Logo Search packages:      
Sourcecode: linux-2.6 version File versions  Download package

z90main.c

/*
 *  linux/drivers/s390/crypto/z90main.c
 *
 *  z90crypt 1.3.3
 *
 *  Copyright (C)  2001, 2005 IBM Corporation
 *  Author(s): Robert Burroughs (burrough@us.ibm.com)
 *             Eric Rossman (edrossma@us.ibm.com)
 *
 *  Hotplug & misc device support: Jochen Roehrig (roehrig@de.ibm.com)
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

#include <asm/uaccess.h>       // copy_(from|to)_user
#include <linux/compat.h>
#include <linux/compiler.h>
#include <linux/delay.h>       // mdelay
#include <linux/init.h>
#include <linux/interrupt.h>   // for tasklets
#include <linux/miscdevice.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/proc_fs.h>
#include <linux/syscalls.h>
#include "z90crypt.h"
#include "z90common.h"

/**
 * Defaults that may be modified.
 */

/**
 * You can specify a different minor at compile time.
 */
#ifndef Z90CRYPT_MINOR
#define Z90CRYPT_MINOR  MISC_DYNAMIC_MINOR
#endif

/**
 * You can specify a different domain at compile time or on the insmod
 * command line.
 */
#ifndef DOMAIN_INDEX
#define DOMAIN_INDEX    -1
#endif

/**
 * This is the name under which the device is registered in /proc/modules.
 */
#define REG_NAME  "z90crypt"

/**
 * Cleanup should run every CLEANUPTIME seconds and should clean up requests
 * older than CLEANUPTIME seconds in the past.
 */
#ifndef CLEANUPTIME
#define CLEANUPTIME 15
#endif

/**
 * Config should run every CONFIGTIME seconds
 */
#ifndef CONFIGTIME
#define CONFIGTIME 30
#endif

/**
 * The first execution of the config task should take place
 * immediately after initialization
 */
#ifndef INITIAL_CONFIGTIME
#define INITIAL_CONFIGTIME 1
#endif

/**
 * Reader should run every READERTIME milliseconds
 * With the 100Hz patch for s390, z90crypt can lock the system solid while
 * under heavy load. We'll try to avoid that.
 */
#ifndef READERTIME
#if HZ > 1000
#define READERTIME 2
#else
#define READERTIME 10
#endif
#endif

/**
 * turn long device array index into device pointer
 */
#define LONG2DEVPTR(ndx) (z90crypt.device_p[(ndx)])

/**
 * turn short device array index into long device array index
 */
#define SHRT2LONG(ndx) (z90crypt.overall_device_x.device_index[(ndx)])

/**
 * turn short device array index into device pointer
 */
#define SHRT2DEVPTR(ndx) LONG2DEVPTR(SHRT2LONG(ndx))

/**
 * Status for a work-element
 */
#define STAT_DEFAULT    0x00 // request has not been processed

#define STAT_ROUTED     0x80 // bit 7: requests get routed to specific device
                       //            else, device is determined each write
#define STAT_FAILED     0x40 // bit 6: this bit is set if the request failed
                       //            before being sent to the hardware.
#define STAT_WRITTEN    0x30 // bits 5-4: work to be done, not sent to device
//                0x20 // UNUSED state
#define STAT_READPEND   0x10 // bits 5-4: work done, we're returning data now
#define STAT_NOWORK     0x00 // bits off: no work on any queue
#define STAT_RDWRMASK   0x30 // mask for bits 5-4

/**
 * Macros to check the status RDWRMASK
 */
#define CHK_RDWRMASK(statbyte) ((statbyte) & STAT_RDWRMASK)
#define SET_RDWRMASK(statbyte, newval) \
      {(statbyte) &= ~STAT_RDWRMASK; (statbyte) |= newval;}

/**
 * Audit Trail.    Progress of a Work element
 * audit[0]: Unless noted otherwise, these bits are all set by the process
 */
#define FP_COPYFROM     0x80 // Caller's buffer has been copied to work element
#define FP_BUFFREQ      0x40 // Low Level buffer requested
#define FP_BUFFGOT      0x20 // Low Level buffer obtained
#define FP_SENT         0x10 // Work element sent to a crypto device
                       // (may be set by process or by reader task)
#define FP_PENDING      0x08 // Work element placed on pending queue
                       // (may be set by process or by reader task)
#define FP_REQUEST      0x04 // Work element placed on request queue
#define FP_ASLEEP 0x02 // Work element about to sleep
#define FP_AWAKE  0x01 // Work element has been awakened

/**
 * audit[1]: These bits are set by the reader task and/or the cleanup task
 */
#define FP_NOTPENDING     0x80 // Work element removed from pending queue
#define FP_AWAKENING      0x40 // Caller about to be awakened
#define FP_TIMEDOUT       0x20 // Caller timed out
#define FP_RESPSIZESET    0x10 // Response size copied to work element
#define FP_RESPADDRCOPIED 0x08 // Response address copied to work element
#define FP_RESPBUFFCOPIED 0x04 // Response buffer copied to work element
#define FP_REMREQUEST     0x02 // Work element removed from request queue
#define FP_SIGNALED       0x01 // Work element was awakened by a signal

/**
 * audit[2]: unused
 */

/**
 * state of the file handle in private_data.status
 */
#define STAT_OPEN 0
#define STAT_CLOSED 1

/**
 * PID() expands to the process ID of the current process
 */
#define PID() (current->pid)

/**
 * Selected Constants.  The number of APs and the number of devices
 */
#ifndef Z90CRYPT_NUM_APS
#define Z90CRYPT_NUM_APS 64
#endif
#ifndef Z90CRYPT_NUM_DEVS
#define Z90CRYPT_NUM_DEVS Z90CRYPT_NUM_APS
#endif

/**
 * Buffer size for receiving responses. The maximum Response Size
 * is actually the maximum request size, since in an error condition
 * the request itself may be returned unchanged.
 */
#define MAX_RESPONSE_SIZE 0x0000077C

/**
 * A count and status-byte mask
 */
struct status {
      int         st_count;             // # of enabled devices
      int         disabled_count;       // # of disabled devices
      int         user_disabled_count;  // # of devices disabled via proc fs
      unsigned char st_mask[Z90CRYPT_NUM_APS]; // current status mask
};

/**
 * The array of device indexes is a mechanism for fast indexing into
 * a long (and sparse) array.  For instance, if APs 3, 9 and 47 are
 * installed, z90CDeviceIndex[0] is 3, z90CDeviceIndex[1] is 9, and
 * z90CDeviceIndex[2] is 47.
 */
00213 struct device_x {
      int device_index[Z90CRYPT_NUM_DEVS];
};

/**
 * All devices are arranged in a single array: 64 APs
 */
00220 struct device {
      int          dev_type;      // PCICA, PCICC, PCIXCC_MCL2,
                                  // PCIXCC_MCL3, CEX2C, CEX2A
      enum devstat       dev_stat;      // current device status
      int          dev_self_x;          // Index in array
      int          disabled;      // Set when device is in error
      int          user_disabled;       // Set when device is disabled by user
      int          dev_q_depth;         // q depth
      unsigned char *    dev_resp_p;          // Response buffer address
      int          dev_resp_l;          // Response Buffer length
      int          dev_caller_count;  // Number of callers
      int          dev_total_req_cnt; // # requests for device since load
      struct list_head dev_caller_list;   // List of callers
};

/**
 * There's a struct status and a struct device_x for each device type.
 */
00238 struct hdware_block {
      struct status     hdware_mask;
      struct status     type_mask[Z90CRYPT_NUM_TYPES];
      struct device_x type_x_addr[Z90CRYPT_NUM_TYPES];
      unsigned char     device_type_array[Z90CRYPT_NUM_APS];
};

/**
 * z90crypt is the topmost data structure in the hierarchy.
 */
00248 struct z90crypt {
      int              max_count;         // Nr of possible crypto devices
      struct status          mask;
      int              q_depth_array[Z90CRYPT_NUM_DEVS];
      int              dev_type_array[Z90CRYPT_NUM_DEVS];
      struct device_x        overall_device_x;  // array device indexes
      struct device *        device_p[Z90CRYPT_NUM_DEVS];
      int              terminating;
      int              domain_established;// TRUE:  domain has been found
      int              cdx;         // Crypto Domain Index
      int              len;         // Length of this data structure
      struct hdware_block *hdware_info;
};

/**
 * An array of these structures is pointed to from dev_caller
 * The length of the array depends on the device type. For APs,
 * there are 8.
 *
 * The caller buffer is allocated to the user at OPEN. At WRITE,
 * it contains the request; at READ, the response. The function
 * send_to_crypto_device converts the request to device-dependent
 * form and use the caller's OPEN-allocated buffer for the response.
 *
 * For the contents of caller_dev_dep_req and caller_dev_dep_req_p
 * because that points to it, see the discussion in z90hardware.c.
 * Search for "extended request message block".
 */
00276 struct caller {
      int          caller_buf_l;           // length of original request
      unsigned char *    caller_buf_p;           // Original request on WRITE
      int          caller_dev_dep_req_l;   // len device dependent request
      unsigned char *    caller_dev_dep_req_p;   // Device dependent form
      unsigned char      caller_id[8];           // caller-supplied message id
      struct list_head caller_liste;
      unsigned char      caller_dev_dep_req[MAX_RESPONSE_SIZE];
};

/**
 * Function prototypes from z90hardware.c
 */
enum hdstat query_online(int deviceNr, int cdx, int resetNr, int *q_depth,
                   int *dev_type);
enum devstat reset_device(int deviceNr, int cdx, int resetNr);
enum devstat send_to_AP(int dev_nr, int cdx, int msg_len, unsigned char *msg_ext);
enum devstat receive_from_AP(int dev_nr, int cdx, int resplen,
                       unsigned char *resp, unsigned char *psmid);
int convert_request(unsigned char *buffer, int func, unsigned short function,
                int cdx, int dev_type, int *msg_l_p, unsigned char *msg_p);
int convert_response(unsigned char *response, unsigned char *buffer,
                 int *respbufflen_p, unsigned char *resp_buff);

/**
 * Low level function prototypes
 */
static int create_z90crypt(int *cdx_p);
static int refresh_z90crypt(int *cdx_p);
static int find_crypto_devices(struct status *deviceMask);
static int create_crypto_device(int index);
static int destroy_crypto_device(int index);
static void destroy_z90crypt(void);
static int refresh_index_array(struct status *status_str,
                         struct device_x *index_array);
static int probe_device_type(struct device *devPtr);
static int probe_PCIXCC_type(struct device *devPtr);

/**
 * proc fs definitions
 */
static struct proc_dir_entry *z90crypt_entry;

/**
 * data structures
 */

/**
 * work_element.opener points back to this structure
 */
00326 struct priv_data {
      pid_t opener_pid;
      unsigned char     status;           // 0: open  1: closed
};

/**
 * A work element is allocated for each request
 */
00334 struct work_element {
      struct priv_data *priv_data;
      pid_t         pid;
      int           devindex;   // index of device processing this w_e
                                // (If request did not specify device,
                                // -1 until placed onto a queue)
      int           devtype;
      struct list_head  liste;        // used for requestq and pendingq
      char          buffer[128];      // local copy of user request
      int           buff_size;        // size of the buffer for the request
      char          resp_buff[RESPBUFFSIZE];
      int           resp_buff_size;
      char __user *       resp_addr;        // address of response in user space
      unsigned int        funccode;   // function code of request
      wait_queue_head_t waitq;
      unsigned long       requestsent;      // time at which the request was sent
      atomic_t      alarmrung;        // wake-up signal
      unsigned char       caller_id[8];     // pid + counter, for this w_e
      unsigned char       status[1];        // bits to mark status of the request
      unsigned char       audit[3];   // record of work element's progress
      unsigned char *     requestptr;       // address of request buffer
      int           retcode;    // return code of request
};

/**
 * High level function prototypes
 */
static int z90crypt_open(struct inode *, struct file *);
static int z90crypt_release(struct inode *, struct file *);
static ssize_t z90crypt_read(struct file *, char __user *, size_t, loff_t *);
static ssize_t z90crypt_write(struct file *, const char __user *,
                                          size_t, loff_t *);
static long z90crypt_unlocked_ioctl(struct file *, unsigned int, unsigned long);
static long z90crypt_compat_ioctl(struct file *, unsigned int, unsigned long);

static void z90crypt_reader_task(unsigned long);
static void z90crypt_schedule_reader_task(unsigned long);
static void z90crypt_config_task(unsigned long);
static void z90crypt_cleanup_task(unsigned long);

static int z90crypt_status(char *, char **, off_t, int, int *, void *);
static int z90crypt_status_write(struct file *, const char __user *,
                         unsigned long, void *);

/**
 * Storage allocated at initialization and used throughout the life of
 * this insmod
 */
static int domain = DOMAIN_INDEX;
static struct z90crypt z90crypt;
static int quiesce_z90crypt;
static spinlock_t queuespinlock;
static struct list_head request_list;
static int requestq_count;
static struct list_head pending_list;
static int pendingq_count;

static struct tasklet_struct reader_tasklet;
static struct timer_list reader_timer;
static struct timer_list config_timer;
static struct timer_list cleanup_timer;
static atomic_t total_open;
static atomic_t z90crypt_step;

static struct file_operations z90crypt_fops = {
      .owner            = THIS_MODULE,
      .read       = z90crypt_read,
      .write            = z90crypt_write,
      .unlocked_ioctl   = z90crypt_unlocked_ioctl,
#ifdef CONFIG_COMPAT
      .compat_ioctl     = z90crypt_compat_ioctl,
#endif
      .open       = z90crypt_open,
      .release    = z90crypt_release
};

static struct miscdevice z90crypt_misc_device = {
      .minor          = Z90CRYPT_MINOR,
      .name     = DEV_NAME,
      .fops     = &z90crypt_fops,
};

/**
 * Documentation values.
 */
MODULE_AUTHOR("zSeries Linux Crypto Team: Robert H. Burroughs, Eric D. Rossman"
            "and Jochen Roehrig");
MODULE_DESCRIPTION("zSeries Linux Cryptographic Coprocessor device driver, "
               "Copyright 2001, 2005 IBM Corporation");
MODULE_LICENSE("GPL");
module_param(domain, int, 0);
MODULE_PARM_DESC(domain, "domain index for device");

#ifdef CONFIG_COMPAT
/**
 * ioctl32 conversion routines
 */
struct ica_rsa_modexpo_32 { // For 32-bit callers
      compat_uptr_t     inputdata;
      unsigned int      inputdatalength;
      compat_uptr_t     outputdata;
      unsigned int      outputdatalength;
      compat_uptr_t     b_key;
      compat_uptr_t     n_modulus;
};

static long
trans_modexpo32(struct file *filp, unsigned int cmd, unsigned long arg)
{
      struct ica_rsa_modexpo_32 __user *mex32u = compat_ptr(arg);
      struct ica_rsa_modexpo_32  mex32k;
      struct ica_rsa_modexpo __user *mex64;
      long ret = 0;
      unsigned int i;

      if (!access_ok(VERIFY_WRITE, mex32u, sizeof(struct ica_rsa_modexpo_32)))
            return -EFAULT;
      mex64 = compat_alloc_user_space(sizeof(struct ica_rsa_modexpo));
      if (!access_ok(VERIFY_WRITE, mex64, sizeof(struct ica_rsa_modexpo)))
            return -EFAULT;
      if (copy_from_user(&mex32k, mex32u, sizeof(struct ica_rsa_modexpo_32)))
            return -EFAULT;
      if (__put_user(compat_ptr(mex32k.inputdata), &mex64->inputdata)   ||
          __put_user(mex32k.inputdatalength, &mex64->inputdatalength)   ||
          __put_user(compat_ptr(mex32k.outputdata), &mex64->outputdata) ||
          __put_user(mex32k.outputdatalength, &mex64->outputdatalength) ||
          __put_user(compat_ptr(mex32k.b_key), &mex64->b_key)           ||
          __put_user(compat_ptr(mex32k.n_modulus), &mex64->n_modulus))
            return -EFAULT;
      ret = z90crypt_unlocked_ioctl(filp, cmd, (unsigned long)mex64);
      if (!ret)
            if (__get_user(i, &mex64->outputdatalength) ||
                __put_user(i, &mex32u->outputdatalength))
                  ret = -EFAULT;
      return ret;
}

struct ica_rsa_modexpo_crt_32 { // For 32-bit callers
      compat_uptr_t     inputdata;
      unsigned int      inputdatalength;
      compat_uptr_t     outputdata;
      unsigned int      outputdatalength;
      compat_uptr_t     bp_key;
      compat_uptr_t     bq_key;
      compat_uptr_t     np_prime;
      compat_uptr_t     nq_prime;
      compat_uptr_t     u_mult_inv;
};

static long
trans_modexpo_crt32(struct file *filp, unsigned int cmd, unsigned long arg)
{
      struct ica_rsa_modexpo_crt_32 __user *crt32u = compat_ptr(arg);
      struct ica_rsa_modexpo_crt_32  crt32k;
      struct ica_rsa_modexpo_crt __user *crt64;
      long ret = 0;
      unsigned int i;

      if (!access_ok(VERIFY_WRITE, crt32u,
                   sizeof(struct ica_rsa_modexpo_crt_32)))
            return -EFAULT;
      crt64 = compat_alloc_user_space(sizeof(struct ica_rsa_modexpo_crt));
      if (!access_ok(VERIFY_WRITE, crt64, sizeof(struct ica_rsa_modexpo_crt)))
            return -EFAULT;
      if (copy_from_user(&crt32k, crt32u,
                     sizeof(struct ica_rsa_modexpo_crt_32)))
            return -EFAULT;
      if (__put_user(compat_ptr(crt32k.inputdata), &crt64->inputdata)   ||
          __put_user(crt32k.inputdatalength, &crt64->inputdatalength)   ||
          __put_user(compat_ptr(crt32k.outputdata), &crt64->outputdata) ||
          __put_user(crt32k.outputdatalength, &crt64->outputdatalength) ||
          __put_user(compat_ptr(crt32k.bp_key), &crt64->bp_key)         ||
          __put_user(compat_ptr(crt32k.bq_key), &crt64->bq_key)         ||
          __put_user(compat_ptr(crt32k.np_prime), &crt64->np_prime)     ||
          __put_user(compat_ptr(crt32k.nq_prime), &crt64->nq_prime)     ||
          __put_user(compat_ptr(crt32k.u_mult_inv), &crt64->u_mult_inv))
            return -EFAULT;
      ret = z90crypt_unlocked_ioctl(filp, cmd, (unsigned long)crt64);
      if (!ret)
            if (__get_user(i, &crt64->outputdatalength) ||
                __put_user(i, &crt32u->outputdatalength))
                  ret = -EFAULT;
      return ret;
}

static long
z90crypt_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
      switch (cmd) {
      case ICAZ90STATUS:
      case Z90QUIESCE:
      case Z90STAT_TOTALCOUNT:
      case Z90STAT_PCICACOUNT:
      case Z90STAT_PCICCCOUNT:
      case Z90STAT_PCIXCCCOUNT:
      case Z90STAT_PCIXCCMCL2COUNT:
      case Z90STAT_PCIXCCMCL3COUNT:
      case Z90STAT_CEX2CCOUNT:
      case Z90STAT_REQUESTQ_COUNT:
      case Z90STAT_PENDINGQ_COUNT:
      case Z90STAT_TOTALOPEN_COUNT:
      case Z90STAT_DOMAIN_INDEX:
      case Z90STAT_STATUS_MASK:
      case Z90STAT_QDEPTH_MASK:
      case Z90STAT_PERDEV_REQCNT:
            return z90crypt_unlocked_ioctl(filp, cmd, arg);
      case ICARSAMODEXPO:
            return trans_modexpo32(filp, cmd, arg);
      case ICARSACRT:
            return trans_modexpo_crt32(filp, cmd, arg);
      default:
            return -ENOIOCTLCMD;
      }
}
#endif

/**
 * The module initialization code.
 */
static int __init
z90crypt_init_module(void)
{
      int result, nresult;
      struct proc_dir_entry *entry;

      PDEBUG("PID %d\n", PID());

      if ((domain < -1) || (domain > 15)) {
            PRINTKW("Invalid param: domain = %d.  Not loading.\n", domain);
            return -EINVAL;
      }

      /* Register as misc device with given minor (or get a dynamic one). */
      result = misc_register(&z90crypt_misc_device);
      if (result < 0) {
            PRINTKW(KERN_ERR "misc_register (minor %d) failed with %d\n",
                  z90crypt_misc_device.minor, result);
            return result;
      }

      PDEBUG("Registered " DEV_NAME " with result %d\n", result);

      result = create_z90crypt(&domain);
      if (result != 0) {
            PRINTKW("create_z90crypt (domain index %d) failed with %d.\n",
                  domain, result);
            result = -ENOMEM;
            goto init_module_cleanup;
      }

      if (result == 0) {
            PRINTKN("Version %d.%d.%d loaded, built on %s %s\n",
                  z90crypt_VERSION, z90crypt_RELEASE, z90crypt_VARIANT,
                  __DATE__, __TIME__);
            PDEBUG("create_z90crypt (domain index %d) successful.\n",
                   domain);
      } else
            PRINTK("No devices at startup\n");

      /* Initialize globals. */
      spin_lock_init(&queuespinlock);

      INIT_LIST_HEAD(&pending_list);
      pendingq_count = 0;

      INIT_LIST_HEAD(&request_list);
      requestq_count = 0;

      quiesce_z90crypt = 0;

      atomic_set(&total_open, 0);
      atomic_set(&z90crypt_step, 0);

      /* Set up the cleanup task. */
      init_timer(&cleanup_timer);
      cleanup_timer.function = z90crypt_cleanup_task;
      cleanup_timer.data = 0;
      cleanup_timer.expires = jiffies + (CLEANUPTIME * HZ);
      add_timer(&cleanup_timer);

      /* Set up the proc file system */
      entry = create_proc_entry("driver/z90crypt", 0644, 0);
      if (entry) {
            entry->nlink = 1;
            entry->data = 0;
            entry->read_proc = z90crypt_status;
            entry->write_proc = z90crypt_status_write;
      }
      else
            PRINTK("Couldn't create z90crypt proc entry\n");
      z90crypt_entry = entry;

      /* Set up the configuration task. */
      init_timer(&config_timer);
      config_timer.function = z90crypt_config_task;
      config_timer.data = 0;
      config_timer.expires = jiffies + (INITIAL_CONFIGTIME * HZ);
      add_timer(&config_timer);

      /* Set up the reader task */
      tasklet_init(&reader_tasklet, z90crypt_reader_task, 0);
      init_timer(&reader_timer);
      reader_timer.function = z90crypt_schedule_reader_task;
      reader_timer.data = 0;
      reader_timer.expires = jiffies + (READERTIME * HZ / 1000);
      add_timer(&reader_timer);

      return 0; // success

init_module_cleanup:
      if ((nresult = misc_deregister(&z90crypt_misc_device)))
            PRINTK("misc_deregister failed with %d.\n", nresult);
      else
            PDEBUG("misc_deregister successful.\n");

      return result; // failure
}

/**
 * The module termination code
 */
static void __exit
z90crypt_cleanup_module(void)
{
      int nresult;

      PDEBUG("PID %d\n", PID());

      remove_proc_entry("driver/z90crypt", 0);

      if ((nresult = misc_deregister(&z90crypt_misc_device)))
            PRINTK("misc_deregister failed with %d.\n", nresult);
      else
            PDEBUG("misc_deregister successful.\n");

      /* Remove the tasks */
      tasklet_kill(&reader_tasklet);
      del_timer(&reader_timer);
      del_timer(&config_timer);
      del_timer(&cleanup_timer);

      destroy_z90crypt();

      PRINTKN("Unloaded.\n");
}

/**
 * Functions running under a process id
 *
 * The I/O functions:
 *     z90crypt_open
 *     z90crypt_release
 *     z90crypt_read
 *     z90crypt_write
 *     z90crypt_unlocked_ioctl
 *     z90crypt_status
 *     z90crypt_status_write
 *     disable_card
 *     enable_card
 *
 * Helper functions:
 *     z90crypt_rsa
 *     z90crypt_prepare
 *     z90crypt_send
 *     z90crypt_process_results
 *
 */
static int
z90crypt_open(struct inode *inode, struct file *filp)
{
      struct priv_data *private_data_p;

      if (quiesce_z90crypt)
            return -EQUIESCE;

      private_data_p = kzalloc(sizeof(struct priv_data), GFP_KERNEL);
      if (!private_data_p) {
            PRINTK("Memory allocate failed\n");
            return -ENOMEM;
      }

      private_data_p->status = STAT_OPEN;
      private_data_p->opener_pid = PID();
      filp->private_data = private_data_p;
      atomic_inc(&total_open);

      return 0;
}

static int
z90crypt_release(struct inode *inode, struct file *filp)
{
      struct priv_data *private_data_p = filp->private_data;

      PDEBUG("PID %d (filp %p)\n", PID(), filp);

      private_data_p->status = STAT_CLOSED;
      memset(private_data_p, 0, sizeof(struct priv_data));
      kfree(private_data_p);
      atomic_dec(&total_open);

      return 0;
}

/*
 * there are two read functions, of which compile options will choose one
 * without USE_GET_RANDOM_BYTES
 *   => read() always returns -EPERM;
 * otherwise
 *   => read() uses get_random_bytes() kernel function
 */
#ifndef USE_GET_RANDOM_BYTES
/**
 * z90crypt_read will not be supported beyond z90crypt 1.3.1
 */
static ssize_t
z90crypt_read(struct file *filp, char __user *buf, size_t count, loff_t *f_pos)
{
      PDEBUG("filp %p (PID %d)\n", filp, PID());
      return -EPERM;
}
#else // we want to use get_random_bytes
/**
 * read() just returns a string of random bytes.  Since we have no way
 * to generate these cryptographically, we just execute get_random_bytes
 * for the length specified.
 */
#include <linux/random.h>
static ssize_t
z90crypt_read(struct file *filp, char __user *buf, size_t count, loff_t *f_pos)
{
      unsigned char *temp_buff;

      PDEBUG("filp %p (PID %d)\n", filp, PID());

      if (quiesce_z90crypt)
            return -EQUIESCE;
      if (count < 0) {
            PRINTK("Requested random byte count negative: %ld\n", count);
            return -EINVAL;
      }
      if (count > RESPBUFFSIZE) {
            PDEBUG("count[%d] > RESPBUFFSIZE", count);
            return -EINVAL;
      }
      if (count == 0)
            return 0;
      temp_buff = kmalloc(RESPBUFFSIZE, GFP_KERNEL);
      if (!temp_buff) {
            PRINTK("Memory allocate failed\n");
            return -ENOMEM;
      }
      get_random_bytes(temp_buff, count);

      if (copy_to_user(buf, temp_buff, count) != 0) {
            kfree(temp_buff);
            return -EFAULT;
      }
      kfree(temp_buff);
      return count;
}
#endif

/**
 * Write is is not allowed
 */
static ssize_t
z90crypt_write(struct file *filp, const char __user *buf, size_t count, loff_t *f_pos)
{
      PDEBUG("filp %p (PID %d)\n", filp, PID());
      return -EPERM;
}

/**
 * New status functions
 */
static inline int
get_status_totalcount(void)
{
      return z90crypt.hdware_info->hdware_mask.st_count;
}

static inline int
get_status_PCICAcount(void)
{
      return z90crypt.hdware_info->type_mask[PCICA].st_count;
}

static inline int
get_status_PCICCcount(void)
{
      return z90crypt.hdware_info->type_mask[PCICC].st_count;
}

static inline int
get_status_PCIXCCcount(void)
{
      return z90crypt.hdware_info->type_mask[PCIXCC_MCL2].st_count +
             z90crypt.hdware_info->type_mask[PCIXCC_MCL3].st_count;
}

static inline int
get_status_PCIXCCMCL2count(void)
{
      return z90crypt.hdware_info->type_mask[PCIXCC_MCL2].st_count;
}

static inline int
get_status_PCIXCCMCL3count(void)
{
      return z90crypt.hdware_info->type_mask[PCIXCC_MCL3].st_count;
}

static inline int
get_status_CEX2Ccount(void)
{
      return z90crypt.hdware_info->type_mask[CEX2C].st_count;
}

static inline int
get_status_CEX2Acount(void)
{
      return z90crypt.hdware_info->type_mask[CEX2A].st_count;
}

static inline int
get_status_requestq_count(void)
{
      return requestq_count;
}

static inline int
get_status_pendingq_count(void)
{
      return pendingq_count;
}

static inline int
get_status_totalopen_count(void)
{
      return atomic_read(&total_open);
}

static inline int
get_status_domain_index(void)
{
      return z90crypt.cdx;
}

static inline unsigned char *
get_status_status_mask(unsigned char status[Z90CRYPT_NUM_APS])
{
      int i, ix;

      memcpy(status, z90crypt.hdware_info->device_type_array,
             Z90CRYPT_NUM_APS);

      for (i = 0; i < get_status_totalcount(); i++) {
            ix = SHRT2LONG(i);
            if (LONG2DEVPTR(ix)->user_disabled)
                  status[ix] = 0x0d;
      }

      return status;
}

static inline unsigned char *
get_status_qdepth_mask(unsigned char qdepth[Z90CRYPT_NUM_APS])
{
      int i, ix;

      memset(qdepth, 0, Z90CRYPT_NUM_APS);

      for (i = 0; i < get_status_totalcount(); i++) {
            ix = SHRT2LONG(i);
            qdepth[ix] = LONG2DEVPTR(ix)->dev_caller_count;
      }

      return qdepth;
}

static inline unsigned int *
get_status_perdevice_reqcnt(unsigned int reqcnt[Z90CRYPT_NUM_APS])
{
      int i, ix;

      memset(reqcnt, 0, Z90CRYPT_NUM_APS * sizeof(int));

      for (i = 0; i < get_status_totalcount(); i++) {
            ix = SHRT2LONG(i);
            reqcnt[ix] = LONG2DEVPTR(ix)->dev_total_req_cnt;
      }

      return reqcnt;
}

static inline void
init_work_element(struct work_element *we_p,
              struct priv_data *priv_data, pid_t pid)
{
      int step;

      we_p->requestptr = (unsigned char *)we_p + sizeof(struct work_element);
      /* Come up with a unique id for this caller. */
      step = atomic_inc_return(&z90crypt_step);
      memcpy(we_p->caller_id+0, (void *) &pid, sizeof(pid));
      memcpy(we_p->caller_id+4, (void *) &step, sizeof(step));
      we_p->pid = pid;
      we_p->priv_data = priv_data;
      we_p->status[0] = STAT_DEFAULT;
      we_p->audit[0] = 0x00;
      we_p->audit[1] = 0x00;
      we_p->audit[2] = 0x00;
      we_p->resp_buff_size = 0;
      we_p->retcode = 0;
      we_p->devindex = -1;
      we_p->devtype = -1;
      atomic_set(&we_p->alarmrung, 0);
      init_waitqueue_head(&we_p->waitq);
      INIT_LIST_HEAD(&(we_p->liste));
}

static inline int
allocate_work_element(struct work_element **we_pp,
                  struct priv_data *priv_data_p, pid_t pid)
{
      struct work_element *we_p;

      we_p = (struct work_element *) get_zeroed_page(GFP_KERNEL);
      if (!we_p)
            return -ENOMEM;
      init_work_element(we_p, priv_data_p, pid);
      *we_pp = we_p;
      return 0;
}

static inline void
remove_device(struct device *device_p)
{
      if (!device_p || (device_p->disabled != 0))
            return;
      device_p->disabled = 1;
      z90crypt.hdware_info->type_mask[device_p->dev_type].disabled_count++;
      z90crypt.hdware_info->hdware_mask.disabled_count++;
}

/**
 * Bitlength limits for each card
 *
 * There are new MCLs which allow more bitlengths. See the table for details.
 * The MCL must be applied and the newer bitlengths enabled for these to work.
 *
 * Card Type    Old limit    New limit
 * PCICA          ??-2048     same (the lower limit is less than 128 bit...)
 * PCICC         512-1024     512-2048
 * PCIXCC_MCL2   512-2048     ----- (applying any GA LIC will make an MCL3 card)
 * PCIXCC_MCL3   -----        128-2048
 * CEX2C         512-2048     128-2048
 * CEX2A          ??-2048     same (the lower limit is less than 128 bit...)
 *
 * ext_bitlens (extended bitlengths) is a global, since you should not apply an
 * MCL to just one card in a machine. We assume, at first, that all cards have
 * these capabilities.
 */
int ext_bitlens = 1; // This is global
#define PCIXCC_MIN_MOD_SIZE    16   //  128 bits
#define OLD_PCIXCC_MIN_MOD_SIZE      64   //  512 bits
#define PCICC_MIN_MOD_SIZE     64   //  512 bits
#define OLD_PCICC_MAX_MOD_SIZE      128   // 1024 bits
#define MAX_MOD_SIZE          256   // 2048 bits

static inline int
select_device_type(int *dev_type_p, int bytelength)
{
      static int count = 0;
      int PCICA_avail, PCIXCC_MCL3_avail, CEX2C_avail, CEX2A_avail,
          index_to_use;
      struct status *stat;
      if ((*dev_type_p != PCICC) && (*dev_type_p != PCICA) &&
          (*dev_type_p != PCIXCC_MCL2) && (*dev_type_p != PCIXCC_MCL3) &&
          (*dev_type_p != CEX2C) && (*dev_type_p != CEX2A) &&
          (*dev_type_p != ANYDEV))
            return -1;
      if (*dev_type_p != ANYDEV) {
            stat = &z90crypt.hdware_info->type_mask[*dev_type_p];
            if (stat->st_count >
                (stat->disabled_count + stat->user_disabled_count))
                  return 0;
            return -1;
      }

      /**
       * Assumption: PCICA, PCIXCC_MCL3, CEX2C, and CEX2A are all similar in
       * speed.
       *
       * PCICA and CEX2A do NOT co-exist, so it would be either one or the
       * other present.
       */
      stat = &z90crypt.hdware_info->type_mask[PCICA];
      PCICA_avail = stat->st_count -
                  (stat->disabled_count + stat->user_disabled_count);
      stat = &z90crypt.hdware_info->type_mask[PCIXCC_MCL3];
      PCIXCC_MCL3_avail = stat->st_count -
                  (stat->disabled_count + stat->user_disabled_count);
      stat = &z90crypt.hdware_info->type_mask[CEX2C];
      CEX2C_avail = stat->st_count -
                  (stat->disabled_count + stat->user_disabled_count);
      stat = &z90crypt.hdware_info->type_mask[CEX2A];
      CEX2A_avail = stat->st_count -
                  (stat->disabled_count + stat->user_disabled_count);
      if (PCICA_avail || PCIXCC_MCL3_avail || CEX2C_avail || CEX2A_avail) {
            /**
             * bitlength is a factor, PCICA or CEX2A are the most capable,
             * even with the new MCL for PCIXCC.
             */
            if ((bytelength < PCIXCC_MIN_MOD_SIZE) ||
                (!ext_bitlens && (bytelength < OLD_PCIXCC_MIN_MOD_SIZE))) {
                  if (PCICA_avail) {
                        *dev_type_p = PCICA;
                        return 0;
                  }
                  if (CEX2A_avail) {
                        *dev_type_p = CEX2A;
                        return 0;
                  }
                  return -1;
            }

            index_to_use = count % (PCICA_avail + PCIXCC_MCL3_avail +
                              CEX2C_avail + CEX2A_avail);
            if (index_to_use < PCICA_avail)
                  *dev_type_p = PCICA;
            else if (index_to_use < (PCICA_avail + PCIXCC_MCL3_avail))
                  *dev_type_p = PCIXCC_MCL3;
            else if (index_to_use < (PCICA_avail + PCIXCC_MCL3_avail +
                               CEX2C_avail))
                  *dev_type_p = CEX2C;
            else
                  *dev_type_p = CEX2A;
            count++;
            return 0;
      }

      /* Less than OLD_PCIXCC_MIN_MOD_SIZE cannot go to a PCIXCC_MCL2 */
      if (bytelength < OLD_PCIXCC_MIN_MOD_SIZE)
            return -1;
      stat = &z90crypt.hdware_info->type_mask[PCIXCC_MCL2];
      if (stat->st_count >
          (stat->disabled_count + stat->user_disabled_count)) {
            *dev_type_p = PCIXCC_MCL2;
            return 0;
      }

      /**
       * Less than PCICC_MIN_MOD_SIZE or more than OLD_PCICC_MAX_MOD_SIZE
       * (if we don't have the MCL applied and the newer bitlengths enabled)
       * cannot go to a PCICC
       */
      if ((bytelength < PCICC_MIN_MOD_SIZE) ||
          (!ext_bitlens && (bytelength > OLD_PCICC_MAX_MOD_SIZE))) {
            return -1;
      }
      stat = &z90crypt.hdware_info->type_mask[PCICC];
      if (stat->st_count >
          (stat->disabled_count + stat->user_disabled_count)) {
            *dev_type_p = PCICC;
            return 0;
      }

      return -1;
}

/**
 * Try the selected number, then the selected type (can be ANYDEV)
 */
static inline int
select_device(int *dev_type_p, int *device_nr_p, int bytelength)
{
      int i, indx, devTp, low_count, low_indx;
      struct device_x *index_p;
      struct device *dev_ptr;

      PDEBUG("device type = %d, index = %d\n", *dev_type_p, *device_nr_p);
      if ((*device_nr_p >= 0) && (*device_nr_p < Z90CRYPT_NUM_DEVS)) {
            PDEBUG("trying index = %d\n", *device_nr_p);
            dev_ptr = z90crypt.device_p[*device_nr_p];

            if (dev_ptr &&
                (dev_ptr->dev_stat != DEV_GONE) &&
                (dev_ptr->disabled == 0) &&
                (dev_ptr->user_disabled == 0)) {
                  PDEBUG("selected by number, index = %d\n",
                         *device_nr_p);
                  *dev_type_p = dev_ptr->dev_type;
                  return *device_nr_p;
            }
      }
      *device_nr_p = -1;
      PDEBUG("trying type = %d\n", *dev_type_p);
      devTp = *dev_type_p;
      if (select_device_type(&devTp, bytelength) == -1) {
            PDEBUG("failed to select by type\n");
            return -1;
      }
      PDEBUG("selected type = %d\n", devTp);
      index_p = &z90crypt.hdware_info->type_x_addr[devTp];
      low_count = 0x0000FFFF;
      low_indx = -1;
      for (i = 0; i < z90crypt.hdware_info->type_mask[devTp].st_count; i++) {
            indx = index_p->device_index[i];
            dev_ptr = z90crypt.device_p[indx];
            if (dev_ptr &&
                (dev_ptr->dev_stat != DEV_GONE) &&
                (dev_ptr->disabled == 0) &&
                (dev_ptr->user_disabled == 0) &&
                (devTp == dev_ptr->dev_type) &&
                (low_count > dev_ptr->dev_caller_count)) {
                  low_count = dev_ptr->dev_caller_count;
                  low_indx = indx;
            }
      }
      *device_nr_p = low_indx;
      return low_indx;
}

static inline int
send_to_crypto_device(struct work_element *we_p)
{
      struct caller *caller_p;
      struct device *device_p;
      int dev_nr;
      int bytelen = ((struct ica_rsa_modexpo *)we_p->buffer)->inputdatalength;

      if (!we_p->requestptr)
            return SEN_FATAL_ERROR;
      caller_p = (struct caller *)we_p->requestptr;
      dev_nr = we_p->devindex;
      if (select_device(&we_p->devtype, &dev_nr, bytelen) == -1) {
            if (z90crypt.hdware_info->hdware_mask.st_count != 0)
                  return SEN_RETRY;
            else
                  return SEN_NOT_AVAIL;
      }
      we_p->devindex = dev_nr;
      device_p = z90crypt.device_p[dev_nr];
      if (!device_p)
            return SEN_NOT_AVAIL;
      if (device_p->dev_type != we_p->devtype)
            return SEN_RETRY;
      if (device_p->dev_caller_count >= device_p->dev_q_depth)
            return SEN_QUEUE_FULL;
      PDEBUG("device number prior to send: %d\n", dev_nr);
      switch (send_to_AP(dev_nr, z90crypt.cdx,
                     caller_p->caller_dev_dep_req_l,
                     caller_p->caller_dev_dep_req_p)) {
      case DEV_SEN_EXCEPTION:
            PRINTKC("Exception during send to device %d\n", dev_nr);
            z90crypt.terminating = 1;
            return SEN_FATAL_ERROR;
      case DEV_GONE:
            PRINTK("Device %d not available\n", dev_nr);
            remove_device(device_p);
            return SEN_NOT_AVAIL;
      case DEV_EMPTY:
            return SEN_NOT_AVAIL;
      case DEV_NO_WORK:
            return SEN_FATAL_ERROR;
      case DEV_BAD_MESSAGE:
            return SEN_USER_ERROR;
      case DEV_QUEUE_FULL:
            return SEN_QUEUE_FULL;
      default:
      case DEV_ONLINE:
            break;
      }
      list_add_tail(&(caller_p->caller_liste), &(device_p->dev_caller_list));
      device_p->dev_caller_count++;
      return 0;
}

/**
 * Send puts the user's work on one of two queues:
 *   the pending queue if the send was successful
 *   the request queue if the send failed because device full or busy
 */
static inline int
z90crypt_send(struct work_element *we_p, const char *buf)
{
      int rv;

      PDEBUG("PID %d\n", PID());

      if (CHK_RDWRMASK(we_p->status[0]) != STAT_NOWORK) {
            PDEBUG("PID %d tried to send more work but has outstanding "
                   "work.\n", PID());
            return -EWORKPEND;
      }
      we_p->devindex = -1; // Reset device number
      spin_lock_irq(&queuespinlock);
      rv = send_to_crypto_device(we_p);
      switch (rv) {
      case 0:
            we_p->requestsent = jiffies;
            we_p->audit[0] |= FP_SENT;
            list_add_tail(&we_p->liste, &pending_list);
            ++pendingq_count;
            we_p->audit[0] |= FP_PENDING;
            break;
      case SEN_BUSY:
      case SEN_QUEUE_FULL:
            rv = 0;
            we_p->devindex = -1; // any device will do
            we_p->requestsent = jiffies;
            list_add_tail(&we_p->liste, &request_list);
            ++requestq_count;
            we_p->audit[0] |= FP_REQUEST;
            break;
      case SEN_RETRY:
            rv = -ERESTARTSYS;
            break;
      case SEN_NOT_AVAIL:
            PRINTK("*** No devices available.\n");
            rv = we_p->retcode = -ENODEV;
            we_p->status[0] |= STAT_FAILED;
            break;
      case REC_OPERAND_INV:
      case REC_OPERAND_SIZE:
      case REC_EVEN_MOD:
      case REC_INVALID_PAD:
            rv = we_p->retcode = -EINVAL;
            we_p->status[0] |= STAT_FAILED;
            break;
      default:
            we_p->retcode = rv;
            we_p->status[0] |= STAT_FAILED;
            break;
      }
      if (rv != -ERESTARTSYS)
            SET_RDWRMASK(we_p->status[0], STAT_WRITTEN);
      spin_unlock_irq(&queuespinlock);
      if (rv == 0)
            tasklet_schedule(&reader_tasklet);
      return rv;
}

/**
 * process_results copies the user's work from kernel space.
 */
static inline int
z90crypt_process_results(struct work_element *we_p, char __user *buf)
{
      int rv;

      PDEBUG("we_p %p (PID %d)\n", we_p, PID());

      LONG2DEVPTR(we_p->devindex)->dev_total_req_cnt++;
      SET_RDWRMASK(we_p->status[0], STAT_READPEND);

      rv = 0;
      if (!we_p->buffer) {
            PRINTK("we_p %p PID %d in STAT_READPEND: buffer NULL.\n",
                  we_p, PID());
            rv = -ENOBUFF;
      }

      if (!rv)
            if ((rv = copy_to_user(buf, we_p->buffer, we_p->buff_size))) {
                  PDEBUG("copy_to_user failed: rv = %d\n", rv);
                  rv = -EFAULT;
            }

      if (!rv)
            rv = we_p->retcode;
      if (!rv)
            if (we_p->resp_buff_size
                &&      copy_to_user(we_p->resp_addr, we_p->resp_buff,
                             we_p->resp_buff_size))
                  rv = -EFAULT;

      SET_RDWRMASK(we_p->status[0], STAT_NOWORK);
      return rv;
}

static unsigned char NULL_psmid[8] =
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};

/**
 * Used in device configuration functions
 */
#define MAX_RESET 90

/**
 * This is used only for PCICC support
 */
static inline int
is_PKCS11_padded(unsigned char *buffer, int length)
{
      int i;
      if ((buffer[0] != 0x00) || (buffer[1] != 0x01))
            return 0;
      for (i = 2; i < length; i++)
            if (buffer[i] != 0xFF)
                  break;
      if ((i < 10) || (i == length))
            return 0;
      if (buffer[i] != 0x00)
            return 0;
      return 1;
}

/**
 * This is used only for PCICC support
 */
static inline int
is_PKCS12_padded(unsigned char *buffer, int length)
{
      int i;
      if ((buffer[0] != 0x00) || (buffer[1] != 0x02))
            return 0;
      for (i = 2; i < length; i++)
            if (buffer[i] == 0x00)
                  break;
      if ((i < 10) || (i == length))
            return 0;
      if (buffer[i] != 0x00)
            return 0;
      return 1;
}

/**
 * builds struct caller and converts message from generic format to
 * device-dependent format
 * func is ICARSAMODEXPO or ICARSACRT
 * function is PCI_FUNC_KEY_ENCRYPT or PCI_FUNC_KEY_DECRYPT
 */
static inline int
build_caller(struct work_element *we_p, short function)
{
      int rv;
      struct caller *caller_p = (struct caller *)we_p->requestptr;

      if ((we_p->devtype != PCICC) && (we_p->devtype != PCICA) &&
          (we_p->devtype != PCIXCC_MCL2) && (we_p->devtype != PCIXCC_MCL3) &&
          (we_p->devtype != CEX2C) && (we_p->devtype != CEX2A))
            return SEN_NOT_AVAIL;

      memcpy(caller_p->caller_id, we_p->caller_id,
             sizeof(caller_p->caller_id));
      caller_p->caller_dev_dep_req_p = caller_p->caller_dev_dep_req;
      caller_p->caller_dev_dep_req_l = MAX_RESPONSE_SIZE;
      caller_p->caller_buf_p = we_p->buffer;
      INIT_LIST_HEAD(&(caller_p->caller_liste));

      rv = convert_request(we_p->buffer, we_p->funccode, function,
                       z90crypt.cdx, we_p->devtype,
                       &caller_p->caller_dev_dep_req_l,
                       caller_p->caller_dev_dep_req_p);
      if (rv) {
            if (rv == SEN_NOT_AVAIL)
                  PDEBUG("request can't be processed on hdwr avail\n");
            else
                  PRINTK("Error from convert_request: %d\n", rv);
      }
      else
            memcpy(&(caller_p->caller_dev_dep_req_p[4]), we_p->caller_id,8);
      return rv;
}

static inline void
unbuild_caller(struct device *device_p, struct caller *caller_p)
{
      if (!caller_p)
            return;
      if (caller_p->caller_liste.next && caller_p->caller_liste.prev)
            if (!list_empty(&caller_p->caller_liste)) {
                  list_del_init(&caller_p->caller_liste);
                  device_p->dev_caller_count--;
            }
      memset(caller_p->caller_id, 0, sizeof(caller_p->caller_id));
}

static inline int
get_crypto_request_buffer(struct work_element *we_p)
{
      struct ica_rsa_modexpo *mex_p;
      struct ica_rsa_modexpo_crt *crt_p;
      unsigned char *temp_buffer;
      short function;
      int rv;

      mex_p =     (struct ica_rsa_modexpo *) we_p->buffer;
      crt_p = (struct ica_rsa_modexpo_crt *) we_p->buffer;

      PDEBUG("device type input = %d\n", we_p->devtype);

      if (z90crypt.terminating)
            return REC_NO_RESPONSE;
      if (memcmp(we_p->caller_id, NULL_psmid, 8) == 0) {
            PRINTK("psmid zeroes\n");
            return SEN_FATAL_ERROR;
      }
      if (!we_p->buffer) {
            PRINTK("buffer pointer NULL\n");
            return SEN_USER_ERROR;
      }
      if (!we_p->requestptr) {
            PRINTK("caller pointer NULL\n");
            return SEN_USER_ERROR;
      }

      if ((we_p->devtype != PCICA) && (we_p->devtype != PCICC) &&
          (we_p->devtype != PCIXCC_MCL2) && (we_p->devtype != PCIXCC_MCL3) &&
          (we_p->devtype != CEX2C) && (we_p->devtype != CEX2A) &&
          (we_p->devtype != ANYDEV)) {
            PRINTK("invalid device type\n");
            return SEN_USER_ERROR;
      }

      if ((mex_p->inputdatalength < 1) ||
          (mex_p->inputdatalength > MAX_MOD_SIZE)) {
            PRINTK("inputdatalength[%d] is not valid\n",
                   mex_p->inputdatalength);
            return SEN_USER_ERROR;
      }

      if (mex_p->outputdatalength < mex_p->inputdatalength) {
            PRINTK("outputdatalength[%d] < inputdatalength[%d]\n",
                   mex_p->outputdatalength, mex_p->inputdatalength);
            return SEN_USER_ERROR;
      }

      if (!mex_p->inputdata || !mex_p->outputdata) {
            PRINTK("inputdata[%p] or outputdata[%p] is NULL\n",
                   mex_p->outputdata, mex_p->inputdata);
            return SEN_USER_ERROR;
      }

      /**
       * As long as outputdatalength is big enough, we can set the
       * outputdatalength equal to the inputdatalength, since that is the
       * number of bytes we will copy in any case
       */
      mex_p->outputdatalength = mex_p->inputdatalength;

      rv = 0;
      switch (we_p->funccode) {
      case ICARSAMODEXPO:
            if (!mex_p->b_key || !mex_p->n_modulus)
                  rv = SEN_USER_ERROR;
            break;
      case ICARSACRT:
            if (!IS_EVEN(crt_p->inputdatalength)) {
                  PRINTK("inputdatalength[%d] is odd, CRT form\n",
                         crt_p->inputdatalength);
                  rv = SEN_USER_ERROR;
                  break;
            }
            if (!crt_p->bp_key ||
                !crt_p->bq_key ||
                !crt_p->np_prime ||
                !crt_p->nq_prime ||
                !crt_p->u_mult_inv) {
                  PRINTK("CRT form, bad data: %p/%p/%p/%p/%p\n",
                         crt_p->bp_key, crt_p->bq_key,
                         crt_p->np_prime, crt_p->nq_prime,
                         crt_p->u_mult_inv);
                  rv = SEN_USER_ERROR;
            }
            break;
      default:
            PRINTK("bad func = %d\n", we_p->funccode);
            rv = SEN_USER_ERROR;
            break;
      }
      if (rv != 0)
            return rv;

      if (select_device_type(&we_p->devtype, mex_p->inputdatalength) < 0)
            return SEN_NOT_AVAIL;

      temp_buffer = (unsigned char *)we_p + sizeof(struct work_element) +
                  sizeof(struct caller);
      if (copy_from_user(temp_buffer, mex_p->inputdata,
                     mex_p->inputdatalength) != 0)
            return SEN_RELEASED;

      function = PCI_FUNC_KEY_ENCRYPT;
      switch (we_p->devtype) {
      /* PCICA and CEX2A do everything with a simple RSA mod-expo operation */
      case PCICA:
      case CEX2A:
            function = PCI_FUNC_KEY_ENCRYPT;
            break;
      /**
       * PCIXCC_MCL2 does all Mod-Expo form with a simple RSA mod-expo
       * operation, and all CRT forms with a PKCS-1.2 format decrypt.
       * PCIXCC_MCL3 and CEX2C do all Mod-Expo and CRT forms with a simple RSA
       * mod-expo operation
       */
      case PCIXCC_MCL2:
            if (we_p->funccode == ICARSAMODEXPO)
                  function = PCI_FUNC_KEY_ENCRYPT;
            else
                  function = PCI_FUNC_KEY_DECRYPT;
            break;
      case PCIXCC_MCL3:
      case CEX2C:
            if (we_p->funccode == ICARSAMODEXPO)
                  function = PCI_FUNC_KEY_ENCRYPT;
            else
                  function = PCI_FUNC_KEY_DECRYPT;
            break;
      /**
       * PCICC does everything as a PKCS-1.2 format request
       */
      case PCICC:
            /* PCICC cannot handle input that is is PKCS#1.1 padded */
            if (is_PKCS11_padded(temp_buffer, mex_p->inputdatalength)) {
                  return SEN_NOT_AVAIL;
            }
            if (we_p->funccode == ICARSAMODEXPO) {
                  if (is_PKCS12_padded(temp_buffer,
                                   mex_p->inputdatalength))
                        function = PCI_FUNC_KEY_ENCRYPT;
                  else
                        function = PCI_FUNC_KEY_DECRYPT;
            } else
                  /* all CRT forms are decrypts */
                  function = PCI_FUNC_KEY_DECRYPT;
            break;
      }
      PDEBUG("function: %04x\n", function);
      rv = build_caller(we_p, function);
      PDEBUG("rv from build_caller = %d\n", rv);
      return rv;
}

static inline int
z90crypt_prepare(struct work_element *we_p, unsigned int funccode,
             const char __user *buffer)
{
      int rv;

      we_p->devindex = -1;
      if (funccode == ICARSAMODEXPO)
            we_p->buff_size = sizeof(struct ica_rsa_modexpo);
      else
            we_p->buff_size = sizeof(struct ica_rsa_modexpo_crt);

      if (copy_from_user(we_p->buffer, buffer, we_p->buff_size))
            return -EFAULT;

      we_p->audit[0] |= FP_COPYFROM;
      SET_RDWRMASK(we_p->status[0], STAT_WRITTEN);
      we_p->funccode = funccode;
      we_p->devtype = -1;
      we_p->audit[0] |= FP_BUFFREQ;
      rv = get_crypto_request_buffer(we_p);
      switch (rv) {
      case 0:
            we_p->audit[0] |= FP_BUFFGOT;
            break;
      case SEN_USER_ERROR:
            rv = -EINVAL;
            break;
      case SEN_QUEUE_FULL:
            rv = 0;
            break;
      case SEN_RELEASED:
            rv = -EFAULT;
            break;
      case REC_NO_RESPONSE:
            rv = -ENODEV;
            break;
      case SEN_NOT_AVAIL:
      case EGETBUFF:
            rv = -EGETBUFF;
            break;
      default:
            PRINTK("rv = %d\n", rv);
            rv = -EGETBUFF;
            break;
      }
      if (CHK_RDWRMASK(we_p->status[0]) == STAT_WRITTEN)
            SET_RDWRMASK(we_p->status[0], STAT_DEFAULT);
      return rv;
}

static inline void
purge_work_element(struct work_element *we_p)
{
      struct list_head *lptr;

      spin_lock_irq(&queuespinlock);
      list_for_each(lptr, &request_list) {
            if (lptr == &we_p->liste) {
                  list_del_init(lptr);
                  requestq_count--;
                  break;
            }
      }
      list_for_each(lptr, &pending_list) {
            if (lptr == &we_p->liste) {
                  list_del_init(lptr);
                  pendingq_count--;
                  break;
            }
      }
      spin_unlock_irq(&queuespinlock);
}

/**
 * Build the request and send it.
 */
static inline int
z90crypt_rsa(struct priv_data *private_data_p, pid_t pid,
           unsigned int cmd, unsigned long arg)
{
      struct work_element *we_p;
      int rv;

      if ((rv = allocate_work_element(&we_p, private_data_p, pid))) {
            PDEBUG("PID %d: allocate_work_element returned ENOMEM\n", pid);
            return rv;
      }
      if ((rv = z90crypt_prepare(we_p, cmd, (const char __user *)arg)))
            PDEBUG("PID %d: rv = %d from z90crypt_prepare\n", pid, rv);
      if (!rv)
            if ((rv = z90crypt_send(we_p, (const char *)arg)))
                  PDEBUG("PID %d: rv %d from z90crypt_send.\n", pid, rv);
      if (!rv) {
            we_p->audit[0] |= FP_ASLEEP;
            wait_event(we_p->waitq, atomic_read(&we_p->alarmrung));
            we_p->audit[0] |= FP_AWAKE;
            rv = we_p->retcode;
      }
      if (!rv)
            rv = z90crypt_process_results(we_p, (char __user *)arg);

      if ((we_p->status[0] & STAT_FAILED)) {
            switch (rv) {
            /**
             * EINVAL *after* receive is almost always a padding error or
             * length error issued by a coprocessor (not an accelerator).
             * We convert this return value to -EGETBUFF which should
             * trigger a fallback to software.
             */
            case -EINVAL:
                  if ((we_p->devtype != PCICA) &&
                      (we_p->devtype != CEX2A))
                        rv = -EGETBUFF;
                  break;
            case -ETIMEOUT:
                  if (z90crypt.mask.st_count > 0)
                        rv = -ERESTARTSYS; // retry with another
                  else
                        rv = -ENODEV; // no cards left
            /* fall through to clean up request queue */
            case -ERESTARTSYS:
            case -ERELEASED:
                  switch (CHK_RDWRMASK(we_p->status[0])) {
                  case STAT_WRITTEN:
                        purge_work_element(we_p);
                        break;
                  case STAT_READPEND:
                  case STAT_NOWORK:
                  default:
                        break;
                  }
                  break;
            default:
                  we_p->status[0] ^= STAT_FAILED;
                  break;
            }
      }
      free_page((long)we_p);
      return rv;
}

/**
 * This function is a little long, but it's really just one large switch
 * statement.
 */
static long
z90crypt_unlocked_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
      struct priv_data *private_data_p = filp->private_data;
      unsigned char *status;
      unsigned char *qdepth;
      unsigned int *reqcnt;
      struct ica_z90_status *pstat;
      int ret, i, loopLim, tempstat;
      static int deprecated_msg_count1 = 0;
      static int deprecated_msg_count2 = 0;

      PDEBUG("filp %p (PID %d), cmd 0x%08X\n", filp, PID(), cmd);
      PDEBUG("cmd 0x%08X: dir %s, size 0x%04X, type 0x%02X, nr 0x%02X\n",
            cmd,
            !_IOC_DIR(cmd) ? "NO"
            : ((_IOC_DIR(cmd) == (_IOC_READ|_IOC_WRITE)) ? "RW"
            : ((_IOC_DIR(cmd) == _IOC_READ) ? "RD"
            : "WR")),
            _IOC_SIZE(cmd), _IOC_TYPE(cmd), _IOC_NR(cmd));

      if (_IOC_TYPE(cmd) != Z90_IOCTL_MAGIC) {
            PRINTK("cmd 0x%08X contains bad magic\n", cmd);
            return -ENOTTY;
      }

      ret = 0;
      switch (cmd) {
      case ICARSAMODEXPO:
      case ICARSACRT:
            if (quiesce_z90crypt) {
                  ret = -EQUIESCE;
                  break;
            }
            ret = -ENODEV; // Default if no devices
            loopLim = z90crypt.hdware_info->hdware_mask.st_count -
                  (z90crypt.hdware_info->hdware_mask.disabled_count +
                   z90crypt.hdware_info->hdware_mask.user_disabled_count);
            for (i = 0; i < loopLim; i++) {
                  ret = z90crypt_rsa(private_data_p, PID(), cmd, arg);
                  if (ret != -ERESTARTSYS)
                        break;
            }
            if (ret == -ERESTARTSYS)
                  ret = -ENODEV;
            break;

      case Z90STAT_TOTALCOUNT:
            tempstat = get_status_totalcount();
            if (copy_to_user((int __user *)arg, &tempstat,sizeof(int)) != 0)
                  ret = -EFAULT;
            break;

      case Z90STAT_PCICACOUNT:
            tempstat = get_status_PCICAcount();
            if (copy_to_user((int __user *)arg, &tempstat, sizeof(int)) != 0)
                  ret = -EFAULT;
            break;

      case Z90STAT_PCICCCOUNT:
            tempstat = get_status_PCICCcount();
            if (copy_to_user((int __user *)arg, &tempstat, sizeof(int)) != 0)
                  ret = -EFAULT;
            break;

      case Z90STAT_PCIXCCMCL2COUNT:
            tempstat = get_status_PCIXCCMCL2count();
            if (copy_to_user((int __user *)arg, &tempstat, sizeof(int)) != 0)
                  ret = -EFAULT;
            break;

      case Z90STAT_PCIXCCMCL3COUNT:
            tempstat = get_status_PCIXCCMCL3count();
            if (copy_to_user((int __user *)arg, &tempstat, sizeof(int)) != 0)
                  ret = -EFAULT;
            break;

      case Z90STAT_CEX2CCOUNT:
            tempstat = get_status_CEX2Ccount();
            if (copy_to_user((int __user *)arg, &tempstat, sizeof(int)) != 0)
                  ret = -EFAULT;
            break;

      case Z90STAT_CEX2ACOUNT:
            tempstat = get_status_CEX2Acount();
            if (copy_to_user((int __user *)arg, &tempstat, sizeof(int)) != 0)
                  ret = -EFAULT;
            break;

      case Z90STAT_REQUESTQ_COUNT:
            tempstat = get_status_requestq_count();
            if (copy_to_user((int __user *)arg, &tempstat, sizeof(int)) != 0)
                  ret = -EFAULT;
            break;

      case Z90STAT_PENDINGQ_COUNT:
            tempstat = get_status_pendingq_count();
            if (copy_to_user((int __user *)arg, &tempstat, sizeof(int)) != 0)
                  ret = -EFAULT;
            break;

      case Z90STAT_TOTALOPEN_COUNT:
            tempstat = get_status_totalopen_count();
            if (copy_to_user((int __user *)arg, &tempstat, sizeof(int)) != 0)
                  ret = -EFAULT;
            break;

      case Z90STAT_DOMAIN_INDEX:
            tempstat = get_status_domain_index();
            if (copy_to_user((int __user *)arg, &tempstat, sizeof(int)) != 0)
                  ret = -EFAULT;
            break;

      case Z90STAT_STATUS_MASK:
            status = kmalloc(Z90CRYPT_NUM_APS, GFP_KERNEL);
            if (!status) {
                  PRINTK("kmalloc for status failed!\n");
                  ret = -ENOMEM;
                  break;
            }
            get_status_status_mask(status);
            if (copy_to_user((char __user *) arg, status, Z90CRYPT_NUM_APS)
                                                      != 0)
                  ret = -EFAULT;
            kfree(status);
            break;

      case Z90STAT_QDEPTH_MASK:
            qdepth = kmalloc(Z90CRYPT_NUM_APS, GFP_KERNEL);
            if (!qdepth) {
                  PRINTK("kmalloc for qdepth failed!\n");
                  ret = -ENOMEM;
                  break;
            }
            get_status_qdepth_mask(qdepth);
            if (copy_to_user((char __user *) arg, qdepth, Z90CRYPT_NUM_APS) != 0)
                  ret = -EFAULT;
            kfree(qdepth);
            break;

      case Z90STAT_PERDEV_REQCNT:
            reqcnt = kmalloc(sizeof(int) * Z90CRYPT_NUM_APS, GFP_KERNEL);
            if (!reqcnt) {
                  PRINTK("kmalloc for reqcnt failed!\n");
                  ret = -ENOMEM;
                  break;
            }
            get_status_perdevice_reqcnt(reqcnt);
            if (copy_to_user((char __user *) arg, reqcnt,
                         Z90CRYPT_NUM_APS * sizeof(int)) != 0)
                  ret = -EFAULT;
            kfree(reqcnt);
            break;

            /* THIS IS DEPRECATED.  USE THE NEW STATUS CALLS */
      case ICAZ90STATUS:
            if (deprecated_msg_count1 < 20) {
                  PRINTK("deprecated call to ioctl (ICAZ90STATUS)!\n");
                  deprecated_msg_count1++;
                  if (deprecated_msg_count1 == 20)
                        PRINTK("No longer issuing messages related to "
                               "deprecated call to ICAZ90STATUS.\n");
            }

            pstat = kmalloc(sizeof(struct ica_z90_status), GFP_KERNEL);
            if (!pstat) {
                  PRINTK("kmalloc for pstat failed!\n");
                  ret = -ENOMEM;
                  break;
            }

            pstat->totalcount  = get_status_totalcount();
            pstat->leedslitecount    = get_status_PCICAcount();
            pstat->leeds2count       = get_status_PCICCcount();
            pstat->requestqWaitCount = get_status_requestq_count();
            pstat->pendingqWaitCount = get_status_pendingq_count();
            pstat->totalOpenCount    = get_status_totalopen_count();
            pstat->cryptoDomain      = get_status_domain_index();
            get_status_status_mask(pstat->status);
            get_status_qdepth_mask(pstat->qdepth);

            if (copy_to_user((struct ica_z90_status __user *) arg, pstat,
                         sizeof(struct ica_z90_status)) != 0)
                  ret = -EFAULT;
            kfree(pstat);
            break;

            /* THIS IS DEPRECATED.  USE THE NEW STATUS CALLS */
      case Z90STAT_PCIXCCCOUNT:
            if (deprecated_msg_count2 < 20) {
                  PRINTK("deprecated ioctl (Z90STAT_PCIXCCCOUNT)!\n");
                  deprecated_msg_count2++;
                  if (deprecated_msg_count2 == 20)
                        PRINTK("No longer issuing messages about depre"
                               "cated ioctl Z90STAT_PCIXCCCOUNT.\n");
            }

            tempstat = get_status_PCIXCCcount();
            if (copy_to_user((int *)arg, &tempstat, sizeof(int)) != 0)
                  ret = -EFAULT;
            break;

      case Z90QUIESCE:
            if (current->euid != 0) {
                  PRINTK("QUIESCE fails: euid %d\n",
                         current->euid);
                  ret = -EACCES;
            } else {
                  PRINTK("QUIESCE device from PID %d\n", PID());
                  quiesce_z90crypt = 1;
            }
            break;

      default:
            /* user passed an invalid IOCTL number */
            PDEBUG("cmd 0x%08X contains invalid ioctl code\n", cmd);
            ret = -ENOTTY;
            break;
      }

      return ret;
}

static inline int
sprintcl(unsigned char *outaddr, unsigned char *addr, unsigned int len)
{
      int hl, i;

      hl = 0;
      for (i = 0; i < len; i++)
            hl += sprintf(outaddr+hl, "%01x", (unsigned int) addr[i]);
      hl += sprintf(outaddr+hl, " ");

      return hl;
}

static inline int
sprintrw(unsigned char *outaddr, unsigned char *addr, unsigned int len)
{
      int hl, inl, c, cx;

      hl = sprintf(outaddr, "    ");
      inl = 0;
      for (c = 0; c < (len / 16); c++) {
            hl += sprintcl(outaddr+hl, addr+inl, 16);
            inl += 16;
      }

      cx = len%16;
      if (cx) {
            hl += sprintcl(outaddr+hl, addr+inl, cx);
            inl += cx;
      }

      hl += sprintf(outaddr+hl, "\n");

      return hl;
}

static inline int
sprinthx(unsigned char *title, unsigned char *outaddr,
       unsigned char *addr, unsigned int len)
{
      int hl, inl, r, rx;

      hl = sprintf(outaddr, "\n%s\n", title);
      inl = 0;
      for (r = 0; r < (len / 64); r++) {
            hl += sprintrw(outaddr+hl, addr+inl, 64);
            inl += 64;
      }
      rx = len % 64;
      if (rx) {
            hl += sprintrw(outaddr+hl, addr+inl, rx);
            inl += rx;
      }

      hl += sprintf(outaddr+hl, "\n");

      return hl;
}

static inline int
sprinthx4(unsigned char *title, unsigned char *outaddr,
        unsigned int *array, unsigned int len)
{
      int hl, r;

      hl = sprintf(outaddr, "\n%s\n", title);

      for (r = 0; r < len; r++) {
            if ((r % 8) == 0)
                  hl += sprintf(outaddr+hl, "    ");
            hl += sprintf(outaddr+hl, "%08X ", array[r]);
            if ((r % 8) == 7)
                  hl += sprintf(outaddr+hl, "\n");
      }

      hl += sprintf(outaddr+hl, "\n");

      return hl;
}

static int
z90crypt_status(char *resp_buff, char **start, off_t offset,
            int count, int *eof, void *data)
{
      unsigned char *workarea;
      int len;

      /* resp_buff is a page. Use the right half for a work area */
      workarea = resp_buff+2000;
      len = 0;
      len += sprintf(resp_buff+len, "\nz90crypt version: %d.%d.%d\n",
            z90crypt_VERSION, z90crypt_RELEASE, z90crypt_VARIANT);
      len += sprintf(resp_buff+len, "Cryptographic domain: %d\n",
            get_status_domain_index());
      len += sprintf(resp_buff+len, "Total device count: %d\n",
            get_status_totalcount());
      len += sprintf(resp_buff+len, "PCICA count: %d\n",
            get_status_PCICAcount());
      len += sprintf(resp_buff+len, "PCICC count: %d\n",
            get_status_PCICCcount());
      len += sprintf(resp_buff+len, "PCIXCC MCL2 count: %d\n",
            get_status_PCIXCCMCL2count());
      len += sprintf(resp_buff+len, "PCIXCC MCL3 count: %d\n",
            get_status_PCIXCCMCL3count());
      len += sprintf(resp_buff+len, "CEX2C count: %d\n",
            get_status_CEX2Ccount());
      len += sprintf(resp_buff+len, "CEX2A count: %d\n",
            get_status_CEX2Acount());
      len += sprintf(resp_buff+len, "requestq count: %d\n",
            get_status_requestq_count());
      len += sprintf(resp_buff+len, "pendingq count: %d\n",
            get_status_pendingq_count());
      len += sprintf(resp_buff+len, "Total open handles: %d\n\n",
            get_status_totalopen_count());
      len += sprinthx(
            "Online devices: 1=PCICA 2=PCICC 3=PCIXCC(MCL2) "
            "4=PCIXCC(MCL3) 5=CEX2C 6=CEX2A",
            resp_buff+len,
            get_status_status_mask(workarea),
            Z90CRYPT_NUM_APS);
      len += sprinthx("Waiting work element counts",
            resp_buff+len,
            get_status_qdepth_mask(workarea),
            Z90CRYPT_NUM_APS);
      len += sprinthx4(
            "Per-device successfully completed request counts",
            resp_buff+len,
            get_status_perdevice_reqcnt((unsigned int *)workarea),
            Z90CRYPT_NUM_APS);
      *eof = 1;
      memset(workarea, 0, Z90CRYPT_NUM_APS * sizeof(unsigned int));
      return len;
}

static inline void
disable_card(int card_index)
{
      struct device *devp;

      devp = LONG2DEVPTR(card_index);
      if (!devp || devp->user_disabled)
            return;
      devp->user_disabled = 1;
      z90crypt.hdware_info->hdware_mask.user_disabled_count++;
      if (devp->dev_type == -1)
            return;
      z90crypt.hdware_info->type_mask[devp->dev_type].user_disabled_count++;
}

static inline void
enable_card(int card_index)
{
      struct device *devp;

      devp = LONG2DEVPTR(card_index);
      if (!devp || !devp->user_disabled)
            return;
      devp->user_disabled = 0;
      z90crypt.hdware_info->hdware_mask.user_disabled_count--;
      if (devp->dev_type == -1)
            return;
      z90crypt.hdware_info->type_mask[devp->dev_type].user_disabled_count--;
}

static int
z90crypt_status_write(struct file *file, const char __user *buffer,
                  unsigned long count, void *data)
{
      int j, eol;
      unsigned char *lbuf, *ptr;
      unsigned int local_count;

#define LBUFSIZE 1200
      lbuf = kmalloc(LBUFSIZE, GFP_KERNEL);
      if (!lbuf) {
            PRINTK("kmalloc failed!\n");
            return 0;
      }

      if (count <= 0)
            return 0;

      local_count = UMIN((unsigned int)count, LBUFSIZE-1);

      if (copy_from_user(lbuf, buffer, local_count) != 0) {
            kfree(lbuf);
            return -EFAULT;
      }

      lbuf[local_count] = '\0';

      ptr = strstr(lbuf, "Online devices");
      if (ptr == 0) {
            PRINTK("Unable to parse data (missing \"Online devices\")\n");
            kfree(lbuf);
            return count;
      }

      ptr = strstr(ptr, "\n");
      if (ptr == 0) {
            PRINTK("Unable to parse data (missing newline after \"Online devices\")\n");
            kfree(lbuf);
            return count;
      }
      ptr++;

      if (strstr(ptr, "Waiting work element counts") == NULL) {
            PRINTK("Unable to parse data (missing \"Waiting work element counts\")\n");
            kfree(lbuf);
            return count;
      }

      j = 0;
      eol = 0;
      while ((j < 64) && (*ptr != '\0')) {
            switch (*ptr) {
            case '\t':
            case ' ':
                  break;
            case '\n':
            default:
                  eol = 1;
                  break;
            case '0':   // no device
            case '1':   // PCICA
            case '2':   // PCICC
            case '3':   // PCIXCC_MCL2
            case '4':   // PCIXCC_MCL3
            case '5':   // CEX2C
            case '6':       // CEX2A
                  j++;
                  break;
            case 'd':
            case 'D':
                  disable_card(j);
                  j++;
                  break;
            case 'e':
            case 'E':
                  enable_card(j);
                  j++;
                  break;
            }
            if (eol)
                  break;
            ptr++;
      }

      kfree(lbuf);
      return count;
}

/**
 * Functions that run under a timer, with no process id
 *
 * The task functions:
 *     z90crypt_reader_task
 *     helper_send_work
 *     helper_handle_work_element
 *     helper_receive_rc
 *     z90crypt_config_task
 *     z90crypt_cleanup_task
 *
 * Helper functions:
 *     z90crypt_schedule_reader_timer
 *     z90crypt_schedule_reader_task
 *     z90crypt_schedule_config_task
 *     z90crypt_schedule_cleanup_task
 */
static inline int
receive_from_crypto_device(int index, unsigned char *psmid, int *buff_len_p,
                     unsigned char *buff, unsigned char __user **dest_p_p)
{
      int dv, rv;
      struct device *dev_ptr;
      struct caller *caller_p;
      struct ica_rsa_modexpo *icaMsg_p;
      struct list_head *ptr, *tptr;

      memcpy(psmid, NULL_psmid, sizeof(NULL_psmid));

      if (z90crypt.terminating)
            return REC_FATAL_ERROR;

      caller_p = 0;
      dev_ptr = z90crypt.device_p[index];
      rv = 0;
      do {
            if (!dev_ptr || dev_ptr->disabled) {
                  rv = REC_NO_WORK; // a disabled device can't return work
                  break;
            }
            if (dev_ptr->dev_self_x != index) {
                  PRINTKC("Corrupt dev ptr\n");
                  z90crypt.terminating = 1;
                  rv = REC_FATAL_ERROR;
                  break;
            }
            if (!dev_ptr->dev_resp_l || !dev_ptr->dev_resp_p) {
                  dv = DEV_REC_EXCEPTION;
                  PRINTK("dev_resp_l = %d, dev_resp_p = %p\n",
                         dev_ptr->dev_resp_l, dev_ptr->dev_resp_p);
            } else {
                  PDEBUG("Dequeue called for device %d\n", index);
                  dv = receive_from_AP(index, z90crypt.cdx,
                                   dev_ptr->dev_resp_l,
                                   dev_ptr->dev_resp_p, psmid);
            }
            switch (dv) {
            case DEV_REC_EXCEPTION:
                  rv = REC_FATAL_ERROR;
                  z90crypt.terminating = 1;
                  PRINTKC("Exception in receive from device %d\n",
                        index);
                  break;
            case DEV_ONLINE:
                  rv = 0;
                  break;
            case DEV_EMPTY:
                  rv = REC_EMPTY;
                  break;
            case DEV_NO_WORK:
                  rv = REC_NO_WORK;
                  break;
            case DEV_BAD_MESSAGE:
            case DEV_GONE:
            case REC_HARDWAR_ERR:
            default:
                  rv = REC_NO_RESPONSE;
                  break;
            }
            if (rv)
                  break;
            if (dev_ptr->dev_caller_count <= 0) {
                  rv = REC_USER_GONE;
                  break;
              }

            list_for_each_safe(ptr, tptr, &dev_ptr->dev_caller_list) {
                  caller_p = list_entry(ptr, struct caller, caller_liste);
                  if (!memcmp(caller_p->caller_id, psmid,
                            sizeof(caller_p->caller_id))) {
                        if (!list_empty(&caller_p->caller_liste)) {
                              list_del_init(ptr);
                              dev_ptr->dev_caller_count--;
                              break;
                        }
                  }
                  caller_p = 0;
            }
            if (!caller_p) {
                  PRINTKW("Unable to locate PSMID %02X%02X%02X%02X%02X"
                        "%02X%02X%02X in device list\n",
                        psmid[0], psmid[1], psmid[2], psmid[3],
                        psmid[4], psmid[5], psmid[6], psmid[7]);
                  rv = REC_USER_GONE;
                  break;
            }

            PDEBUG("caller_p after successful receive: %p\n", caller_p);
            rv = convert_response(dev_ptr->dev_resp_p,
                              caller_p->caller_buf_p, buff_len_p, buff);
            switch (rv) {
            case REC_USE_PCICA:
                  break;
            case REC_OPERAND_INV:
            case REC_OPERAND_SIZE:
            case REC_EVEN_MOD:
            case REC_INVALID_PAD:
                  PDEBUG("device %d: 'user error' %d\n", index, rv);
                  break;
            case WRONG_DEVICE_TYPE:
            case REC_HARDWAR_ERR:
            case REC_BAD_MESSAGE:
                  PRINTKW("device %d: hardware error %d\n", index, rv);
                  rv = REC_NO_RESPONSE;
                  break;
            default:
                  PDEBUG("device %d: rv = %d\n", index, rv);
                  break;
            }
      } while (0);

      switch (rv) {
      case 0:
            PDEBUG("Successful receive from device %d\n", index);
            icaMsg_p = (struct ica_rsa_modexpo *)caller_p->caller_buf_p;
            *dest_p_p = icaMsg_p->outputdata;
            if (*buff_len_p == 0)
                  PRINTK("Zero *buff_len_p\n");
            break;
      case REC_NO_RESPONSE:
            PRINTKW("Removing device %d from availability\n", index);
            remove_device(dev_ptr);
            break;
      }

      if (caller_p)
            unbuild_caller(dev_ptr, caller_p);

      return rv;
}

static inline void
helper_send_work(int index)
{
      struct work_element *rq_p;
      int rv;

      if (list_empty(&request_list))
            return;
      requestq_count--;
      rq_p = list_entry(request_list.next, struct work_element, liste);
      list_del_init(&rq_p->liste);
      rq_p->audit[1] |= FP_REMREQUEST;
      if (rq_p->devtype == SHRT2DEVPTR(index)->dev_type) {
            rq_p->devindex = SHRT2LONG(index);
            rv = send_to_crypto_device(rq_p);
            if (rv == 0) {
                  rq_p->requestsent = jiffies;
                  rq_p->audit[0] |= FP_SENT;
                  list_add_tail(&rq_p->liste, &pending_list);
                  ++pendingq_count;
                  rq_p->audit[0] |= FP_PENDING;
            } else {
                  switch (rv) {
                  case REC_OPERAND_INV:
                  case REC_OPERAND_SIZE:
                  case REC_EVEN_MOD:
                  case REC_INVALID_PAD:
                        rq_p->retcode = -EINVAL;
                        break;
                  case SEN_NOT_AVAIL:
                  case SEN_RETRY:
                  case REC_NO_RESPONSE:
                  default:
                        if (z90crypt.mask.st_count > 1)
                              rq_p->retcode =
                                    -ERESTARTSYS;
                        else
                              rq_p->retcode = -ENODEV;
                        break;
                  }
                  rq_p->status[0] |= STAT_FAILED;
                  rq_p->audit[1] |= FP_AWAKENING;
                  atomic_set(&rq_p->alarmrung, 1);
                  wake_up(&rq_p->waitq);
            }
      } else {
            if (z90crypt.mask.st_count > 1)
                  rq_p->retcode = -ERESTARTSYS;
            else
                  rq_p->retcode = -ENODEV;
            rq_p->status[0] |= STAT_FAILED;
            rq_p->audit[1] |= FP_AWAKENING;
            atomic_set(&rq_p->alarmrung, 1);
            wake_up(&rq_p->waitq);
      }
}

static inline void
helper_handle_work_element(int index, unsigned char psmid[8], int rc,
                     int buff_len, unsigned char *buff,
                     unsigned char __user *resp_addr)
{
      struct work_element *pq_p;
      struct list_head *lptr, *tptr;

      pq_p = 0;
      list_for_each_safe(lptr, tptr, &pending_list) {
            pq_p = list_entry(lptr, struct work_element, liste);
            if (!memcmp(pq_p->caller_id, psmid, sizeof(pq_p->caller_id))) {
                  list_del_init(lptr);
                  pendingq_count--;
                  pq_p->audit[1] |= FP_NOTPENDING;
                  break;
            }
            pq_p = 0;
      }

      if (!pq_p) {
            PRINTK("device %d has work but no caller exists on pending Q\n",
                   SHRT2LONG(index));
            return;
      }

      switch (rc) {
            case 0:
                  pq_p->resp_buff_size = buff_len;
                  pq_p->audit[1] |= FP_RESPSIZESET;
                  if (buff_len) {
                        pq_p->resp_addr = resp_addr;
                        pq_p->audit[1] |= FP_RESPADDRCOPIED;
                        memcpy(pq_p->resp_buff, buff, buff_len);
                        pq_p->audit[1] |= FP_RESPBUFFCOPIED;
                  }
                  break;
            case REC_OPERAND_INV:
            case REC_OPERAND_SIZE:
            case REC_EVEN_MOD:
            case REC_INVALID_PAD:
                  PDEBUG("-EINVAL after application error %d\n", rc);
                  pq_p->retcode = -EINVAL;
                  pq_p->status[0] |= STAT_FAILED;
                  break;
            case REC_USE_PCICA:
                  pq_p->retcode = -ERESTARTSYS;
                  pq_p->status[0] |= STAT_FAILED;
                  break;
            case REC_NO_RESPONSE:
            default:
                  if (z90crypt.mask.st_count > 1)
                        pq_p->retcode = -ERESTARTSYS;
                  else
                        pq_p->retcode = -ENODEV;
                  pq_p->status[0] |= STAT_FAILED;
                  break;
      }
      if ((pq_p->status[0] != STAT_FAILED) || (pq_p->retcode != -ERELEASED)) {
            pq_p->audit[1] |= FP_AWAKENING;
            atomic_set(&pq_p->alarmrung, 1);
            wake_up(&pq_p->waitq);
      }
}

/**
 * return TRUE if the work element should be removed from the queue
 */
static inline int
helper_receive_rc(int index, int *rc_p)
{
      switch (*rc_p) {
      case 0:
      case REC_OPERAND_INV:
      case REC_OPERAND_SIZE:
      case REC_EVEN_MOD:
      case REC_INVALID_PAD:
      case REC_USE_PCICA:
            break;

      case REC_BUSY:
      case REC_NO_WORK:
      case REC_EMPTY:
      case REC_RETRY_DEV:
      case REC_FATAL_ERROR:
            return 0;

      case REC_NO_RESPONSE:
            break;

      default:
            PRINTK("rc %d, device %d converted to REC_NO_RESPONSE\n",
                   *rc_p, SHRT2LONG(index));
            *rc_p = REC_NO_RESPONSE;
            break;
      }
      return 1;
}

static inline void
z90crypt_schedule_reader_timer(void)
{
      if (timer_pending(&reader_timer))
            return;
      if (mod_timer(&reader_timer, jiffies+(READERTIME*HZ/1000)) != 0)
            PRINTK("Timer pending while modifying reader timer\n");
}

static void
z90crypt_reader_task(unsigned long ptr)
{
      int workavail, index, rc, buff_len;
      unsigned char     psmid[8];
      unsigned char __user *resp_addr;
      static unsigned char buff[1024];

      /**
       * we use workavail = 2 to ensure 2 passes with nothing dequeued before
       * exiting the loop. If (pendingq_count+requestq_count) == 0 after the
       * loop, there is no work remaining on the queues.
       */
      resp_addr = 0;
      workavail = 2;
      buff_len = 0;
      while (workavail) {
            workavail--;
            rc = 0;
            spin_lock_irq(&queuespinlock);
            memset(buff, 0x00, sizeof(buff));

            /* Dequeue once from each device in round robin. */
            for (index = 0; index < z90crypt.mask.st_count; index++) {
                  PDEBUG("About to receive.\n");
                  rc = receive_from_crypto_device(SHRT2LONG(index),
                                          psmid,
                                          &buff_len,
                                          buff,
                                          &resp_addr);
                  PDEBUG("Dequeued: rc = %d.\n", rc);

                  if (helper_receive_rc(index, &rc)) {
                        if (rc != REC_NO_RESPONSE) {
                              helper_send_work(index);
                              workavail = 2;
                        }

                        helper_handle_work_element(index, psmid, rc,
                                             buff_len, buff,
                                             resp_addr);
                  }

                  if (rc == REC_FATAL_ERROR)
                        PRINTKW("REC_FATAL_ERROR from device %d!\n",
                              SHRT2LONG(index));
            }
            spin_unlock_irq(&queuespinlock);
      }

      if (pendingq_count + requestq_count)
            z90crypt_schedule_reader_timer();
}

static inline void
z90crypt_schedule_config_task(unsigned int expiration)
{
      if (timer_pending(&config_timer))
            return;
      if (mod_timer(&config_timer, jiffies+(expiration*HZ)) != 0)
            PRINTK("Timer pending while modifying config timer\n");
}

static void
z90crypt_config_task(unsigned long ptr)
{
      int rc;

      PDEBUG("jiffies %ld\n", jiffies);

      if ((rc = refresh_z90crypt(&z90crypt.cdx)))
            PRINTK("Error %d detected in refresh_z90crypt.\n", rc);
      /* If return was fatal, don't bother reconfiguring */
      if ((rc != TSQ_FATAL_ERROR) && (rc != RSQ_FATAL_ERROR))
            z90crypt_schedule_config_task(CONFIGTIME);
}

static inline void
z90crypt_schedule_cleanup_task(void)
{
      if (timer_pending(&cleanup_timer))
            return;
      if (mod_timer(&cleanup_timer, jiffies+(CLEANUPTIME*HZ)) != 0)
            PRINTK("Timer pending while modifying cleanup timer\n");
}

static inline void
helper_drain_queues(void)
{
      struct work_element *pq_p;
      struct list_head *lptr, *tptr;

      list_for_each_safe(lptr, tptr, &pending_list) {
            pq_p = list_entry(lptr, struct work_element, liste);
            pq_p->retcode = -ENODEV;
            pq_p->status[0] |= STAT_FAILED;
            unbuild_caller(LONG2DEVPTR(pq_p->devindex),
                         (struct caller *)pq_p->requestptr);
            list_del_init(lptr);
            pendingq_count--;
            pq_p->audit[1] |= FP_NOTPENDING;
            pq_p->audit[1] |= FP_AWAKENING;
            atomic_set(&pq_p->alarmrung, 1);
            wake_up(&pq_p->waitq);
      }

      list_for_each_safe(lptr, tptr, &request_list) {
            pq_p = list_entry(lptr, struct work_element, liste);
            pq_p->retcode = -ENODEV;
            pq_p->status[0] |= STAT_FAILED;
            list_del_init(lptr);
            requestq_count--;
            pq_p->audit[1] |= FP_REMREQUEST;
            pq_p->audit[1] |= FP_AWAKENING;
            atomic_set(&pq_p->alarmrung, 1);
            wake_up(&pq_p->waitq);
      }
}

static inline void
helper_timeout_requests(void)
{
      struct work_element *pq_p;
      struct list_head *lptr, *tptr;
      long timelimit;

      timelimit = jiffies - (CLEANUPTIME * HZ);
      /* The list is in strict chronological order */
      list_for_each_safe(lptr, tptr, &pending_list) {
            pq_p = list_entry(lptr, struct work_element, liste);
            if (pq_p->requestsent >= timelimit)
                  break;
            PRINTKW("Purging(PQ) PSMID %02X%02X%02X%02X%02X%02X%02X%02X\n",
                   ((struct caller *)pq_p->requestptr)->caller_id[0],
                   ((struct caller *)pq_p->requestptr)->caller_id[1],
                   ((struct caller *)pq_p->requestptr)->caller_id[2],
                   ((struct caller *)pq_p->requestptr)->caller_id[3],
                   ((struct caller *)pq_p->requestptr)->caller_id[4],
                   ((struct caller *)pq_p->requestptr)->caller_id[5],
                   ((struct caller *)pq_p->requestptr)->caller_id[6],
                   ((struct caller *)pq_p->requestptr)->caller_id[7]);
            pq_p->retcode = -ETIMEOUT;
            pq_p->status[0] |= STAT_FAILED;
            /* get this off any caller queue it may be on */
            unbuild_caller(LONG2DEVPTR(pq_p->devindex),
                         (struct caller *) pq_p->requestptr);
            list_del_init(lptr);
            pendingq_count--;
            pq_p->audit[1] |= FP_TIMEDOUT;
            pq_p->audit[1] |= FP_NOTPENDING;
            pq_p->audit[1] |= FP_AWAKENING;
            atomic_set(&pq_p->alarmrung, 1);
            wake_up(&pq_p->waitq);
      }

      /**
       * If pending count is zero, items left on the request queue may
       * never be processed.
       */
      if (pendingq_count <= 0) {
            list_for_each_safe(lptr, tptr, &request_list) {
                  pq_p = list_entry(lptr, struct work_element, liste);
                  if (pq_p->requestsent >= timelimit)
                        break;
            PRINTKW("Purging(RQ) PSMID %02X%02X%02X%02X%02X%02X%02X%02X\n",
                   ((struct caller *)pq_p->requestptr)->caller_id[0],
                   ((struct caller *)pq_p->requestptr)->caller_id[1],
                   ((struct caller *)pq_p->requestptr)->caller_id[2],
                   ((struct caller *)pq_p->requestptr)->caller_id[3],
                   ((struct caller *)pq_p->requestptr)->caller_id[4],
                   ((struct caller *)pq_p->requestptr)->caller_id[5],
                   ((struct caller *)pq_p->requestptr)->caller_id[6],
                   ((struct caller *)pq_p->requestptr)->caller_id[7]);
                  pq_p->retcode = -ETIMEOUT;
                  pq_p->status[0] |= STAT_FAILED;
                  list_del_init(lptr);
                  requestq_count--;
                  pq_p->audit[1] |= FP_TIMEDOUT;
                  pq_p->audit[1] |= FP_REMREQUEST;
                  pq_p->audit[1] |= FP_AWAKENING;
                  atomic_set(&pq_p->alarmrung, 1);
                  wake_up(&pq_p->waitq);
            }
      }
}

static void
z90crypt_cleanup_task(unsigned long ptr)
{
      PDEBUG("jiffies %ld\n", jiffies);
      spin_lock_irq(&queuespinlock);
      if (z90crypt.mask.st_count <= 0) // no devices!
            helper_drain_queues();
      else
            helper_timeout_requests();
      spin_unlock_irq(&queuespinlock);
      z90crypt_schedule_cleanup_task();
}

static void
z90crypt_schedule_reader_task(unsigned long ptr)
{
      tasklet_schedule(&reader_tasklet);
}

/**
 * Lowlevel Functions:
 *
 *   create_z90crypt:  creates and initializes basic data structures
 *   refresh_z90crypt:  re-initializes basic data structures
 *   find_crypto_devices: returns a count and mask of hardware status
 *   create_crypto_device:  builds the descriptor for a device
 *   destroy_crypto_device:  unallocates the descriptor for a device
 *   destroy_z90crypt:  drains all work, unallocates structs
 */

/**
 * build the z90crypt root structure using the given domain index
 */
static int
create_z90crypt(int *cdx_p)
{
      struct hdware_block *hdware_blk_p;

      memset(&z90crypt, 0x00, sizeof(struct z90crypt));
      z90crypt.domain_established = 0;
      z90crypt.len = sizeof(struct z90crypt);
      z90crypt.max_count = Z90CRYPT_NUM_DEVS;
      z90crypt.cdx = *cdx_p;

      hdware_blk_p = kzalloc(sizeof(struct hdware_block), GFP_ATOMIC);
      if (!hdware_blk_p) {
            PDEBUG("kmalloc for hardware block failed\n");
            return ENOMEM;
      }
      z90crypt.hdware_info = hdware_blk_p;

      return 0;
}

static inline int
helper_scan_devices(int cdx_array[16], int *cdx_p, int *correct_cdx_found)
{
      enum hdstat hd_stat;
      int q_depth, dev_type;
      int indx, chkdom, numdomains;

      q_depth = dev_type = numdomains = 0;
      for (chkdom = 0; chkdom <= 15; cdx_array[chkdom++] = -1);
      for (indx = 0; indx < z90crypt.max_count; indx++) {
            hd_stat = HD_NOT_THERE;
            numdomains = 0;
            for (chkdom = 0; chkdom <= 15; chkdom++) {
                  hd_stat = query_online(indx, chkdom, MAX_RESET,
                                     &q_depth, &dev_type);
                  if (hd_stat == HD_TSQ_EXCEPTION) {
                        z90crypt.terminating = 1;
                        PRINTKC("exception taken!\n");
                        break;
                  }
                  if (hd_stat == HD_ONLINE) {
                        cdx_array[numdomains++] = chkdom;
                        if (*cdx_p == chkdom) {
                              *correct_cdx_found  = 1;
                              break;
                        }
                  }
            }
            if ((*correct_cdx_found == 1) || (numdomains != 0))
                  break;
            if (z90crypt.terminating)
                  break;
      }
      return numdomains;
}

static inline int
probe_crypto_domain(int *cdx_p)
{
      int cdx_array[16];
      char cdx_array_text[53], temp[5];
      int correct_cdx_found, numdomains;

      correct_cdx_found = 0;
      numdomains = helper_scan_devices(cdx_array, cdx_p, &correct_cdx_found);

      if (z90crypt.terminating)
            return TSQ_FATAL_ERROR;

      if (correct_cdx_found)
            return 0;

      if (numdomains == 0) {
            PRINTKW("Unable to find crypto domain: No devices found\n");
            return Z90C_NO_DEVICES;
      }

      if (numdomains == 1) {
            if (*cdx_p == -1) {
                  *cdx_p = cdx_array[0];
                  return 0;
            }
            PRINTKW("incorrect domain: specified = %d, found = %d\n",
                   *cdx_p, cdx_array[0]);
            return Z90C_INCORRECT_DOMAIN;
      }

      numdomains--;
      sprintf(cdx_array_text, "%d", cdx_array[numdomains]);
      while (numdomains) {
            numdomains--;
            sprintf(temp, ", %d", cdx_array[numdomains]);
            strcat(cdx_array_text, temp);
      }

      PRINTKW("ambiguous domain detected: specified = %d, found array = %s\n",
            *cdx_p, cdx_array_text);
      return Z90C_AMBIGUOUS_DOMAIN;
}

static int
refresh_z90crypt(int *cdx_p)
{
      int i, j, indx, rv;
      static struct status local_mask;
      struct device *devPtr;
      unsigned char oldStat, newStat;
      int return_unchanged;

      if (z90crypt.len != sizeof(z90crypt))
            return ENOTINIT;
      if (z90crypt.terminating)
            return TSQ_FATAL_ERROR;
      rv = 0;
      if (!z90crypt.hdware_info->hdware_mask.st_count &&
          !z90crypt.domain_established) {
            rv = probe_crypto_domain(cdx_p);
            if (z90crypt.terminating)
                  return TSQ_FATAL_ERROR;
            if (rv == Z90C_NO_DEVICES)
                  return 0; // try later
            if (rv)
                  return rv;
            z90crypt.cdx = *cdx_p;
            z90crypt.domain_established = 1;
      }
      rv = find_crypto_devices(&local_mask);
      if (rv) {
            PRINTK("find crypto devices returned %d\n", rv);
            return rv;
      }
      if (!memcmp(&local_mask, &z90crypt.hdware_info->hdware_mask,
                sizeof(struct status))) {
            return_unchanged = 1;
            for (i = 0; i < Z90CRYPT_NUM_TYPES; i++) {
                  /**
                   * Check for disabled cards.  If any device is marked
                   * disabled, destroy it.
                   */
                  for (j = 0;
                       j < z90crypt.hdware_info->type_mask[i].st_count;
                       j++) {
                        indx = z90crypt.hdware_info->type_x_addr[i].
                                                device_index[j];
                        devPtr = z90crypt.device_p[indx];
                        if (devPtr && devPtr->disabled) {
                              local_mask.st_mask[indx] = HD_NOT_THERE;
                              return_unchanged = 0;
                        }
                  }
            }
            if (return_unchanged == 1)
                  return 0;
      }

      spin_lock_irq(&queuespinlock);
      for (i = 0; i < z90crypt.max_count; i++) {
            oldStat = z90crypt.hdware_info->hdware_mask.st_mask[i];
            newStat = local_mask.st_mask[i];
            if ((oldStat == HD_ONLINE) && (newStat != HD_ONLINE))
                  destroy_crypto_device(i);
            else if ((oldStat != HD_ONLINE) && (newStat == HD_ONLINE)) {
                  rv = create_crypto_device(i);
                  if (rv >= REC_FATAL_ERROR)
                        return rv;
                  if (rv != 0) {
                        local_mask.st_mask[i] = HD_NOT_THERE;
                        local_mask.st_count--;
                  }
            }
      }
      memcpy(z90crypt.hdware_info->hdware_mask.st_mask, local_mask.st_mask,
             sizeof(local_mask.st_mask));
      z90crypt.hdware_info->hdware_mask.st_count = local_mask.st_count;
      z90crypt.hdware_info->hdware_mask.disabled_count =
                                          local_mask.disabled_count;
      refresh_index_array(&z90crypt.mask, &z90crypt.overall_device_x);
      for (i = 0; i < Z90CRYPT_NUM_TYPES; i++)
            refresh_index_array(&(z90crypt.hdware_info->type_mask[i]),
                            &(z90crypt.hdware_info->type_x_addr[i]));
      spin_unlock_irq(&queuespinlock);

      return rv;
}

static int
find_crypto_devices(struct status *deviceMask)
{
      int i, q_depth, dev_type;
      enum hdstat hd_stat;

      deviceMask->st_count = 0;
      deviceMask->disabled_count = 0;
      deviceMask->user_disabled_count = 0;

      for (i = 0; i < z90crypt.max_count; i++) {
            hd_stat = query_online(i, z90crypt.cdx, MAX_RESET, &q_depth,
                               &dev_type);
            if (hd_stat == HD_TSQ_EXCEPTION) {
                  z90crypt.terminating = 1;
                  PRINTKC("Exception during probe for crypto devices\n");
                  return TSQ_FATAL_ERROR;
            }
            deviceMask->st_mask[i] = hd_stat;
            if (hd_stat == HD_ONLINE) {
                  PDEBUG("Got an online crypto!: %d\n", i);
                  PDEBUG("Got a queue depth of %d\n", q_depth);
                  PDEBUG("Got a device type of %d\n", dev_type);
                  if (q_depth <= 0)
                        return TSQ_FATAL_ERROR;
                  deviceMask->st_count++;
                  z90crypt.q_depth_array[i] = q_depth;
                  z90crypt.dev_type_array[i] = dev_type;
            }
      }

      return 0;
}

static int
refresh_index_array(struct status *status_str, struct device_x *index_array)
{
      int i, count;
      enum devstat stat;

      i = -1;
      count = 0;
      do {
            stat = status_str->st_mask[++i];
            if (stat == DEV_ONLINE)
                  index_array->device_index[count++] = i;
      } while ((i < Z90CRYPT_NUM_DEVS) && (count < status_str->st_count));

      return count;
}

static int
create_crypto_device(int index)
{
      int rv, devstat, total_size;
      struct device *dev_ptr;
      struct status *type_str_p;
      int deviceType;

      dev_ptr = z90crypt.device_p[index];
      if (!dev_ptr) {
            total_size = sizeof(struct device) +
                       z90crypt.q_depth_array[index] * sizeof(int);

            dev_ptr = kzalloc(total_size, GFP_ATOMIC);
            if (!dev_ptr) {
                  PRINTK("kmalloc device %d failed\n", index);
                  return ENOMEM;
            }
            dev_ptr->dev_resp_p = kmalloc(MAX_RESPONSE_SIZE, GFP_ATOMIC);
            if (!dev_ptr->dev_resp_p) {
                  kfree(dev_ptr);
                  PRINTK("kmalloc device %d rec buffer failed\n", index);
                  return ENOMEM;
            }
            dev_ptr->dev_resp_l = MAX_RESPONSE_SIZE;
            INIT_LIST_HEAD(&(dev_ptr->dev_caller_list));
      }

      devstat = reset_device(index, z90crypt.cdx, MAX_RESET);
      if (devstat == DEV_RSQ_EXCEPTION) {
            PRINTK("exception during reset device %d\n", index);
            kfree(dev_ptr->dev_resp_p);
            kfree(dev_ptr);
            return RSQ_FATAL_ERROR;
      }
      if (devstat == DEV_ONLINE) {
            dev_ptr->dev_self_x = index;
            dev_ptr->dev_type = z90crypt.dev_type_array[index];
            if (dev_ptr->dev_type == NILDEV) {
                  rv = probe_device_type(dev_ptr);
                  if (rv) {
                        PRINTK("rv = %d from probe_device_type %d\n",
                               rv, index);
                        kfree(dev_ptr->dev_resp_p);
                        kfree(dev_ptr);
                        return rv;
                  }
            }
            if (dev_ptr->dev_type == PCIXCC_UNK) {
                  rv = probe_PCIXCC_type(dev_ptr);
                  if (rv) {
                        PRINTK("rv = %d from probe_PCIXCC_type %d\n",
                               rv, index);
                        kfree(dev_ptr->dev_resp_p);
                        kfree(dev_ptr);
                        return rv;
                  }
            }
            deviceType = dev_ptr->dev_type;
            z90crypt.dev_type_array[index] = deviceType;
            if (deviceType == PCICA)
                  z90crypt.hdware_info->device_type_array[index] = 1;
            else if (deviceType == PCICC)
                  z90crypt.hdware_info->device_type_array[index] = 2;
            else if (deviceType == PCIXCC_MCL2)
                  z90crypt.hdware_info->device_type_array[index] = 3;
            else if (deviceType == PCIXCC_MCL3)
                  z90crypt.hdware_info->device_type_array[index] = 4;
            else if (deviceType == CEX2C)
                  z90crypt.hdware_info->device_type_array[index] = 5;
            else if (deviceType == CEX2A)
                  z90crypt.hdware_info->device_type_array[index] = 6;
            else // No idea how this would happen.
                  z90crypt.hdware_info->device_type_array[index] = -1;
      }

      /**
       * 'q_depth' returned by the hardware is one less than
       * the actual depth
       */
      dev_ptr->dev_q_depth = z90crypt.q_depth_array[index];
      dev_ptr->dev_type = z90crypt.dev_type_array[index];
      dev_ptr->dev_stat = devstat;
      dev_ptr->disabled = 0;
      z90crypt.device_p[index] = dev_ptr;

      if (devstat == DEV_ONLINE) {
            if (z90crypt.mask.st_mask[index] != DEV_ONLINE) {
                  z90crypt.mask.st_mask[index] = DEV_ONLINE;
                  z90crypt.mask.st_count++;
            }
            deviceType = dev_ptr->dev_type;
            type_str_p = &z90crypt.hdware_info->type_mask[deviceType];
            if (type_str_p->st_mask[index] != DEV_ONLINE) {
                  type_str_p->st_mask[index] = DEV_ONLINE;
                  type_str_p->st_count++;
            }
      }

      return 0;
}

static int
destroy_crypto_device(int index)
{
      struct device *dev_ptr;
      int t, disabledFlag;

      dev_ptr = z90crypt.device_p[index];

      /* remember device type; get rid of device struct */
      if (dev_ptr) {
            disabledFlag = dev_ptr->disabled;
            t = dev_ptr->dev_type;
            kfree(dev_ptr->dev_resp_p);
            kfree(dev_ptr);
      } else {
            disabledFlag = 0;
            t = -1;
      }
      z90crypt.device_p[index] = 0;

      /* if the type is valid, remove the device from the type_mask */
      if ((t != -1) && z90crypt.hdware_info->type_mask[t].st_mask[index]) {
              z90crypt.hdware_info->type_mask[t].st_mask[index] = 0x00;
              z90crypt.hdware_info->type_mask[t].st_count--;
              if (disabledFlag == 1)
                  z90crypt.hdware_info->type_mask[t].disabled_count--;
      }
      if (z90crypt.mask.st_mask[index] != DEV_GONE) {
            z90crypt.mask.st_mask[index] = DEV_GONE;
            z90crypt.mask.st_count--;
      }
      z90crypt.hdware_info->device_type_array[index] = 0;

      return 0;
}

static void
destroy_z90crypt(void)
{
      int i;

      for (i = 0; i < z90crypt.max_count; i++)
            if (z90crypt.device_p[i])
                  destroy_crypto_device(i);
      kfree(z90crypt.hdware_info);
      memset((void *)&z90crypt, 0, sizeof(z90crypt));
}

static unsigned char static_testmsg[384] = {
0x00,0x00,0x00,0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x00,0x06,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x58,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x01,0x00,0x43,0x43,
0x41,0x2d,0x41,0x50,0x50,0x4c,0x20,0x20,0x20,0x01,0x01,0x01,0x00,0x00,0x00,0x00,
0x50,0x4b,0x00,0x00,0x00,0x00,0x01,0x1c,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x05,0xb8,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x70,0x00,0x41,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x54,0x32,
0x01,0x00,0xa0,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0xb8,0x05,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x0a,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x08,0x00,0x49,0x43,0x53,0x46,
0x20,0x20,0x20,0x20,0x50,0x4b,0x0a,0x00,0x50,0x4b,0x43,0x53,0x2d,0x31,0x2e,0x32,
0x37,0x00,0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x88,0x99,0x00,0x11,0x22,0x33,0x44,
0x55,0x66,0x77,0x88,0x99,0x00,0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x88,0x99,0x00,
0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x88,0x99,0x00,0x11,0x22,0x33,0x44,0x55,0x66,
0x77,0x88,0x99,0x00,0x11,0x22,0x33,0x5d,0x00,0x5b,0x00,0x77,0x88,0x1e,0x00,0x00,
0x57,0x00,0x00,0x00,0x00,0x04,0x00,0x00,0x4f,0x00,0x00,0x00,0x03,0x02,0x00,0x00,
0x40,0x01,0x00,0x01,0xce,0x02,0x68,0x2d,0x5f,0xa9,0xde,0x0c,0xf6,0xd2,0x7b,0x58,
0x4b,0xf9,0x28,0x68,0x3d,0xb4,0xf4,0xef,0x78,0xd5,0xbe,0x66,0x63,0x42,0xef,0xf8,
0xfd,0xa4,0xf8,0xb0,0x8e,0x29,0xc2,0xc9,0x2e,0xd8,0x45,0xb8,0x53,0x8c,0x6f,0x4e,
0x72,0x8f,0x6c,0x04,0x9c,0x88,0xfc,0x1e,0xc5,0x83,0x55,0x57,0xf7,0xdd,0xfd,0x4f,
0x11,0x36,0x95,0x5d,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00
};

static int
probe_device_type(struct device *devPtr)
{
      int rv, dv, i, index, length;
      unsigned char psmid[8];
      static unsigned char loc_testmsg[sizeof(static_testmsg)];

      index = devPtr->dev_self_x;
      rv = 0;
      do {
            memcpy(loc_testmsg, static_testmsg, sizeof(static_testmsg));
            length = sizeof(static_testmsg) - 24;
            /* the -24 allows for the header */
            dv = send_to_AP(index, z90crypt.cdx, length, loc_testmsg);
            if (dv) {
                  PDEBUG("dv returned by send during probe: %d\n", dv);
                  if (dv == DEV_SEN_EXCEPTION) {
                        rv = SEN_FATAL_ERROR;
                        PRINTKC("exception in send to AP %d\n", index);
                        break;
                  }
                  PDEBUG("return value from send_to_AP: %d\n", rv);
                  switch (dv) {
                  case DEV_GONE:
                        PDEBUG("dev %d not available\n", index);
                        rv = SEN_NOT_AVAIL;
                        break;
                  case DEV_ONLINE:
                        rv = 0;
                        break;
                  case DEV_EMPTY:
                        rv = SEN_NOT_AVAIL;
                        break;
                  case DEV_NO_WORK:
                        rv = SEN_FATAL_ERROR;
                        break;
                  case DEV_BAD_MESSAGE:
                        rv = SEN_USER_ERROR;
                        break;
                  case DEV_QUEUE_FULL:
                        rv = SEN_QUEUE_FULL;
                        break;
                  default:
                        PRINTK("unknown dv=%d for dev %d\n", dv, index);
                        rv = SEN_NOT_AVAIL;
                        break;
                  }
            }

            if (rv)
                  break;

            for (i = 0; i < 6; i++) {
                  mdelay(300);
                  dv = receive_from_AP(index, z90crypt.cdx,
                                   devPtr->dev_resp_l,
                                   devPtr->dev_resp_p, psmid);
                  PDEBUG("dv returned by DQ = %d\n", dv);
                  if (dv == DEV_REC_EXCEPTION) {
                        rv = REC_FATAL_ERROR;
                        PRINTKC("exception in dequeue %d\n",
                              index);
                        break;
                  }
                  switch (dv) {
                  case DEV_ONLINE:
                        rv = 0;
                        break;
                  case DEV_EMPTY:
                        rv = REC_EMPTY;
                        break;
                  case DEV_NO_WORK:
                        rv = REC_NO_WORK;
                        break;
                  case DEV_BAD_MESSAGE:
                  case DEV_GONE:
                  default:
                        rv = REC_NO_RESPONSE;
                        break;
                  }
                  if ((rv != 0) && (rv != REC_NO_WORK))
                        break;
                  if (rv == 0)
                        break;
            }
            if (rv)
                  break;
            rv = (devPtr->dev_resp_p[0] == 0x00) &&
                 (devPtr->dev_resp_p[1] == 0x86);
            if (rv)
                  devPtr->dev_type = PCICC;
            else
                  devPtr->dev_type = PCICA;
            rv = 0;
      } while (0);
      /* In a general error case, the card is not marked online */
      return rv;
}

static unsigned char MCL3_testmsg[] = {
0x00,0x00,0x00,0x00,0xEE,0xEE,0xEE,0xEE,0xEE,0xEE,0xEE,0xEE,
0x00,0x06,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x58,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x43,0x41,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x50,0x4B,0x00,0x00,0x00,0x00,0x01,0xC4,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x07,0x24,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0xDC,0x02,0x00,0x00,0x00,0x54,0x32,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0xE8,0x00,0x00,0x00,0x00,0x00,0x00,0x07,0x24,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x04,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x50,0x4B,0x00,0x0A,0x4D,0x52,0x50,0x20,0x20,0x20,0x20,0x20,
0x00,0x42,0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0A,0x0B,0x0C,0x0D,
0x0E,0x0F,0x00,0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x88,0x99,0xAA,0xBB,0xCC,0xDD,
0xEE,0xFF,0xFF,0xEE,0xDD,0xCC,0xBB,0xAA,0x99,0x88,0x77,0x66,0x55,0x44,0x33,0x22,
0x11,0x00,0x01,0x23,0x45,0x67,0x89,0xAB,0xCD,0xEF,0xFE,0xDC,0xBA,0x98,0x76,0x54,
0x32,0x10,0x00,0x9A,0x00,0x98,0x00,0x00,0x1E,0x00,0x00,0x94,0x00,0x00,0x00,0x00,
0x04,0x00,0x00,0x8C,0x00,0x00,0x00,0x40,0x02,0x00,0x00,0x40,0xBA,0xE8,0x23,0x3C,
0x75,0xF3,0x91,0x61,0xD6,0x73,0x39,0xCF,0x7B,0x6D,0x8E,0x61,0x97,0x63,0x9E,0xD9,
0x60,0x55,0xD6,0xC7,0xEF,0xF8,0x1E,0x63,0x95,0x17,0xCC,0x28,0x45,0x60,0x11,0xC5,
0xC4,0x4E,0x66,0xC6,0xE6,0xC3,0xDE,0x8A,0x19,0x30,0xCF,0x0E,0xD7,0xAA,0xDB,0x01,
0xD8,0x00,0xBB,0x8F,0x39,0x9F,0x64,0x28,0xF5,0x7A,0x77,0x49,0xCC,0x6B,0xA3,0x91,
0x97,0x70,0xE7,0x60,0x1E,0x39,0xE1,0xE5,0x33,0xE1,0x15,0x63,0x69,0x08,0x80,0x4C,
0x67,0xC4,0x41,0x8F,0x48,0xDF,0x26,0x98,0xF1,0xD5,0x8D,0x88,0xD9,0x6A,0xA4,0x96,
0xC5,0x84,0xD9,0x30,0x49,0x67,0x7D,0x19,0xB1,0xB3,0x45,0x4D,0xB2,0x53,0x9A,0x47,
0x3C,0x7C,0x55,0xBF,0xCC,0x85,0x00,0x36,0xF1,0x3D,0x93,0x53
};

static int
probe_PCIXCC_type(struct device *devPtr)
{
      int rv, dv, i, index, length;
      unsigned char psmid[8];
      static unsigned char loc_testmsg[548];
      struct CPRBX *cprbx_p;

      index = devPtr->dev_self_x;
      rv = 0;
      do {
            memcpy(loc_testmsg, MCL3_testmsg, sizeof(MCL3_testmsg));
            length = sizeof(MCL3_testmsg) - 0x0C;
            dv = send_to_AP(index, z90crypt.cdx, length, loc_testmsg);
            if (dv) {
                  PDEBUG("dv returned = %d\n", dv);
                  if (dv == DEV_SEN_EXCEPTION) {
                        rv = SEN_FATAL_ERROR;
                        PRINTKC("exception in send to AP %d\n", index);
                        break;
                  }
                  PDEBUG("return value from send_to_AP: %d\n", rv);
                  switch (dv) {
                  case DEV_GONE:
                        PDEBUG("dev %d not available\n", index);
                        rv = SEN_NOT_AVAIL;
                        break;
                  case DEV_ONLINE:
                        rv = 0;
                        break;
                  case DEV_EMPTY:
                        rv = SEN_NOT_AVAIL;
                        break;
                  case DEV_NO_WORK:
                        rv = SEN_FATAL_ERROR;
                        break;
                  case DEV_BAD_MESSAGE:
                        rv = SEN_USER_ERROR;
                        break;
                  case DEV_QUEUE_FULL:
                        rv = SEN_QUEUE_FULL;
                        break;
                  default:
                        PRINTK("unknown dv=%d for dev %d\n", dv, index);
                        rv = SEN_NOT_AVAIL;
                        break;
                  }
            }

            if (rv)
                  break;

            for (i = 0; i < 6; i++) {
                  mdelay(300);
                  dv = receive_from_AP(index, z90crypt.cdx,
                                   devPtr->dev_resp_l,
                                   devPtr->dev_resp_p, psmid);
                  PDEBUG("dv returned by DQ = %d\n", dv);
                  if (dv == DEV_REC_EXCEPTION) {
                        rv = REC_FATAL_ERROR;
                        PRINTKC("exception in dequeue %d\n",
                              index);
                        break;
                  }
                  switch (dv) {
                  case DEV_ONLINE:
                        rv = 0;
                        break;
                  case DEV_EMPTY:
                        rv = REC_EMPTY;
                        break;
                  case DEV_NO_WORK:
                        rv = REC_NO_WORK;
                        break;
                  case DEV_BAD_MESSAGE:
                  case DEV_GONE:
                  default:
                        rv = REC_NO_RESPONSE;
                        break;
                  }
                  if ((rv != 0) && (rv != REC_NO_WORK))
                        break;
                  if (rv == 0)
                        break;
            }
            if (rv)
                  break;
            cprbx_p = (struct CPRBX *) (devPtr->dev_resp_p + 48);
            if ((cprbx_p->ccp_rtcode == 8) && (cprbx_p->ccp_rscode == 33)) {
                  devPtr->dev_type = PCIXCC_MCL2;
                  PDEBUG("device %d is MCL2\n", index);
            } else {
                  devPtr->dev_type = PCIXCC_MCL3;
                  PDEBUG("device %d is MCL3\n", index);
            }
      } while (0);
      /* In a general error case, the card is not marked online */
      return rv;
}

module_init(z90crypt_init_module);
module_exit(z90crypt_cleanup_module);

Generated by  Doxygen 1.6.0   Back to index