A TOTAL MESS !
 *  - Cleanup atomically disabling reply to PMU events after
 *    a sleep or a freq. switch
 *  - Move sleep code out of here to pmac_pm, merge into new
 *    common PM infrastructure
 *  - Save/Restore PCI space properly
 *
 */
#include <stdarg.h>
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/sched.h>
#include <linux/miscdevice.h>
#include <linux/blkdev.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/poll.h>
#include <linux/adb.h>
#include <linux/pmu.h>
#include <linux/cuda.h>
#include <linux/smp_lock.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/pm.h>
#include <linux/proc_fs.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/device.h>
#include <linux/sysdev.h>
#include <linux/suspend.h>
#include <linux/syscalls.h>
#include <linux/cpu.h>
#include <asm/prom.h>
#include <asm/machdep.h>
#include <asm/io.h>
#include <asm/pgtable.h>
#include <asm/system.h>
#include <asm/sections.h>
#include <asm/irq.h>
#include <asm/pmac_feature.h>
#include <asm/pmac_pfunc.h>
#include <asm/pmac_low_i2c.h>
#include <asm/uaccess.h>
#include <asm/mmu_context.h>
#include <asm/cputable.h>
#include <asm/time.h>
#include <asm/backlight.h>

#include "via-pmu-event.h"

/* Some compile options */
#undef SUSPEND_USES_PMU
#define DEBUG_SLEEP
#undef HACKED_PCI_SAVE

/* Misc minor number allocated for /dev/pmu */
#define PMU_MINOR       154

/* How many iterations between battery polls */
#define BATTERY_POLLING_COUNT 2

static volatile unsigned char __iomem *via;

/* VIA registers - spaced 0x200 bytes apart */
#define RS        0x200       /* skip between registers */
#define B         0           /* B-side data */
#define A         RS          /* A-side data */
#define DIRB            (2*RS)            /* B-side direction (1=output) */
#define DIRA            (3*RS)            /* A-side direction (1=output) */
#define T1CL            (4*RS)            /* Timer 1 ctr/latch (low 8 bits) */
#define T1CH            (5*RS)            /* Timer 1 counter (high 8 bits) */
#define T1LL            (6*RS)            /* Timer 1 latch (low 8 bits) */
#define T1LH            (7*RS)            /* Timer 1 latch (high 8 bits) */
#define T2CL            (8*RS)            /* Timer 2 ctr/latch (low 8 bits) */
#define T2CH            (9*RS)            /* Timer 2 counter (high 8 bits) */
#define SR        (10*RS)           /* Shift register */
#define ACR       (11*RS)           /* Auxiliary control register */
#define PCR       (12*RS)           /* Peripheral control register */
#define IFR       (13*RS)           /* Interrupt flag register */
#define IER       (14*RS)           /* Interrupt enable register */
#define ANH       (15*RS)           /* A-side data, no handshake */

/* Bits in B data register: both active low */
#define TACK            0x08        /* Transfer acknowledge (input) */
#define TREQ            0x10        /* Transfer request (output) */

/* Bits in ACR */
#define SR_CTRL         0x1c        /* Shift register control bits */
#define SR_EXT          0x0c        /* Shift on external clock */
#define SR_OUT          0x10        /* Shift out if 1 */

/* Bits in IFR and IER */
#define IER_SET         0x80        /* set bits in IER */
#define IER_CLR         0           /* clear bits in IER */
#define SR_INT          0x04        /* Shift register full/empty */
#define CB2_INT         0x08
#define CB1_INT         0x10        /* transition on CB1 input */

static volatile enum pmu_state {
      idle,
      sending,
      intack,
      reading,
      reading_intr,
      locked,
} pmu_state;

static volatile enum int_data_state {
      int_data_empty,
      int_data_fill,
      int_data_ready,
      int_data_flush
} int_data_state[2] = { int_data_empty, int_data_empty };

static struct adb_request *current_req;
static struct adb_request *last_req;
static struct adb_request *req_awaiting_reply;
static unsigned char interrupt_data[2][32];
static int interrupt_data_len[2];
static int int_data_last;
static unsigned char *reply_ptr;
static int data_index;
static int data_len;
static volatile int adb_int_pending;
static volatile int disable_poll;
static struct device_node *vias;
static int pmu_kind = PMU_UNKNOWN;
static int pmu_fully_inited = 0;
static int pmu_has_adb;
static struct device_node *gpio_node;
static unsigned char __iomem *gpio_reg = NULL;
static int gpio_irq = NO_IRQ;
static int gpio_irq_enabled = -1;
static volatile int pmu_suspended = 0;
static spinlock_t pmu_lock;
static u8 pmu_intr_mask;
static int pmu_version;
static int drop_interrupts;
#if defined(CONFIG_PM) && defined(CONFIG_PPC32)
static int option_lid_wakeup = 1;
#endif /* CONFIG_PM && CONFIG_PPC32 */
#if (defined(CONFIG_PM)&&defined(CONFIG_PPC32))||defined(CONFIG_PMAC_BACKLIGHT_LEGACY)
static int sleep_in_progress;
#endif
static unsigned long async_req_locks;
static unsigned int pmu_irq_stats[11];

static struct proc_dir_entry *proc_pmu_root;
static struct proc_dir_entry *proc_pmu_info;
static struct proc_dir_entry *proc_pmu_irqstats;
static struct proc_dir_entry *proc_pmu_options;
static int option_server_mode;

int pmu_battery_count;
int pmu_cur_battery;
unsigned int pmu_power_flags;
struct pmu_battery_info pmu_batteries[PMU_MAX_BATTERIES];
static int query_batt_timer = BATTERY_POLLING_COUNT;
static struct adb_request batt_req;
static struct proc_dir_entry *proc_pmu_batt[PMU_MAX_BATTERIES];

int __fake_sleep;
int asleep;
BLOCKING_NOTIFIER_HEAD(sleep_notifier_list);

#ifdef CONFIG_ADB
static int adb_dev_map = 0;
static int pmu_adb_flags;

static int pmu_probe(void);
static int pmu_init(void);
static int pmu_send_request(struct adb_request *req, int sync);
static int pmu_adb_autopoll(int devs);
static int pmu_adb_reset_bus(void);
#endif /* CONFIG_ADB */

static int init_pmu(void);
static void pmu_start(void);
static irqreturn_t via_pmu_interrupt(int irq, void *arg, struct pt_regs *regs);
static irqreturn_t gpio1_interrupt(int irq, void *arg, struct pt_regs *regs);
static int proc_get_info(char *page, char **start, off_t off,
                    int count, int *eof, void *data);
static int proc_get_irqstats(char *page, char **start, off_t off,
                    int count, int *eof, void *data);
static void pmu_pass_intr(unsigned char *data, int len);
static int proc_get_batt(char *page, char **start, off_t off,
                  int count, int *eof, void *data);
static int proc_read_options(char *page, char **start, off_t off,
                  int count, int *eof, void *data);
static int proc_write_options(struct file *file, const char __user *buffer,
                  unsigned long count, void *data);

#ifdef CONFIG_ADB
struct adb_driver via_pmu_driver = {
      "PMU",
      pmu_probe,
      pmu_init,
      pmu_send_request,
      pmu_adb_autopoll,
      pmu_poll_adb,
      pmu_adb_reset_bus
};
#endif /* CONFIG_ADB */

extern void low_sleep_handler(void);
extern void enable_kernel_altivec(void);
extern void enable_kernel_fp(void);

#ifdef DEBUG_SLEEP
int pmu_polled_request(struct adb_request *req);
int pmu_wink(struct adb_request *req);
#endif

/*
 * This table indicates for each PMU opcode:
 * - the number of data bytes to be sent with the command, or -1
 *   if a length byte should be sent,
 * - the number of response bytes which the PMU will return, or
 *   -1 if it will send a length byte.
 */
static const s8 pmu_data_len[256][2] = {
/*       0     1     2     3     4     5     6     7  */
/*00*/      {-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},
/*08*/      {-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},
/*10*/      { 1, 0},{ 1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},
/*18*/      { 0, 1},{ 0, 1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{ 0, 0},
/*20*/      {-1, 0},{ 0, 0},{ 2, 0},{ 1, 0},{ 1, 0},{-1, 0},{-1, 0},{-1, 0},
/*28*/      { 0,-1},{ 0,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{ 0,-1},
/*30*/      { 4, 0},{20, 0},{-1, 0},{ 3, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},
/*38*/      { 0, 4},{ 0,20},{ 2,-1},{ 2, 1},{ 3,-1},{-1,-1},{-1,-1},{ 4, 0},
/*40*/      { 1, 0},{ 1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},
/*48*/      { 0, 1},{ 0, 1},{-1,-1},{ 1, 0},{ 1, 0},{-1,-1},{-1,-1},{-1,-1},
/*50*/      { 1, 0},{ 0, 0},{ 2, 0},{ 2, 0},{-1, 0},{ 1, 0},{ 3, 0},{ 1, 0},
/*58*/      { 0, 1},{ 1, 0},{ 0, 2},{ 0, 2},{ 0,-1},{-1,-1},{-1,-1},{-1,-1},
/*60*/      { 2, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},
/*68*/      { 0, 3},{ 0, 3},{ 0, 2},{ 0, 8},{ 0,-1},{ 0,-1},{-1,-1},{-1,-1},
/*70*/      { 1, 0},{ 1, 0},{ 1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},
/*78*/      { 0,-1},{ 0,-1},{-1,-1},{-1,-1},{-1,-1},{ 5, 1},{ 4, 1},{ 4, 1},
/*80*/      { 4, 0},{-1, 0},{ 0, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},
/*88*/      { 0, 5},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},
/*90*/      { 1, 0},{ 2, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},
/*98*/      { 0, 1},{ 0, 1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},
/*a0*/      { 2, 0},{ 2, 0},{ 2, 0},{ 4, 0},{-1, 0},{ 0, 0},{-1, 0},{-1, 0},
/*a8*/      { 1, 1},{ 1, 0},{ 3, 0},{ 2, 0},{-1,-1},{-1,-1},{-1,-1},{-1,-1},
/*b0*/      {-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},
/*b8*/      {-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},
/*c0*/      {-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},
/*c8*/      {-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},
/*d0*/      { 0, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},
/*d8*/      { 1, 1},{ 1, 1},{-1,-1},{-1,-1},{ 0, 1},{ 0,-1},{-1,-1},{-1,-1},
/*e0*/      {-1, 0},{ 4, 0},{ 0, 1},{-1, 0},{-1, 0},{ 4, 0},{-1, 0},{-1, 0},
/*e8*/      { 3,-1},{-1,-1},{ 0, 1},{-1,-1},{ 0,-1},{-1,-1},{-1,-1},{ 0, 0},
/*f0*/      {-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},
/*f8*/      {-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},
};

static char *pbook_type[] = {
      "Unknown PowerBook",
      "PowerBook 2400/3400/3500(G3)",
      "PowerBook G3 Series",
      "1999 PowerBook G3",
      "Core99"
};

int __init find_via_pmu(void)
{
      u64 taddr;
      u32 *reg;

      if (via != 0)
            return 1;
      vias = of_find_node_by_name(NULL, "via-pmu");
      if (vias == NULL)
            return 0;

      reg = (u32 *)get_property(vias, "reg", NULL);
      if (reg == NULL) {
            printk(KERN_ERR "via-pmu: No \"reg\" property !\n");
            goto fail;
      }
      taddr = of_translate_address(vias, reg);
      if (taddr == OF_BAD_ADDR) {
            printk(KERN_ERR "via-pmu: Can't translate address !\n");
            goto fail;
      }

      spin_lock_init(&pmu_lock);

      pmu_has_adb = 1;

      pmu_intr_mask =   PMU_INT_PCEJECT |
                  PMU_INT_SNDBRT |
                  PMU_INT_ADB |
                  PMU_INT_TICK;
      
      if (vias->parent->name && ((strcmp(vias->parent->name, "ohare") == 0)
          || device_is_compatible(vias->parent, "ohare")))
            pmu_kind = PMU_OHARE_BASED;
      else if (device_is_compatible(vias->parent, "paddington"))
            pmu_kind = PMU_PADDINGTON_BASED;
      else if (device_is_compatible(vias->parent, "heathrow"))
            pmu_kind = PMU_HEATHROW_BASED;
      else if (device_is_compatible(vias->parent, "Keylargo")
             || device_is_compatible(vias->parent, "K2-Keylargo")) {
            struct device_node *gpiop;
            u64 gaddr = OF_BAD_ADDR;

            pmu_kind = PMU_KEYLARGO_BASED;
            pmu_has_adb = (find_type_devices("adb") != NULL);
            pmu_intr_mask =   PMU_INT_PCEJECT |
                        PMU_INT_SNDBRT |
                        PMU_INT_ADB |
                        PMU_INT_TICK |
                        PMU_INT_ENVIRONMENT;
            
            gpiop = of_find_node_by_name(NULL, "gpio");
            if (gpiop) {
                  reg = (u32 *)get_property(gpiop, "reg", NULL);
                  if (reg)
                        gaddr = of_translate_address(gpiop, reg);
                  if (gaddr != OF_BAD_ADDR)
                        gpio_reg = ioremap(gaddr, 0x10);
            }
            if (gpio_reg == NULL)
                  printk(KERN_ERR "via-pmu: Can't find GPIO reg !\n");
      } else
            pmu_kind = PMU_UNKNOWN;

      via = ioremap(taddr, 0x2000);
      if (via == NULL) {
            printk(KERN_ERR "via-pmu: Can't map address !\n");
            goto fail;
      }
      
      out_8(&via[IER], IER_CLR | 0x7f);   /* disable all intrs */
      out_8(&via[IFR], 0x7f);             /* clear IFR */

      pmu_state = idle;

      if (!init_pmu()) {
            via = NULL;
            return 0;
      }

      printk(KERN_INFO "PMU driver v%d initialized for %s, firmware: %02x\n",
             PMU_DRIVER_VERSION, pbook_type[pmu_kind], pmu_version);
             
      sys_ctrler = SYS_CTRLER_PMU;
      
      return 1;
 fail:
      of_node_put(vias);
      vias = NULL;
      return 0;
}

#ifdef CONFIG_ADB
static int pmu_probe(void)
{
      return vias == NULL? -ENODEV: 0;
}

static int __init pmu_init(void)
{
      if (vias == NULL)
            return -ENODEV;
      return 0;
}
#endif /* CONFIG_ADB */

/*
 * We can't wait until pmu_init gets called, that happens too late.
 * It happens after IDE and SCSI initialization, which can take a few
 * seconds, and by that time the PMU could have given up on us and
 * turned us off.
 * Thus this is called with arch_initcall rather than device_initcall.
 */
static int __init via_pmu_start(void)
{
      unsigned int irq;

      if (vias == NULL)
            return -ENODEV;

      batt_req.complete = 1;

      irq = irq_of_parse_and_map(vias, 0);
      if (irq == NO_IRQ) {
            printk(KERN_ERR "via-pmu: can't map interruptn");
            return -ENODEV;
      }
      if (request_irq(irq, via_pmu_interrupt, 0, "VIA-PMU", (void *)0)) {
            printk(KERN_ERR "via-pmu: can't request irq %d\n", irq);
            return -ENODEV;
      }

      if (pmu_kind == PMU_KEYLARGO_BASED) {
            gpio_node = of_find_node_by_name(NULL, "extint-gpio1");
            if (gpio_node == NULL)
                  gpio_node = of_find_node_by_name(NULL,
                                           "pmu-interrupt");
            if (gpio_node)
                  gpio_irq = irq_of_parse_and_map(gpio_node, 0);

            if (gpio_irq != NO_IRQ) {
                  if (request_irq(gpio_irq, gpio1_interrupt, 0,
                              "GPIO1 ADB", (void *)0))
                        printk(KERN_ERR "pmu: can't get irq %d"
                               " (GPIO1)\n", gpio_irq);
                  else
                        gpio_irq_enabled = 1;
            }
      }

      /* Enable interrupts */
      out_8(&via[IER], IER_SET | SR_INT | CB1_INT);

      pmu_fully_inited = 1;

      /* Make sure PMU settle down before continuing. This is _very_ important
       * since the IDE probe may shut interrupts down for quite a bit of time. If
       * a PMU communication is pending while this happens, the PMU may timeout
       * Not that on Core99 machines, the PMU keeps sending us environement
       * messages, we should find a way to either fix IDE or make it call
       * pmu_suspend() before masking interrupts. This can also happens while
       * scolling with some fbdevs.
       */
      do {
            pmu_poll();
      } while (pmu_state != idle);

      return 0;
}

arch_initcall(via_pmu_start);

/*
 * This has to be done after pci_init, which is a subsys_initcall.
 */
static int __init via_pmu_dev_init(void)
{
      if (vias == NULL)
            return -ENODEV;

#ifdef CONFIG_PMAC_BACKLIGHT
      /* Initialize backlight */
      pmu_backlight_init();
#endif

#ifdef CONFIG_PPC32
      if (machine_is_compatible("AAPL,3400/2400") ||
            machine_is_compatible("AAPL,3500")) {
            int mb = pmac_call_feature(PMAC_FTR_GET_MB_INFO,
                  NULL, PMAC_MB_INFO_MODEL, 0);
            pmu_battery_count = 1;
            if (mb == PMAC_TYPE_COMET)
                  pmu_batteries[0].flags |= PMU_BATT_TYPE_COMET;
            else
                  pmu_batteries[0].flags |= PMU_BATT_TYPE_HOOPER;
      } else if (machine_is_compatible("AAPL,PowerBook1998") ||
            machine_is_compatible("PowerBook1,1")) {
            pmu_battery_count = 2;
            pmu_batteries[0].flags |= PMU_BATT_TYPE_SMART;
            pmu_batteries[1].flags |= PMU_BATT_TYPE_SMART;
      } else {
            struct device_node* prim = find_devices("power-mgt");
            u32 *prim_info = NULL;
            if (prim)
                  prim_info = (u32 *)get_property(prim, "prim-info", NULL);
            if (prim_info) {
                  /* Other stuffs here yet unknown */
                  pmu_battery_count = (prim_info[6] >> 16) & 0xff;
                  pmu_batteries[0].flags |= PMU_BATT_TYPE_SMART;
                  if (pmu_battery_count > 1)
                        pmu_batteries[1].flags |= PMU_BATT_TYPE_SMART;
            }
      }
#endif /* CONFIG_PPC32 */

      /* Create /proc/pmu */
      proc_pmu_root = proc_mkdir("pmu", NULL);
      if (proc_pmu_root) {
            long i;

            for (i=0; i<pmu_battery_count; i++) {
                  char title[16];
                  sprintf(title, "battery_%ld", i);
                  proc_pmu_batt[i] = create_proc_read_entry(title, 0, proc_pmu_root,
                                    proc_get_batt, (void *)i);
            }

            proc_pmu_info = create_proc_read_entry("info", 0, proc_pmu_root,
                              proc_get_info, NULL);
            proc_pmu_irqstats = create_proc_read_entry("interrupts", 0, proc_pmu_root,
                              proc_get_irqstats, NULL);
            proc_pmu_options = create_proc_entry("options", 0600, proc_pmu_root);
            if (proc_pmu_options) {
                  proc_pmu_options->nlink = 1;
                  proc_pmu_options->read_proc = proc_read_options;
                  proc_pmu_options->write_proc = proc_write_options;
            }
      }
      return 0;
}

device_initcall(via_pmu_dev_init);

static int
init_pmu(void)
{
      int timeout;
      struct adb_request req;

      out_8(&via[B], via[B] | TREQ);                  /* negate TREQ */
      out_8(&via[DIRB], (via[DIRB] | TREQ) & ~TACK);  /* TACK in, TREQ out */

      pmu_request(&req, NULL, 2, PMU_SET_INTR_MASK, pmu_intr_mask);
      timeout =  100000;
      while (!req.complete) {
            if (--timeout < 0) {
                  printk(KERN_ERR "init_pmu: no response from PMU\n");
                  return 0;
            }
            udelay(10);
            pmu_poll();
      }

      /* ack all pending interrupts */
      timeout = 100000;
      interrupt_data[0][0] = 1;
      while (interrupt_data[0][0] || pmu_state != idle) {
            if (--timeout < 0) {
                  printk(KERN_ERR "init_pmu: timed out acking intrs\n");
                  return 0;
            }
            if (pmu_state == idle)
                  adb_int_pending = 1;
            via_pmu_interrupt(0, NULL, NULL);
            udelay(10);
      }

      /* Tell PMU we are ready.  */
      if (pmu_kind == PMU_KEYLARGO_BASED) {
            pmu_request(&req, NULL, 2, PMU_SYSTEM_READY, 2);
            while (!req.complete)
                  pmu_poll();
      }

      /* Read PMU version */
      pmu_request(&req, NULL, 1, PMU_GET_VERSION);
      pmu_wait_complete(&req);
      if (req.reply_len > 0)
            pmu_version = req.reply[0];
      
      /* Read server mode setting */
      if (pmu_kind == PMU_KEYLARGO_BASED) {
            pmu_request(&req, NULL, 2, PMU_POWER_EVENTS,
                      PMU_PWR_GET_POWERUP_EVENTS);
            pmu_wait_complete(&req);
            if (req.reply_len == 2) {
                  if (req.reply[1] & PMU_PWR_WAKEUP_AC_INSERT)
                        option_server_mode = 1;
                  printk(KERN_INFO "via-pmu: Server Mode is %s\n",
                         option_server_mode ? "enabled" : "disabled");
            }
      }
      return 1;
}

int
pmu_get_model(void)
{
      return pmu_kind;
}

static void pmu_set_server_mode(int server_mode)
{
      struct adb_request req;

      if (pmu_kind != PMU_KEYLARGO_BASED)
            return;

      option_server_mode = server_mode;
      pmu_request(&req, NULL, 2, PMU_POWER_EVENTS, PMU_PWR_GET_POWERUP_EVENTS);
      pmu_wait_complete(&req);
      if (req.reply_len < 2)
            return;
      if (server_mode)
            pmu_request(&req, NULL, 4, PMU_POWER_EVENTS,
                      PMU_PWR_SET_POWERUP_EVENTS,
                      req.reply[0], PMU_PWR_WAKEUP_AC_INSERT); 
      else
            pmu_request(&req, NULL, 4, PMU_POWER_EVENTS,
                      PMU_PWR_CLR_POWERUP_EVENTS,
                      req.reply[0], PMU_PWR_WAKEUP_AC_INSERT); 
      pmu_wait_complete(&req);
}

/* This new version of the code for 2400/3400/3500 powerbooks
 * is inspired from the implementation in gkrellm-pmu
 */
static void
done_battery_state_ohare(struct adb_request* req)
{
      /* format:
       *  [0]    :  flags
       *    0x01 :  AC indicator
       *    0x02 :  charging
       *    0x04 :  battery exist
       *    0x08 :  
       *    0x10 :  
       *    0x20 :  full charged
       *    0x40 :  pcharge reset
       *    0x80 :  battery exist
       *
       *  [1][2] :  battery voltage
       *  [3]    :  CPU temperature
       *  [4]    :  battery temperature
       *  [5]    :  current
       *  [6][7] :  pcharge
       *              --tkoba
       */
      unsigned int bat_flags = PMU_BATT_TYPE_HOOPER;
      long pcharge, charge, vb, vmax, lmax;
      long vmax_charging, vmax_charged;
      long amperage, voltage, time, max;
      int mb = pmac_call_feature(PMAC_FTR_GET_MB_INFO,
                  NULL, PMAC_MB_INFO_MODEL, 0);

      if (req->reply[0] & 0x01)
            pmu_power_flags |= PMU_PWR_AC_PRESENT;
      else
            pmu_power_flags &= ~PMU_PWR_AC_PRESENT;
      
      if (mb == PMAC_TYPE_COMET) {
            vmax_charged = 189;
            vmax_charging = 213;
            lmax = 6500;
      } else {
            vmax_charged = 330;
            vmax_charging = 330;
            lmax = 6500;
      }
      vmax = vmax_charged;

      /* If battery installed */
      if (req->reply[0] & 0x04) {
            bat_flags |= PMU_BATT_PRESENT;
            if (req->reply[0] & 0x02)
                  bat_flags |= PMU_BATT_CHARGING;
            vb = (req->reply[1] << 8) | req->reply[2];
            voltage = (vb * 265 + 72665) / 10;
            amperage = req->reply[5];
            if ((req->reply[0] & 0x01) == 0) {
                  if (amperage > 200)
                        vb += ((amperage - 200) * 15)/100;
            } else if (req->reply[0] & 0x02) {
                  vb = (vb * 97) / 100;
                  vmax = vmax_charging;
            }
            charge = (100 * vb) / vmax;
            if (req->reply[0] & 0x40) {
                  pcharge = (req->reply[6] << 8) + req->reply[7];
                  if (pcharge > lmax)
                        pcharge = lmax;
                  pcharge *= 100;
                  pcharge = 100 - pcharge / lmax;
                  if (pcharge < charge)
                        charge = pcharge;
            }
            if (amperage > 0)
                  time = (charge * 16440) / amperage;
            else
                  time = 0;
            max = 100;
            amperage = -amperage;
      } else
            charge = max = amperage = voltage = time = 0;

      pmu_batteries[pmu_cur_battery].flags = bat_flags;
      pmu_batteries[pmu_cur_battery].charge = charge;
      pmu_batteries[pmu_cur_battery].max_charge = max;
      pmu_batteries[pmu_cur_battery].amperage = amperage;
      pmu_batteries[pmu_cur_battery].voltage = voltage;
      pmu_batteries[pmu_cur_battery].time_remaining = time;

      clear_bit(0, &async_req_locks);
}

static void
done_battery_state_smart(struct adb_request* req)
{
      /* format:
       *  [0] : format of this structure (known: 3,4,5)
       *  [1] : flags
       *  
       *  format 3 & 4:
       *  
       *  [2] : charge
       *  [3] : max charge
       *  [4] : current
       *  [5] : voltage
       *  
       *  format 5:
       *  
       *  [2][3] : charge
       *  [4][5] : max charge
       *  [6][7] : current
       *  [8][9] : voltage
       */
       
      unsigned int bat_flags = PMU_BATT_TYPE_SMART;
      int amperage;
      unsigned int capa, max, voltage;
      
      if (req->reply[1] & 0x01)
            pmu_power_flags |= PMU_PWR_AC_PRESENT;
      else
            pmu_power_flags &= ~PMU_PWR_AC_PRESENT;


      capa = max = amperage = voltage = 0;
      
      if (req->reply[1] & 0x04) {
            bat_flags |= PMU_BATT_PRESENT;
            switch(req->reply[0]) {
                  case 3:
                  case 4: capa = req->reply[2];
                        max = req->reply[3];
                        amperage = *((signed char *)&req->reply[4]);
                        voltage = req->reply[5];
                        break;
                  case 5: capa = (req->reply[2] << 8) | req->reply[3];
                        max = (req->reply[4] << 8) | req->reply[5];
                        amperage = *((signed short *)&req->reply[6]);
                        voltage = (req->reply[8] << 8) | req->reply[9];
                        break;
                  default:
                        printk(KERN_WARNING "pmu.c : unrecognized battery info, len: %d, %02x %02x %02x %02x\n",
                              req->reply_len, req->reply[0], req->reply[1], req->reply[2], req->reply[3]);
                        break;
            }
      }

      if ((req->reply[1] & 0x01) && (amperage > 0))
            bat_flags |= PMU_BATT_CHARGING;

      pmu_batteries[pmu_cur_battery].flags = bat_flags;
      pmu_batteries[pmu_cur_battery].charge = capa;
      pmu_batteries[pmu_cur_battery].max_charge = max;
      pmu_batteries[pmu_cur_battery].amperage = amperage;
      pmu_batteries[pmu_cur_battery].voltage = voltage;
      if (amperage) {
            if ((req->reply[1] & 0x01) && (amperage > 0))
                  pmu_batteries[pmu_cur_battery].time_remaining
                        = ((max-capa) * 3600) / amperage;
            else
                  pmu_batteries[pmu_cur_battery].time_remaining
                        = (capa * 3600) / (-amperage);
      } else
            pmu_batteries[pmu_cur_battery].time_remaining = 0;

      pmu_cur_battery = (pmu_cur_battery + 1) % pmu_battery_count;

      clear_bit(0, &async_req_locks);
}

static void
query_battery_state(void)
{
      if (test_and_set_bit(0, &async_req_locks))
            return;
      if (pmu_kind == PMU_OHARE_BASED)
            pmu_request(&batt_req, done_battery_state_ohare,
                  1, PMU_BATTERY_STATE);
      else
            pmu_request(&batt_req, done_battery_state_smart,
                  2, PMU_SMART_BATTERY_STATE, pmu_cur_battery+1);
}

static int
proc_get_info(char *page, char **start, off_t off,
            int count, int *eof, void *data)
{
      char* p = page;

      p += sprintf(p, "PMU driver version     : %d\n", PMU_DRIVER_VERSION);
      p += sprintf(p, "PMU firmware version   : %02x\n", pmu_version);
      p += sprintf(p, "AC Power               : %d\n",
            ((pmu_power_flags & PMU_PWR_AC_PRESENT) != 0) || pmu_battery_count == 0);
      p += sprintf(p, "Battery count          : %d\n", pmu_battery_count);

      return p - page;
}

static int
proc_get_irqstats(char *page, char **start, off_t off,
              int count, int *eof, void *data)
{
      int i;
      char* p = page;
      static const char *irq_names[] = {
            "Total CB1 triggered events",
            "Total GPIO1 triggered events",
            "PC-Card eject button",
            "Sound/Brightness button",
            "ADB message",
            "Battery state change",
            "Environment interrupt",
            "Tick timer",
            "Ghost interrupt (zero len)",
            "Empty interrupt (empty mask)",
            "Max irqs in a row"
        };

      for (i=0; i<11; i++) {
            p += sprintf(p, " %2u: %10u (%s)\n",
                       i, pmu_irq_stats[i], irq_names[i]);
      }
      return p - page;
}

static int
proc_get_batt(char *page, char **start, off_t off,
            int count, int *eof, void *data)
{
      long batnum = (long)data;
      char *p = page;
      
      p += sprintf(p, "\n");
      p += sprintf(p, "flags      : %08x\n",
            pmu_batteries[batnum].flags);
      p += sprintf(p, "charge     : %d\n",
            pmu_batteries[batnum].charge);
      p += sprintf(p, "max_charge : %d\n",
            pmu_batteries[batnum].max_charge);
      p += sprintf(p, "current    : %d\n",
            pmu_batteries[batnum].amperage);
      p += sprintf(p, "voltage    : %d\n",
            pmu_batteries[batnum].voltage);
      p += sprintf(p, "time rem.  : %d\n",
            pmu_batteries[batnum].time_remaining);

      return p - page;
}

static int
proc_read_options(char *page, char **start, off_t off,
                  int count, int *eof, void *data)
{
      char *p = page;

#if defined(CONFIG_PM) && defined(CONFIG_PPC32)
      if (pmu_kind == PMU_KEYLARGO_BASED &&
          pmac_call_feature(PMAC_FTR_SLEEP_STATE,NULL,0,-1) >= 0)
            p += sprintf(p, "lid_wakeup=%d\n", option_lid_wakeup);
#endif
      if (pmu_kind == PMU_KEYLARGO_BASED)
            p += sprintf(p, "server_mode=%d\n", option_server_mode);

      return p - page;
}
                  
static int
proc_write_options(struct file *file, const char __user *buffer,
                  unsigned long count, void *data)
{
      char tmp[33];
      char *label, *val;
      unsigned long fcount = count;
      
      if (!count)
            return -EINVAL;
      if (count > 32)
            count = 32;
      if (copy_from_user(tmp, buffer, count))
            return -EFAULT;
      tmp[count] = 0;

      label = tmp;
      while(*label == ' ')
            label++;
      val = label;
      while(*val && (*val != '=')) {
            if (*val == ' ')
                  *val = 0;
            val++;
      }
      if ((*val) == 0)
            return -EINVAL;
      *(val++) = 0;
      while(*val == ' ')
            val++;
#if defined(CONFIG_PM) && defined(CONFIG_PPC32)
      if (pmu_kind == PMU_KEYLARGO_BASED &&
          pmac_call_feature(PMAC_FTR_SLEEP_STATE,NULL,0,-1) >= 0)
            if (!strcmp(label, "lid_wakeup"))
                  option_lid_wakeup = ((*val) == '1');
#endif
      if (pmu_kind == PMU_KEYLARGO_BASED && !strcmp(label, "server_mode")) {
            int new_value;
            new_value = ((*val) == '1');
            if (new_value != option_server_mode)
                  pmu_set_server_mode(new_value);
      }
      return fcount;
}

#ifdef CONFIG_ADB
/* Send an ADB command */
static int
pmu_send_request(struct adb_request *req, int sync)
{
      int i, ret;

      if ((vias == NULL) || (!pmu_fully_inited)) {
            req->complete = 1;
            return -ENXIO;
      }

      ret = -EINVAL;

      switch (req->data[0]) {
      case PMU_PACKET:
            for (i = 0; i < req->nbytes - 1; ++i)
                  req->data[i] = req->data[i+1];
            --req->nbytes;
            if (pmu_data_len[req->data[0]][1] != 0) {
                  req->reply[0] = ADB_RET_OK;
                  req->reply_len = 1;
            } else
                  req->reply_len = 0;
            ret = pmu_queue_request(req);
            break;
      case CUDA_PACKET:
            switch (req->data[1]) {
            case CUDA_GET_TIME:
                  if (req->nbytes != 2)
                        break;
                  req->data[0] = PMU_READ_RTC;
                  req->nbytes = 1;
                  req->reply_len = 3;
                  req->reply[0] = CUDA_PACKET;
                  req->reply[1] = 0;
                  req->reply[2] = CUDA_GET_TIME;
                  ret = pmu_queue_request(req);
                  break;
            case CUDA_SET_TIME:
                  if (req->nbytes != 6)
                        break;
                  req->data[0] = PMU_SET_RTC;
                  req->nbytes = 5;
                  for (i = 1; i <= 4; ++i)
                        req->data[i] = req->data[i+1];
                  req->reply_len = 3;
                  req->reply[0] = CUDA_PACKET;
                  req->reply[1] = 0;
                  req->reply[2] = CUDA_SET_TIME;
                  ret = pmu_queue_request(req);
                  break;
            }
            break;
      case ADB_PACKET:
            if (!pmu_has_adb)
                  return -ENXIO;
            for (i = req->nbytes - 1; i > 1; --i)
                  req->data[i+2] = req->data[i];
            req->data[3] = req->nbytes - 2;
            req->data[2] = pmu_adb_flags;
            /*req->data[1] = req->data[1];*/
            req->data[0] = PMU_ADB_CMD;
            req->nbytes += 2;
            req->reply_expected = 1;
            req->reply_len = 0;
            ret = pmu_queue_request(req);
            break;
      }
      if (ret) {
            req->complete = 1;
            return ret;
      }

      if (sync)
            while (!req->complete)
                  pmu_poll();

      return 0;
}

/* Enable/disable autopolling */
static int
pmu_adb_autopoll(int devs)
{
      struct adb_request req;

      if ((vias == NULL) || (!pmu_fully_inited) || !pmu_has_adb)
            return -ENXIO;

      if (devs) {
            adb_dev_map = devs;
            pmu_request(&req, NULL, 5, PMU_ADB_CMD, 0, 0x86,
                      adb_dev_map >> 8, adb_dev_map);
            pmu_adb_flags = 2;
      } else {
            pmu_request(&req, NULL, 1, PMU_ADB_POLL_OFF);
            pmu_adb_flags = 0;
      }
      while (!req.complete)
            pmu_poll();
      return 0;
}

/* Reset the ADB bus */
static int
pmu_adb_reset_bus(void)
{
      struct adb_request req;
      int save_autopoll = adb_dev_map;

      if ((vias == NULL) || (!pmu_fully_inited) || !pmu_has_adb)
            return -ENXIO;

      /* anyone got a better idea?? */
      pmu_adb_autopoll(0);

      req.nbytes = 5;
      req.done = NULL;
      req.data[0] = PMU_ADB_CMD;
      req.data[1] = 0;
      req.data[2] = ADB_BUSRESET;
      req.data[3] = 0;
      req.data[4] = 0;
      req.reply_len = 0;
      req.reply_expected = 1;
      if (pmu_queue_request(&req) != 0) {
            printk(KERN_ERR "pmu_adb_reset_bus: pmu_queue_request failed\n");
            return -EIO;
      }
      pmu_wait_complete(&req);

      if (save_autopoll != 0)
            pmu_adb_autopoll(save_autopoll);

      return 0;
}
#endif /* CONFIG_ADB */

/* Construct and send a pmu request */
int
pmu_request(struct adb_request *req, void (*done)(struct adb_request *),
          int nbytes, ...)
{
      va_list list;
      int i;

      if (vias == NULL)
            return -ENXIO;

      if (nbytes < 0 || nbytes > 32) {
            printk(KERN_ERR "pmu_request: bad nbytes (%d)\n", nbytes);
            req->complete = 1;
            return -EINVAL;
      }
      req->nbytes = nbytes;
      req->done = done;
      va_start(list, nbytes);
      for (i = 0; i < nbytes; ++i)
            req->data[i] = va_arg(list, int);
      va_end(list);
      req->reply_len = 0;
      req->reply_expected = 0;
      return pmu_queue_request(req);
}

int
pmu_queue_request(struct adb_request *req)
{
      unsigned long flags;
      int nsend;

      if (via == NULL) {
            req->complete = 1;
            return -ENXIO;
      }
      if (req->nbytes <= 0) {
            req->complete = 1;
            return 0;
      }
      nsend = pmu_data_len[req->data[0]][0];
      if (nsend >= 0 && req->nbytes != nsend + 1) {
            req->complete = 1;
            return -EINVAL;
      }

      req->next = NULL;
      req->sent = 0;
      req->complete = 0;

      spin_lock_irqsave(&pmu_lock, flags);
      if (current_req != 0) {
            last_req->next = req;
            last_req = req;
      } else {
            current_req = req;
            last_req = req;
            if (pmu_state == idle)
                  pmu_start();
      }
      spin_unlock_irqrestore(&pmu_lock, flags);

      return 0;
}

static inline void
wait_for_ack(void)
{
      /* Sightly increased the delay, I had one occurrence of the message
       * reported
       */
      int timeout = 4000;
      while ((in_8(&via[B]) & TACK) == 0) {
            if (--timeout < 0) {
                  printk(KERN_ERR "PMU not responding (!ack)\n");
                  return;
            }
            udelay(10);
      }
}

/* New PMU seems to be very sensitive to those timings, so we make sure
 * PCI is flushed immediately */
static inline void
send_byte(int x)
{
      volatile unsigned char __iomem *v = via;

      out_8(&v[ACR], in_8(&v[ACR]) | SR_OUT | SR_EXT);
      out_8(&v[SR], x);
      out_8(&v[B], in_8(&v[B]) & ~TREQ);        /* assert TREQ */
      (void)in_8(&v[B]);
}

static inline void
recv_byte(void)
{
      volatile unsigned char __iomem *v = via;

      out_8(&v[ACR], (in_8(&v[ACR]) & ~SR_OUT) | SR_EXT);
      in_8(&v[SR]);           /* resets SR */
      out_8(&v[B], in_8(&v[B]) & ~TREQ);
      (void)in_8(&v[B]);
}

static inline void
pmu_done(struct adb_request *req)
{
      void (*done)(struct adb_request *) = req->done;
      mb();
      req->complete = 1;
      /* Here, we assume that if the request has a done member, the
       * struct request will survive to setting req->complete to 1
       */
      if (done)
            (*done)(req);
}

static void
pmu_start(void)
{
      struct adb_request *req;

      /* assert pmu_state == idle */
      /* get the packet to send */
      req = current_req;
      if (req == 0 || pmu_state != idle
          || (/*req->reply_expected && */req_awaiting_reply))
            return;

      pmu_state = sending;
      data_index = 1;
      data_len = pmu_data_len[req->data[0]][0];

      /* Sounds safer to make sure ACK is high before writing. This helped
       * kill a problem with ADB and some iBooks
       */
      wait_for_ack();
      /* set the shift register to shift out and send a byte */
      send_byte(req->data[0]);
}

void
pmu_poll(void)
{
      if (!via)
            return;
      if (disable_poll)
            return;
      via_pmu_interrupt(0, NULL, NULL);
}

void
pmu_poll_adb(void)
{
      if (!via)
            return;
      if (disable_poll)
            return;
      /* Kicks ADB read when PMU is suspended */
      adb_int_pending = 1;
      do {
            via_pmu_interrupt(0, NULL, NULL);
      } while (pmu_suspended && (adb_int_pending || pmu_state != idle
            || req_awaiting_reply));
}

void
pmu_wait_complete(struct adb_request *req)
{
      if (!via)
            return;
      while((pmu_state != idle && pmu_state != locked) || !req->complete)
            via_pmu_interrupt(0, NULL, NULL);
}

/* This function loops until the PMU is idle and prevents it from
 * anwsering to ADB interrupts. pmu_request can still be called.
 * This is done to avoid spurrious shutdowns when we know we'll have
 * interrupts switched off for a long time
 */
void
pmu_suspend(void)
{
      unsigned long flags;
#ifdef SUSPEND_USES_PMU
      struct adb_request *req;
#endif
      if (!via)
            return;
      
      spin_lock_irqsave(&pmu_lock, flags);
      pmu_suspended++;
      if (pmu_suspended > 1) {
            spin_unlock_irqrestore(&pmu_lock, flags);
            return;
      }

      do {
            spin_unlock_irqrestore(&pmu_lock, flags);
            if (req_awaiting_reply)
                  adb_int_pending = 1;
            via_pmu_interrupt(0, NULL, NULL);
            spin_lock_irqsave(&pmu_lock, flags);
            if (!adb_int_pending && pmu_state == idle && !req_awaiting_reply) {
#ifdef SUSPEND_USES_PMU
                  pmu_request(&req, NULL, 2, PMU_SET_INTR_MASK, 0);
                  spin_unlock_irqrestore(&pmu_lock, flags);
                  while(!req.complete)
                        pmu_poll();
#else /* SUSPEND_USES_PMU */
                  if (gpio_irq >= 0)
                        disable_irq_nosync(gpio_irq);
                  out_8(&via[IER], CB1_INT | IER_CLR);
                  spin_unlock_irqrestore(&pmu_lock, flags);
#endif /* SUSPEND_USES_PMU */
                  break;
            }
      } while (1);
}

void
pmu_resume(void)
{
      unsigned long flags;

      if (!via || (pmu_suspended < 1))
            return;

      spin_lock_irqsave(&pmu_lock, flags);
      pmu_suspended--;
      if (pmu_suspended > 0) {
            spin_unlock_irqrestore(&pmu_lock, flags);
            return;
      }
      adb_int_pending = 1;
#ifdef SUSPEND_USES_PMU
      pmu_request(&req, NULL, 2, PMU_SET_INTR_MASK, pmu_intr_mask);
      spin_unlock_irqrestore(&pmu_lock, flags);
      while(!req.complete)
            pmu_poll();
#else /* SUSPEND_USES_PMU */
      if (gpio_irq >= 0)
            enable_irq(gpio_irq);
      out_8(&via[IER], CB1_INT | IER_SET);
      spin_unlock_irqrestore(&pmu_lock, flags);
      pmu_poll();
#endif /* SUSPEND_USES_PMU */
}

/* Interrupt data could be the result data from an ADB cmd */
static void
pmu_handle_data(unsigned char *data, int len, struct pt_regs *regs)
{
      unsigned char ints, pirq;
      int i = 0;

      asleep = 0;
      if (drop_interrupts || len < 1) {
            adb_int_pending = 0;
            pmu_irq_stats[8]++;
            return;
      }

      /* Get PMU interrupt mask */
      ints = data[0];

      /* Record zero interrupts for stats */
      if (ints == 0)
            pmu_irq_stats[9]++;

      /* Hack to deal with ADB autopoll flag */
      if (ints & PMU_INT_ADB)
            ints &= ~(PMU_INT_ADB_AUTO | PMU_INT_AUTO_SRQ_POLL);

next:

      if (ints == 0) {
            if (i > pmu_irq_stats[10])
                  pmu_irq_stats[10] = i;
            return;
      }

      for (pirq = 0; pirq < 8; pirq++)
            if (ints & (1 << pirq))
                  break;
      pmu_irq_stats[pirq]++;
      i++;
      ints &= ~(1 << pirq);

      /* Note: for some reason, we get an interrupt with len=1,
       * data[0]==0 after each normal ADB interrupt, at least
       * on the Pismo. Still investigating...  --BenH
       */
      if ((1 << pirq) & PMU_INT_ADB) {
            if ((data[0] & PMU_INT_ADB_AUTO) == 0) {
                  struct adb_request *req = req_awaiting_reply;
                  if (req == 0) {
                        printk(KERN_ERR "PMU: extra ADB reply\n");
                        return;
                  }
                  req_awaiting_reply = NULL;
                  if (len <= 2)
                        req->reply_len = 0;
                  else {
                        memcpy(req->reply, data + 1, len - 1);
                        req->reply_len = len - 1;
                  }
                  pmu_done(req);
            } else {
                  if (len == 4 && data[1] == 0x2c) {
                        extern int xmon_wants_key, xmon_adb_keycode;
                        if (xmon_wants_key) {
                              xmon_adb_keycode = data[2];
                              return;
                        }
                  }
#ifdef CONFIG_ADB
                  /*
                   * XXX On the [23]400 the PMU gives us an up
                   * event for keycodes 0x74 or 0x75 when the PC
                   * card eject buttons are released, so we
                   * ignore those events.
                   */
                  if (!(pmu_kind == PMU_OHARE_BASED && len == 4
                        && data[1] == 0x2c && data[3] == 0xff
                        && (data[2] & ~1) == 0xf4))
                        adb_input(data+1, len-1, regs, 1);
#endif /* CONFIG_ADB */       
            }
      }
      /* Sound/brightness button pressed */
      else if ((1 << pirq) & PMU_INT_SNDBRT) {
#ifdef CONFIG_PMAC_BACKLIGHT
            if (len == 3)
                  pmac_backlight_set_legacy_brightness_pmu(data[1] >> 4);
#endif
      }
      /* Tick interrupt */
      else if ((1 << pirq) & PMU_INT_TICK) {
            /* Environement or tick interrupt, query batteries */
            if (pmu_battery_count) {
                  if ((--query_batt_timer) == 0) {
                        query_battery_state();
                        query_batt_timer = BATTERY_POLLING_COUNT;
                  }
            }
        }
      else if ((1 << pirq) & PMU_INT_ENVIRONMENT) {
            if (pmu_battery_count)
                  query_battery_state();
            pmu_pass_intr(data, len);
            /* len == 6 is probably a bad check. But how do I
             * know what PMU versions send what events here? */
            if (len == 6) {
                  via_pmu_event(PMU_EVT_POWER, !!(data[1]&8));
                  via_pmu_event(PMU_EVT_LID, data[1]&1);
            }
      } else {
             pmu_pass_intr(data, len);
      }
      goto next;
}

static struct adb_request*
pmu_sr_intr(struct pt_regs *regs)
{
      struct adb_request *req;
      int bite = 0;

      if (via[B] & TREQ) {
            printk(KERN_ERR "PMU: spurious SR intr (%x)\n", via[B]);
            out_8(&via[IFR], SR_INT);
            return NULL;
      }
      /* The ack may not yet be low when we get the interrupt */
      while ((in_8(&via[B]) & TACK) != 0)
                  ;

      /* if reading grab the byte, and reset the interrupt */
      if (pmu_state == reading || pmu_state == reading_intr)
            bite = in_8(&via[SR]);

      /* reset TREQ and wait for TACK to go high */
      out_8(&via[B], in_8(&via[B]) | TREQ);
      wait_for_ack();

      switch (pmu_state) {
      case sending:
            req = current_req;
            if (data_len < 0) {
                  data_len = req->nbytes - 1;
                  send_byte(data_len);
                  break;
            }
            if (data_index <= data_len) {
                  send_byte(req->data[data_index++]);
                  break;
            }
            req->sent = 1;
            data_len = pmu_data_len[req->data[0]][1];
            if (data_len == 0) {
                  pmu_state = idle;
                  current_req = req->next;
                  if (req->reply_expected)
                        req_awaiting_reply = req;
                  else
                        return req;
            } else {
                  pmu_state = reading;
                  data_index = 0;
                  reply_ptr = req->reply + req->reply_len;
                  recv_byte();
            }
            break;

      case intack:
            data_index = 0;
            data_len = -1;
            pmu_state = reading_intr;
            reply_ptr = interrupt_data[int_data_last];
            recv_byte();
            if (gpio_irq >= 0 && !gpio_irq_enabled) {
                  enable_irq(gpio_irq);
                  gpio_irq_enabled = 1;
            }
            break;

      case reading:
      case reading_intr:
            if (data_len == -1) {
                  data_len = bite;
                  if (bite > 32)
                        printk(KERN_ERR "PMU: bad reply len %d\n", bite);
            } else if (data_index < 32) {
                  reply_ptr[data_index++] = bite;
            }
            if (data_index < data_len) {
                  recv_byte();
                  break;
            }

            if (pmu_state == reading_intr) {
                  pmu_state = idle;
                  int_data_state[int_data_last] = int_data_ready;
                  interrupt_data_len[int_data_last] = data_len;
            } else {
                  req = current_req;
                  /* 
                   * For PMU sleep and freq change requests, we lock the
                   * PMU until it's explicitely unlocked. This avoids any
                   * spurrious event polling getting in
                   */
                  current_req = req->next;
                  req->reply_len += data_index;
                  if (req->data[0] == PMU_SLEEP || req->data[0] == PMU_CPU_SPEED)
                        pmu_state = locked;
                  else
                        pmu_state = idle;
                  return req;
            }
            break;

      default:
            printk(KERN_ERR "via_pmu_interrupt: unknown state %d?\n",
                   pmu_state);
      }
      return NULL;
}

static irqreturn_t
via_pmu_interrupt(int irq, void *arg, struct pt_regs *regs)
{
      unsigned long flags;
      int intr;
      int nloop = 0;
      int int_data = -1;
      struct adb_request *req = NULL;
      int handled = 0;

      /* This is a bit brutal, we can probably do better */
      spin_lock_irqsave(&pmu_lock, flags);
      ++disable_poll;
      
      for (;;) {
            intr = in_8(&via[IFR]) & (SR_INT | CB1_INT);
            if (intr == 0)
                  break;
            handled = 1;
            if (++nloop > 1000) {
                  printk(KERN_DEBUG "PMU: stuck in intr loop, "
                         "intr=%x, ier=%x pmu_state=%d\n",
                         intr, in_8(&via[IER]), pmu_state);
                  break;
            }
            out_8(&via[IFR], intr);
            if (intr & CB1_INT) {
                  adb_int_pending = 1;
                  pmu_irq_stats[0]++;
            }
            if (intr & SR_INT) {
                  req = pmu_sr_intr(regs);
                  if (req)
                        break;
            }
      }

recheck:
      if (pmu_state == idle) {
            if (adb_int_pending) {
                  if (int_data_state[0] == int_data_empty)
                        int_data_last = 0;
                  else if (int_data_state[1] == int_data_empty)
                        int_data_last = 1;
                  else
                        goto no_free_slot;
                  pmu_state = intack;
                  int_data_state[int_data_last] = int_data_fill;
                  /* Sounds safer to make sure ACK is high before writing.
                   * This helped kill a problem with ADB and some iBooks
                   */
                  wait_for_ack();
                  send_byte(PMU_INT_ACK);
                  adb_int_pending = 0;
            } else if (current_req)
                  pmu_start();
      }
no_free_slot:                 
      /* Mark the oldest buffer for flushing */
      if (int_data_state[!int_data_last] == int_data_ready) {
            int_data_state[!int_data_last] = int_data_flush;
            int_data = !int_data_last;
      } else if (int_data_state[int_data_last] == int_data_ready) {
            int_data_state[int_data_last] = int_data_flush;
            int_data = int_data_last;
      }
      --disable_poll;
      spin_unlock_irqrestore(&pmu_lock, flags);

      /* Deal with completed PMU requests outside of the lock */
      if (req) {
            pmu_done(req);
            req = NULL;
      }
            
      /* Deal with interrupt datas outside of the lock */
      if (int_data >= 0) {
            pmu_handle_data(interrupt_data[int_data], interrupt_data_len[int_data], regs);
            spin_lock_irqsave(&pmu_lock, flags);
            ++disable_poll;
            int_data_state[int_data] = int_data_empty;
            int_data = -1;
            goto recheck;
      }

      return IRQ_RETVAL(handled);
}

void
pmu_unlock(void)
{
      unsigned long flags;

      spin_lock_irqsave(&pmu_lock, flags);
      if (pmu_state == locked)
            pmu_state = idle;
      adb_int_pending = 1;
      spin_unlock_irqrestore(&pmu_lock, flags);
}


static irqreturn_t
gpio1_interrupt(int irq, void *arg, struct pt_regs *regs)
{
      unsigned long flags;

      if ((in_8(gpio_reg + 0x9) & 0x02) == 0) {
            spin_lock_irqsave(&pmu_lock, flags);
            if (gpio_irq_enabled > 0) {
                  disable_irq_nosync(gpio_irq);
                  gpio_irq_enabled = 0;
            }
            pmu_irq_stats[1]++;
            adb_int_pending = 1;
            spin_unlock_irqrestore(&pmu_lock, flags);
            via_pmu_interrupt(0, NULL, NULL);
            return IRQ_HANDLED;
      }
      return IRQ_NONE;
}

void
pmu_enable_irled(int on)
{
      struct adb_request req;

      if (vias == NULL)
            return ;
      if (pmu_kind == PMU_KEYLARGO_BASED)
            return ;

      pmu_request(&req, NULL, 2, PMU_POWER_CTRL, PMU_POW_IRLED |
          (on ? PMU_POW_ON : PMU_POW_OFF));
      pmu_wait_complete(&req);
}

void
pmu_restart(void)
{
      struct adb_request req;

      if (via == NULL)
            return;

      local_irq_disable();

      drop_interrupts = 1;
      
      if (pmu_kind != PMU_KEYLARGO_BASED) {
            pmu_request(&req, NULL, 2, PMU_SET_INTR_MASK, PMU_INT_ADB |
                                    PMU_INT_TICK );
            while(!req.complete)
                  pmu_poll();
      }

      pmu_request(&req, NULL, 1, PMU_RESET);
      pmu_wait_complete(&req);
      for (;;)
            ;
}

void
pmu_shutdown(void)
{
      struct adb_request req;

      if (via == NULL)
            return;

      local_irq_disable();

      drop_interrupts = 1;

      if (pmu_kind != PMU_KEYLARGO_BASED) {
            pmu_request(&req, NULL, 2, PMU_SET_INTR_MASK, PMU_INT_ADB |
                                    PMU_INT_TICK );
            pmu_wait_complete(&req);
      } else {
            /* Disable server mode on shutdown or we'll just
             * wake up again
             */
            pmu_set_server_mode(0);
      }

      pmu_request(&req, NULL, 5, PMU_SHUTDOWN,
                'M', 'A', 'T', 'T');
      pmu_wait_complete(&req);
      for (;;)
            ;
}

int
pmu_present(void)
{
      return via != 0;
}

#ifdef CONFIG_PM

static LIST_HEAD(sleep_notifiers);

int
pmu_register_sleep_notifier(struct pmu_sleep_notifier *n)
{
      struct list_head *list;
      struct pmu_sleep_notifier *notifier;

      for (list = sleep_notifiers.next; list != &sleep_notifiers;
           list = list->next) {
            notifier = list_entry(list, struct pmu_sleep_notifier, list);
            if (n->priority > notifier->priority)
                  break;
      }
      __list_add(&n->list, list->prev, list);
      return 0;
}
EXPORT_SYMBOL(pmu_register_sleep_notifier);

int
pmu_unregister_sleep_notifier(struct pmu_sleep_notifier* n)
{
      if (n->list.next == 0)
            return -ENOENT;
      list_del(&n->list);
      n->list.next = NULL;
      return 0;
}
EXPORT_SYMBOL(pmu_unregister_sleep_notifier);
#endif /* CONFIG_PM */

#if defined(CONFIG_PM) && defined(CONFIG_PPC32)

/* Sleep is broadcast last-to-first */
static int
broadcast_sleep(int when, int fallback)
{
      int ret = PBOOK_SLEEP_OK;
      struct list_head *list;
      struct pmu_sleep_notifier *notifier;

      for (list = sleep_notifiers.prev; list != &sleep_notifiers;
           list = list->prev) {
            notifier = list_entry(list, struct pmu_sleep_notifier, list);
            ret = notifier->notifier_call(notifier, when);
            if (ret != PBOOK_SLEEP_OK) {
                  printk(KERN_DEBUG "sleep %d rejected by %p (%p)\n",
                         when, notifier, notifier->notifier_call);
                  for (; list != &sleep_notifiers; list = list->next) {
                        notifier = list_entry(list, struct pmu_sleep_notifier, list);
                        notifier->notifier_call(notifier, fallback);
                  }
                  return ret;
            }
      }
      return ret;
}

/* Wake is broadcast first-to-last */
static int
broadcast_wake(void)
{
      int ret = PBOOK_SLEEP_OK;
      struct list_head *list;
      struct pmu_sleep_notifier *notifier;

      for (list = sleep_notifiers.next; list != &sleep_notifiers;
           list = list->next) {
            notifier = list_entry(list, struct pmu_sleep_notifier, list);
            notifier->notifier_call(notifier, PBOOK_WAKE);
      }
      return ret;
}

/*
 * This struct is used to store config register values for
 * PCI devices which may get powered off when we sleep.
 */
static struct pci_save {
#ifndef HACKED_PCI_SAVE
      u16   command;
      u16   cache_lat;
      u16   intr;
      u32   rom_address;
#else
      u32   config[16];
#endif      
} *pbook_pci_saves;
static int pbook_npci_saves;

static void
pbook_alloc_pci_save(void)
{
      int npci;
      struct pci_dev *pd = NULL;

      npci = 0;
      while ((pd = pci_find_device(PCI_ANY_ID, PCI_ANY_ID, pd)) != NULL) {
            ++npci;
      }
      if (npci == 0)
            return;
      pbook_pci_saves = (struct pci_save *)
            kmalloc(npci * sizeof(struct pci_save), GFP_KERNEL);
      pbook_npci_saves = npci;
}

static void
pbook_free_pci_save(void)
{
      if (pbook_pci_saves == NULL)
            return;
      kfree(pbook_pci_saves);
      pbook_pci_saves = NULL;
      pbook_npci_saves = 0;
}

static void
pbook_pci_save(void)
{
      struct pci_save *ps = pbook_pci_saves;
      struct pci_dev *pd = NULL;
      int npci = pbook_npci_saves;
      
      if (ps == NULL)
            return;

      while ((pd = pci_find_device(PCI_ANY_ID, PCI_ANY_ID, pd)) != NULL) {
            if (npci-- == 0)
                  return;
#ifndef HACKED_PCI_SAVE
            pci_read_config_word(pd, PCI_COMMAND, &ps->command);
            pci_read_config_word(pd, PCI_CACHE_LINE_SIZE, &ps->cache_lat);
            pci_read_config_word(pd, PCI_INTERRUPT_LINE, &ps->intr);
            pci_read_config_dword(pd, PCI_ROM_ADDRESS, &ps->rom_address);
#else
            int i;
            for (i=1;i<16;i++)
                  pci_read_config_dword(pd, i<<4, &ps->config[i]);
#endif
            ++ps;
      }
}

/* For this to work, we must take care of a few things: If gmac was enabled
 * during boot, it will be in the pci dev list. If it's disabled at this point
 * (and it will probably be), then you can't access it's config space.
 */
static void
pbook_pci_restore(void)
{
      u16 cmd;
      struct pci_save *ps = pbook_pci_saves - 1;
      struct pci_dev *pd = NULL;
      int npci = pbook_npci_saves;
      int j;

      while ((pd = pci_find_device(PCI_ANY_ID, PCI_ANY_ID, pd)) != NULL) {
#ifdef HACKED_PCI_SAVE
            int i;
            if (npci-- == 0)
                  return;
            ps++;
            for (i=2;i<16;i++)
                  pci_write_config_dword(pd, i<<4, ps->config[i]);
            pci_write_config_dword(pd, 4, ps->config[1]);
#else
            if (npci-- == 0)
                  return;
            ps++;
            if (ps->command == 0)
                  continue;
            pci_read_config_word(pd, PCI_COMMAND, &cmd);
            if ((ps->command & ~cmd) == 0)
                  continue;
            switch (pd->hdr_type) {
            case PCI_HEADER_TYPE_NORMAL:
                  for (j = 0; j < 6; ++j)
                        pci_write_config_dword(pd,
                              PCI_BASE_ADDRESS_0 + j*4,
                              pd->resource[j].start);
                  pci_write_config_dword(pd, PCI_ROM_ADDRESS,
                        ps->rom_address);
                  pci_write_config_word(pd, PCI_CACHE_LINE_SIZE,
                        ps->cache_lat);
                  pci_write_config_word(pd, PCI_INTERRUPT_LINE,
                        ps->intr);
                  pci_write_config_word(pd, PCI_COMMAND, ps->command);
                  break;
            }
#endif      
      }
}

#ifdef DEBUG_SLEEP
/* N.B. This doesn't work on the 3400 */
void 
pmu_blink(int n)
{
      struct adb_request req;

      memset(&req, 0, sizeof(req));

      for (; n > 0; --n) {
            req.nbytes = 4;
            req.done = NULL;
            req.data[0] = 0xee;
            req.data[1] = 4;
            req.data[2] = 0;
            req.data[3] = 1;
            req.reply[0] = ADB_RET_OK;
            req.reply_len = 1;
            req.reply_expected = 0;
            pmu_polled_request(&req);
            mdelay(50);
            req.nbytes = 4;
            req.done = NULL;
            req.data[0] = 0xee;
            req.data[1] = 4;
            req.data[2] = 0;
            req.data[3] = 0;
            req.reply[0] = ADB_RET_OK;
            req.reply_len = 1;
            req.reply_expected = 0;
            pmu_polled_request(&req);
            mdelay(50);
      }
      mdelay(50);
}
#endif

/*
 * Put the powerbook to sleep.
 */
 
static u32 save_via[8];

static void
save_via_state(void)
{
      save_via[0] = in_8(&via[ANH]);
      save_via[1] = in_8(&via[DIRA]);
      save_via[2] = in_8(&via[B]);
      save_via[3] = in_8(&via[DIRB]);
      save_via[4] = in_8(&via[PCR]);
      save_via[5] = in_8(&via[ACR]);
      save_via[6] = in_8(&via[T1CL]);
      save_via[7] = in_8(&via[T1CH]);
}
static void
restore_via_state(void)
{
      out_8(&via[ANH], save_via[0]);
      out_8(&via[DIRA], save_via[1]);
      out_8(&via[B], save_via[2]);
      out_8(&via[DIRB], save_via[3]);
      out_8(&via[PCR], save_via[4]);
      out_8(&via[ACR], save_via[5]);
      out_8(&via[T1CL], save_via[6]);
      out_8(&via[T1CH], save_via[7]);
      out_8(&via[IER], IER_CLR | 0x7f);   /* disable all intrs */
      out_8(&via[IFR], 0x7f);                   /* clear IFR */
      out_8(&via[IER], IER_SET | SR_INT | CB1_INT);
}

extern void pmu_backlight_set_sleep(int sleep);

static int
pmac_suspend_devices(void)
{
      int ret;

      pm_prepare_console();
      
      /* Notify old-style device drivers & userland */
      ret = broadcast_sleep(PBOOK_SLEEP_REQUEST, PBOOK_SLEEP_REJECT);
      if (ret != PBOOK_SLEEP_OK) {
            printk(KERN_ERR "Sleep rejected by drivers\n");
            return -EBUSY;
      }

      /* Sync the disks. */
      /* XXX It would be nice to have some way to ensure that
       * nobody is dirtying any new buffers while we wait. That
       * could be achieved using the refrigerator for processes
       * that swsusp uses
       */
      sys_sync();

      /* Sleep can fail now. May not be very robust but useful for debugging */
      ret = broadcast_sleep(PBOOK_SLEEP_NOW, PBOOK_WAKE);
      if (ret != PBOOK_SLEEP_OK) {
            printk(KERN_ERR "Driver sleep failed\n");
            return -EBUSY;
      }

      /* Send suspend call to devices, hold the device core's dpm_sem */
      ret = device_suspend(PMSG_SUSPEND);
      if (ret) {
            broadcast_wake();
            printk(KERN_ERR "Driver sleep failed\n");
            return -EBUSY;
      }

#ifdef CONFIG_PMAC_BACKLIGHT
      /* Tell backlight code not to muck around with the chip anymore */
      pmu_backlight_set_sleep(1);
#endif

      /* Call platform functions marked "on sleep" */
      pmac_pfunc_i2c_suspend();
      pmac_pfunc_base_suspend();

      /* Stop preemption */
      preempt_disable();

      /* Make sure the decrementer won't interrupt us */
      asm volatile("mtdec %0" : : "r" (0x7fffffff));
      /* Make sure any pending DEC interrupt occurring while we did
       * the above didn't re-enable the DEC */
      mb();
      asm volatile("mtdec %0" : : "r" (0x7fffffff));

      /* We can now disable MSR_EE. This code of course works properly only
       * on UP machines... For SMP, if we ever implement sleep, we'll have to
       * stop the "other" CPUs way before we do all that stuff.
       */
      local_irq_disable();

      /* Broadcast power down irq
       * This isn't that useful in most cases (only directly wired devices can
       * use this but still... This will take care of sysdev's as well, so
       * we exit from here with local irqs disabled and PIC off.
       */
      ret = device_power_down(PMSG_SUSPEND);
      if (ret) {
            wakeup_decrementer();
            local_irq_enable();
            preempt_enable();
            device_resume();
            broadcast_wake();
            printk(KERN_ERR "Driver powerdown failed\n");
            return -EBUSY;
      }

      /* Wait for completion of async requests */
      while (!batt_req.complete)
            pmu_poll();

      /* Giveup the lazy FPU & vec so we don't have to back them
       * up from the low level code
       */
      enable_kernel_fp();

#ifdef CONFIG_ALTIVEC
      if (cpu_has_feature(CPU_FTR_ALTIVEC))
            enable_kernel_altivec();
#endif /* CONFIG_ALTIVEC */

      return 0;
}

static int
pmac_wakeup_devices(void)
{
      mdelay(100);

#ifdef CONFIG_PMAC_BACKLIGHT
      /* Tell backlight code it can use the chip again */
      pmu_backlight_set_sleep(0);
#endif

      /* Power back up system devices (including the PIC) */
      device_power_up();

      /* Force a poll of ADB interrupts */
      adb_int_pending = 1;
      via_pmu_interrupt(0, NULL, NULL);

      /* Restart jiffies & scheduling */
      wakeup_decrementer();

      /* Re-enable local CPU interrupts */
      local_irq_enable();
      mdelay(10);
      preempt_enable();

      /* Call platform functions marked "on wake" */
      pmac_pfunc_base_resume();
      pmac_pfunc_i2c_resume();

      /* Resume devices */
      device_resume();

      /* Notify old style drivers */
      broadcast_wake();

      pm_restore_console();

      return 0;
}

#define     GRACKLE_PM  (1<<7)
#define GRACKLE_DOZE    (1<<5)
#define     GRACKLE_NAP (1<<4)
#define     GRACKLE_SLEEP     (1<<3)

static int powerbook_sleep_grackle(void)
{
      unsigned long save_l2cr;
      unsigned short pmcr1;
      struct adb_request req;
      int ret;
      struct pci_dev *grackle;

      grackle = pci_find_slot(0, 0);
      if (!grackle)
            return -ENODEV;

      ret = pmac_suspend_devices();
      if (ret) {
            printk(KERN_ERR "Sleep rejected by devices\n");
            return ret;
      }
      
      /* Turn off various things. Darwin does some retry tests here... */
      pmu_request(&req, NULL, 2, PMU_POWER_CTRL0, PMU_POW0_OFF|PMU_POW0_HARD_DRIVE);
      pmu_wait_complete(&req);
      pmu_request(&req, NULL, 2, PMU_POWER_CTRL,
            PMU_POW_OFF|PMU_POW_BACKLIGHT|PMU_POW_IRLED|PMU_POW_MEDIABAY);
      pmu_wait_complete(&req);

      /* For 750, save backside cache setting and disable it */
      save_l2cr = _get_L2CR();      /* (returns -1 if not available) */

      if (!__fake_sleep) {
            /* Ask the PMU to put us to sleep */
            pmu_request(&req, NULL, 5, PMU_SLEEP, 'M', 'A', 'T', 'T');
            pmu_wait_complete(&req);
      }

      /* The VIA is supposed not to be restored correctly*/
      save_via_state();
      /* We shut down some HW */
      pmac_call_feature(PMAC_FTR_SLEEP_STATE,NULL,0,1);

      pci_read_config_word(grackle, 0x70, &pmcr1);
      /* Apparently, MacOS uses NAP mode for Grackle ??? */
      pmcr1 &= ~(GRACKLE_DOZE|GRACKLE_SLEEP); 
      pmcr1 |= GRACKLE_PM|GRACKLE_NAP;
      pci_write_config_word(grackle, 0x70, pmcr1);

      /* Call low-level ASM sleep handler */
      if (__fake_sleep)
            mdelay(5000);
      else
            low_sleep_handler();

      /* We're awake again, stop grackle PM */
      pci_read_config_word(grackle, 0x70, &pmcr1);
      pmcr1 &= ~(GRACKLE_PM|GRACKLE_DOZE|GRACKLE_SLEEP|GRACKLE_NAP); 
      pci_write_config_word(grackle, 0x70, pmcr1);

      /* Make sure the PMU is idle */
      pmac_call_feature(PMAC_FTR_SLEEP_STATE,NULL,0,0);
      restore_via_state();
      
      /* Restore L2 cache */
      if (save_l2cr != 0xffffffff && (save_l2cr & L2CR_L2E) != 0)
            _set_L2CR(save_l2cr);
      
      /* Restore userland MMU context */
      set_context(current->active_mm->context.id, current->active_mm->pgd);

      /* Power things up */
      pmu_unlock();
      pmu_request(&req, NULL, 2, PMU_SET_INTR_MASK, pmu_intr_mask);
      pmu_wait_complete(&req);
      pmu_request(&req, NULL, 2, PMU_POWER_CTRL0,
                  PMU_POW0_ON|PMU_POW0_HARD_DRIVE);
      pmu_wait_complete(&req);
      pmu_request(&req, NULL, 2, PMU_POWER_CTRL,
                  PMU_POW_ON|PMU_POW_BACKLIGHT|PMU_POW_CHARGER|PMU_POW_IRLED|PMU_POW_MEDIABAY);
      pmu_wait_complete(&req);

      pmac_wakeup_devices();

      return 0;
}

static int
powerbook_sleep_Core99(void)
{
      unsigned long save_l2cr;
      unsigned long save_l3cr;
      struct adb_request req;
      int ret;
      
      if (pmac_call_feature(PMAC_FTR_SLEEP_STATE,NULL,0,-1) < 0) {
            printk(KERN_ERR "Sleep mode not supported on this machine\n");
            return -ENOSYS;
      }

      if (num_online_cpus() > 1 || cpu_is_offline(0))
            return -EAGAIN;

      ret = pmac_suspend_devices();
      if (ret) {
            printk(KERN_ERR "Sleep rejected by devices\n");
            return ret;
      }

      /* Stop environment and ADB interrupts */
      pmu_request(&req, NULL, 2, PMU_SET_INTR_MASK, 0);
      pmu_wait_complete(&req);

      /* Tell PMU what events will wake us up */
      pmu_request(&req, NULL, 4, PMU_POWER_EVENTS, PMU_PWR_CLR_WAKEUP_EVENTS,
            0xff, 0xff);
      pmu_wait_complete(&req);
      pmu_request(&req, NULL, 4, PMU_POWER_EVENTS, PMU_PWR_SET_WAKEUP_EVENTS,
            0, PMU_PWR_WAKEUP_KEY |
            (option_lid_wakeup ? PMU_PWR_WAKEUP_LID_OPEN : 0));
      pmu_wait_complete(&req);

      /* Save the state of the L2 and L3 caches */
      save_l3cr = _get_L3CR();      /* (returns -1 if not available) */
      save_l2cr = _get_L2CR();      /* (returns -1 if not available) */

      if (!__fake_sleep) {
            /* Ask the PMU to put us to sleep */
            pmu_request(&req, NULL, 5, PMU_SLEEP, 'M', 'A', 'T', 'T');
            pmu_wait_complete(&req);
      }

      /* The VIA is supposed not to be restored correctly*/
      save_via_state();

      /* Shut down various ASICs. There's a chance that we can no longer
       * talk to the PMU after this, so I moved it to _after_ sending the
       * sleep command to it. Still need to be checked.
       */
      pmac_call_feature(PMAC_FTR_SLEEP_STATE, NULL, 0, 1);

      /* Call low-level ASM sleep handler */
      if (__fake_sleep)
            mdelay(5000);
      else
            low_sleep_handler();

      /* Restore Apple core ASICs state */
      pmac_call_feature(PMAC_FTR_SLEEP_STATE, NULL, 0, 0);

      /* Restore VIA */
      restore_via_state();

      /* tweak LPJ before cpufreq is there */
      loops_per_jiffy *= 2;

      /* Restore video */
      pmac_call_early_video_resume();

      /* Restore L2 cache */
      if (save_l2cr != 0xffffffff && (save_l2cr & L2CR_L2E) != 0)
            _set_L2CR(save_l2cr);
      /* Restore L3 cache */
      if (save_l3cr != 0xffffffff && (save_l3cr & L3CR_L3E) != 0)
            _set_L3CR(save_l3cr);
      
      /* Restore userland MMU context */
      set_context(current->active_mm->context.id, current->active_mm->pgd);

      /* Tell PMU we are ready */
      pmu_unlock();
      pmu_request(&req, NULL, 2, PMU_SYSTEM_READY, 2);
      pmu_wait_complete(&req);
      pmu_request(&req, NULL, 2, PMU_SET_INTR_MASK, pmu_intr_mask);
      pmu_wait_complete(&req);

      /* Restore LPJ, cpufreq will adjust the cpu frequency */
      loops_per_jiffy /= 2;

      pmac_wakeup_devices();

      return 0;
}

#define PB3400_MEM_CTRL       0xf8000000
#define PB3400_MEM_CTRL_SLEEP 0x70

static int
powerbook_sleep_3400(void)
{
      int ret, i, x;
      unsigned int hid0;
      unsigned long p;
      struct adb_request sleep_req;
      void __iomem *mem_ctrl;
      unsigned int __iomem *mem_ctrl_sleep;

      /* first map in the memory controller registers */
      mem_ctrl = ioremap(PB3400_MEM_CTRL, 0x100);
      if (mem_ctrl == NULL) {
            printk("powerbook_sleep_3400: ioremap failed\n");
            return -ENOMEM;
      }
      mem_ctrl_sleep = mem_ctrl + PB3400_MEM_CTRL_SLEEP;

      /* Allocate room for PCI save */
      pbook_alloc_pci_save();

      ret = pmac_suspend_devices();
      if (ret) {
            pbook_free_pci_save();
            printk(KERN_ERR "Sleep rejected by devices\n");
            return ret;
      }

      /* Save the state of PCI config space for some slots */
      pbook_pci_save();

      /* Set the memory controller to keep the memory refreshed
         while we're asleep */
      for (i = 0x403f; i >= 0x4000; --i) {
            out_be32(mem_ctrl_sleep, i);
            do {
                  x = (in_be32(mem_ctrl_sleep) >> 16) & 0x3ff;
            } while (x == 0);
            if (x >= 0x100)
                  break;
      }

      /* Ask the PMU to put us to sleep */
      pmu_request(&sleep_req, NULL, 5, PMU_SLEEP, 'M', 'A', 'T', 'T');
      while (!sleep_req.complete)
            mb();

      pmac_call_feature(PMAC_FTR_SLEEP_STATE,NULL,0,1);

      /* displacement-flush the L2 cache - necessary? */
      for (p = KERNELBASE; p < KERNELBASE + 0x100000; p += 0x1000)
            i = *(volatile int *)p;
      asleep = 1;

      /* Put the CPU into sleep mode */
      hid0 = mfspr(SPRN_HID0);
      hid0 = (hid0 & ~(HID0_NAP | HID0_DOZE)) | HID0_SLEEP;
      mtspr(SPRN_HID0, hid0);
      mtmsr(mfmsr() | MSR_POW | MSR_EE);
      udelay(10);

      /* OK, we're awake again, start restoring things */
      out_be32(mem_ctrl_sleep, 0x3f);
      pmac_call_feature(PMAC_FTR_SLEEP_STATE,NULL,0,0);
      pbook_pci_restore();
      pmu_unlock();

      /* wait for the PMU interrupt sequence to complete */
      while (asleep)
            mb();

      pmac_wakeup_devices();
      pbook_free_pci_save();
      iounmap(mem_ctrl);

      return 0;
}

#endif /* CONFIG_PM && CONFIG_PPC32 */

/*
 * Support for /dev/pmu device
 */
#define RB_SIZE         0x10
struct pmu_private {
      struct list_head list;
      int   rb_get;
      int   rb_put;
      struct rb_entry {
            unsigned short len;
            unsigned char data[16];
      }     rb_buf[RB_SIZE];
      wait_queue_head_t wait;
      spinlock_t lock;
#if defined(CONFIG_INPUT_ADBHID) && defined(CONFIG_PMAC_BACKLIGHT)
      int   backlight_locker;
#endif
};

static LIST_HEAD(all_pmu_pvt);
static DEFINE_SPINLOCK(all_pvt_lock);

static void
pmu_pass_intr(unsigned char *data, int len)
{
      struct pmu_private *pp;
      struct list_head *list;
      int i;
      unsigned long flags;

      if (len > sizeof(pp->rb_buf[0].data))
            len = sizeof(pp->rb_buf[0].data);
      spin_lock_irqsave(&all_pvt_lock, flags);
      for (list = &all_pmu_pvt; (list = list->next) != &all_pmu_pvt; ) {
            pp = list_entry(list, struct pmu_private, list);
            spin_lock(&pp->lock);
            i = pp->rb_put + 1;
            if (i >= RB_SIZE)
                  i = 0;
            if (i != pp->rb_get) {
                  struct rb_entry *rp = &pp->rb_buf[pp->rb_put];
                  rp->len = len;
                  memcpy(rp->data, data, len);
                  pp->rb_put = i;
                  wake_up_interruptible(&pp->wait);
            }
            spin_unlock(&pp->lock);
      }
      spin_unlock_irqrestore(&all_pvt_lock, flags);
}

static int
pmu_open(struct inode *inode, struct file *file)
{
      struct pmu_private *pp;
      unsigned long flags;

      pp = kmalloc(sizeof(struct pmu_private), GFP_KERNEL);
      if (pp == 0)
            return -ENOMEM;
      pp->rb_get = pp->rb_put = 0;
      spin_lock_init(&pp->lock);
      init_waitqueue_head(&pp->wait);
      spin_lock_irqsave(&all_pvt_lock, flags);
#if defined(CONFIG_INPUT_ADBHID) && defined(CONFIG_PMAC_BACKLIGHT)
      pp->backlight_locker = 0;
#endif
      list_add(&pp->list, &all_pmu_pvt);
      spin_unlock_irqrestore(&all_pvt_lock, flags);
      file->private_data = pp;
      return 0;
}

static ssize_t 
pmu_read(struct file *file, char __user *buf,
                  size_t count, loff_t *ppos)
{
      struct pmu_private *pp = file->private_data;
      DECLARE_WAITQUEUE(wait, current);
      unsigned long flags;
      int ret = 0;

      if (count < 1 || pp == 0)
            return -EINVAL;
      if (!access_ok(VERIFY_WRITE, buf, count))
            return -EFAULT;

      spin_lock_irqsave(&pp->lock, flags);
      add_wait_queue(&pp->wait, &wait);
      current->state = TASK_INTERRUPTIBLE;

      for (;;) {
            ret = -EAGAIN;
            if (pp->rb_get != pp->rb_put) {
                  int i = pp->rb_get;
                  struct rb_entry *rp = &pp->rb_buf[i];
                  ret = rp->len;
                  spin_unlock_irqrestore(&pp->lock, flags);
                  if (ret > count)
                        ret = count;
                  if (ret > 0 && copy_to_user(buf, rp->data, ret))
                        ret = -EFAULT;
                  if (++i >= RB_SIZE)
                        i = 0;
                  spin_lock_irqsave(&pp->lock, flags);
                  pp->rb_get = i;
            }
            if (ret >= 0)
                  break;
            if (file->f_flags & O_NONBLOCK)
                  break;
            ret = -ERESTARTSYS;
            if (signal_pending(current))
                  break;
            spin_unlock_irqrestore(&pp->lock, flags);
            schedule();
            spin_lock_irqsave(&pp->lock, flags);
      }
      current->state = TASK_RUNNING;
      remove_wait_queue(&pp->wait, &wait);
      spin_unlock_irqrestore(&pp->lock, flags);
      
      return ret;
}

static ssize_t
pmu_write(struct file *file, const char __user *buf,
                   size_t count, loff_t *ppos)
{
      return 0;
}

static unsigned int
pmu_fpoll(struct file *filp, poll_table *wait)
{
      struct pmu_private *pp = filp->private_data;
      unsigned int mask = 0;
      unsigned long flags;
      
      if (pp == 0)
            return 0;
      poll_wait(filp, &pp->wait, wait);
      spin_lock_irqsave(&pp->lock, flags);
      if (pp->rb_get != pp->rb_put)
            mask |= POLLIN;
      spin_unlock_irqrestore(&pp->lock, flags);
      return mask;
}

static int
pmu_release(struct inode *inode, struct file *file)
{
      struct pmu_private *pp = file->private_data;
      unsigned long flags;

      lock_kernel();
      if (pp != 0) {
            file->private_data = NULL;
            spin_lock_irqsave(&all_pvt_lock, flags);
            list_del(&pp->list);
            spin_unlock_irqrestore(&all_pvt_lock, flags);

#if defined(CONFIG_INPUT_ADBHID) && defined(CONFIG_PMAC_BACKLIGHT)
            if (pp->backlight_locker)
                  pmac_backlight_enable();
#endif

            kfree(pp);
      }
      unlock_kernel();
      return 0;
}

static int
pmu_ioctl(struct inode * inode, struct file *filp,
                 u_int cmd, u_long arg)
{
      __u32 __user *argp = (__u32 __user *)arg;
      int error = -EINVAL;

      switch (cmd) {
#if defined(CONFIG_PM) && defined(CONFIG_PPC32)
      case PMU_IOC_SLEEP:
            if (!capable(CAP_SYS_ADMIN))
                  return -EACCES;
            if (sleep_in_progress)
                  return -EBUSY;
            sleep_in_progress = 1;
            switch (pmu_kind) {
            case PMU_OHARE_BASED:
                  error = powerbook_sleep_3400();
                  break;
            case PMU_HEATHROW_BASED:
            case PMU_PADDINGTON_BASED:
                  error = powerbook_sleep_grackle();
                  break;
            case PMU_KEYLARGO_BASED:
                  error = powerbook_sleep_Core99();
                  break;
            default:
                  error = -ENOSYS;
            }
            sleep_in_progress = 0;
            break;
      case PMU_IOC_CAN_SLEEP:
            if (pmac_call_feature(PMAC_FTR_SLEEP_STATE,NULL,0,-1) < 0)
                  return put_user(0, argp);
            else
                  return put_user(1, argp);
#endif /* CONFIG_PM && CONFIG_PPC32 */

#ifdef CONFIG_PMAC_BACKLIGHT_LEGACY
      /* Compatibility ioctl's for backlight */
      case PMU_IOC_GET_BACKLIGHT:
      {
            int brightness;

            if (sleep_in_progress)
                  return -EBUSY;

            brightness = pmac_backlight_get_legacy_brightness();
            if (brightness < 0)
                  return brightness;
            else
                  return put_user(brightness, argp);

      }
      case PMU_IOC_SET_BACKLIGHT:
      {
            int brightness;

            if (sleep_in_progress)
                  return -EBUSY;

            error = get_user(brightness, argp);
            if (error)
                  return error;

            return pmac_backlight_set_legacy_brightness(brightness);
      }
#ifdef CONFIG_INPUT_ADBHID
      case PMU_IOC_GRAB_BACKLIGHT: {
            struct pmu_private *pp = filp->private_data;

            if (pp->backlight_locker)
                  return 0;

            pp->backlight_locker = 1;
            pmac_backlight_disable();

            return 0;
      }
#endif /* CONFIG_INPUT_ADBHID */
#endif /* CONFIG_PMAC_BACKLIGHT_LEGACY */

      case PMU_IOC_GET_MODEL:
            return put_user(pmu_kind, argp);
      case PMU_IOC_HAS_ADB:
            return put_user(pmu_has_adb, argp);
      }
      return error;
}

static struct file_operations pmu_device_fops = {
      .read       = pmu_read,
      .write            = pmu_write,
      .poll       = pmu_fpoll,
      .ioctl            = pmu_ioctl,
      .open       = pmu_open,
      .release    = pmu_release,
};

static struct miscdevice pmu_device = {
      PMU_MINOR, "pmu", &pmu_device_fops
};

static int pmu_device_init(void)
{
      if (!via)
            return 0;
      if (misc_register(&pmu_device) < 0)
            printk(KERN_ERR "via-pmu: cannot register misc device.\n");
      return 0;
}
device_initcall(pmu_device_init);


#ifdef DEBUG_SLEEP
static inline void 
polled_handshake(volatile unsigned char __iomem *via)
{
      via[B] &= ~TREQ; eieio();
      while ((via[B] & TACK) != 0)
            ;
      via[B] |= TREQ; eieio();
      while ((via[B] & TACK) == 0)
            ;
}

static inline void 
polled_send_byte(volatile unsigned char __iomem *via, int x)
{
      via[ACR] |= SR_OUT | SR_EXT; eieio();
      via[SR] = x; eieio();
      polled_handshake(via);
}

static inline int
polled_recv_byte(volatile unsigned char __iomem *via)
{
      int x;

      via[ACR] = (via[ACR] & ~SR_OUT) | SR_EXT; eieio();
      x = via[SR]; eieio();
      polled_handshake(via);
      x = via[SR]; eieio();
      return x;
}

int
pmu_polled_request(struct adb_request *req)
{
      unsigned long flags;
      int i, l, c;
      volatile unsigned char __iomem *v = via;

      req->complete = 1;
      c = req->data[0];
      l = pmu_data_len[c][0];
      if (l >= 0 && req->nbytes != l + 1)
            return -EINVAL;

      local_irq_save(flags);
      while (pmu_state != idle)
            pmu_poll();

      while ((via[B] & TACK) == 0)
            ;
      polled_send_byte(v, c);
      if (l < 0) {
            l = req->nbytes - 1;
            polled_send_byte(v, l);
      }
      for (i = 1; i <= l; ++i)
            polled_send_byte(v, req->data[i]);

      l = pmu_data_len[c][1];
      if (l < 0)
            l = polled_recv_byte(v);
      for (i = 0; i < l; ++i)
            req->reply[i + req->reply_len] = polled_recv_byte(v);

      if (req->done)
            (*req->done)(req);

      local_irq_restore(flags);
      return 0;
}
#endif /* DEBUG_SLEEP */


/* FIXME: This is a temporary set of callbacks to enable us
 * to do suspend-to-disk.
 */

#if defined(CONFIG_PM) && defined(CONFIG_PPC32)

static int pmu_sys_suspended = 0;

static int pmu_sys_suspend(struct sys_device *sysdev, pm_message_t state)
{
      if (state.event != PM_EVENT_SUSPEND || pmu_sys_suspended)
            return 0;

      /* Suspend PMU event interrupts */
      pmu_suspend();

      pmu_sys_suspended = 1;
      return 0;
}

static int pmu_sys_resume(struct sys_device *sysdev)
{
      struct adb_request req;

      if (!pmu_sys_suspended)
            return 0;

      /* Tell PMU we are ready */
      pmu_request(&req, NULL, 2, PMU_SYSTEM_READY, 2);
      pmu_wait_complete(&req);

      /* Resume PMU event interrupts */
      pmu_resume();

      pmu_sys_suspended = 0;

      return 0;
}

#endif /* CONFIG_PM && CONFIG_PPC32 */

static struct sysdev_class pmu_sysclass = {
      set_kset_name("pmu"),
};

static struct sys_device device_pmu = {
      .id         = 0,
      .cls        = &pmu_sysclass,
};

static struct sysdev_driver driver_pmu = {
#if defined(CONFIG_PM) && defined(CONFIG_PPC32)
      .suspend    = &pmu_sys_suspend,
      .resume           = &pmu_sys_resume,
#endif /* CONFIG_PM && CONFIG_PPC32 */
};

static int __init init_pmu_sysfs(void)
{
      int rc;

      rc = sysdev_class_register(&pmu_sysclass);
      if (rc) {
            printk(KERN_ERR "Failed registering PMU sys class\n");
            return -ENODEV;
      }
      rc = sysdev_register(&device_pmu);
      if (rc) {
            printk(KERN_ERR "Failed registering PMU sys device\n");
            return -ENODEV;
      }
      rc = sysdev_driver_register(&pmu_sysclass, &driver_pmu);
      if (rc) {
            printk(KERN_ERR "Failed registering PMU sys driver\n");
            return -ENODEV;
      }
      return 0;
}

subsys_initcall(init_pmu_sysfs);

EXPORT_SYMBOL(pmu_request);
EXPORT_SYMBOL(pmu_queue_request);
EXPORT_SYMBOL(pmu_poll);
EXPORT_SYMBOL(pmu_poll_adb);
EXPORT_SYMBOL(pmu_wait_complete);
EXPORT_SYMBOL(pmu_suspend);
EXPORT_SYMBOL(pmu_resume);
EXPORT_SYMBOL(pmu_unlock);
#if defined(CONFIG_PM) && defined(CONFIG_PPC32)
EXPORT_SYMBOL(pmu_enable_irled);
EXPORT_SYMBOL(pmu_battery_count);
EXPORT_SYMBOL(pmu_batteries);
EXPORT_SYMBOL(pmu_power_flags);
#endif /* CONFIG_PM && CONFIG_PPC32 */


Generated by  Doxygen 1.6.0   Back to index